Главная · Молочные зубы · Гормоны мозгового вещества надпочечников, катехоламины. Классификация и механизм действия катехоламинов

Гормоны мозгового вещества надпочечников, катехоламины. Классификация и механизм действия катехоламинов

3. Физиологическая роль катехоламинов. Влияние на секрецию

Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.

Адреналин имеет большое сродство к b-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым a-адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.

При стрессе содержание катехоламинов повышается в 4 – 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.

Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.

Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 – 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый период инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиперстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе печени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гипертонической болезни в период кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.

При некоторых заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических диспепсиях и др.)


Таким образом, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус – гипофиз – кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обеспечении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: допексамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий b-адренорецепторы миокарда и сосудов.


Список использованной литературы

1. Анатомия человека. В двух томах. Т.2/Авт.: М.Р.Сапин, В.Я. Бочаров, Д.Б. Никитюк и др. /Под ред.М.Р. Сапина. – Изд 5-е, перераб. И доп. – М.: Медицина. – 2001. – 64 с.: ил.

2. Биологическая химия. Учеб. для хим., биол. и мед. спец. вузов / Д.Г. Кнорре, С.Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. – 479 с.: ил. .

3. Камышников В.С. О чём говорят медицинские анализы: Справ. пособие. – Мн.: Беларусская навука, 1998. – 189 с.

4. Физиология человека: Учебник/ Под ред. В.М. Покровского, Г.Ф. Коротько. – 2-е изд. перераб и доп. – М.: Медицина, 2003. – 656 с: ил. – (Учеб. лит. для студ. мед. вузов).



Гензеляйт в 1932 г. вывели уравнения реакций синтеза мочевины, которые представлены в виде цикла, получившего в литературе название орнитинового цикла мочевинообразования Кребса. Следует указать, что в биохимии это была первая циклическая система метаболизма, описание которой почти на 5 лет опеределило открытие Г. Кребсом другого метаболического процесса – цикла трикарбоновых кислот. Дальнейшие...

Названные общим адаптационным синдромом (Г.Селье). В развитии адаптационного синдрома основную роль играет гипофизарно-надпочечниковая система. Поджелудочная железа Поджелудочная железа относится к железам со смешанной функцией. Эндокринная функция осуществляется за счет продукции гормонов панкреатическими островками (островками Лангерганса). Островки расположены преимущественно в хвостовой...

Катехоламины - это адреналин, норадреналин, дофамин. Они синтезируются в мозговом веществе надпочечников, а также нейронами ЦНС, как возбуждающие нейромедиаторы. Норадреналин является нейромедиатором постганглионарных адренергических нейронов симпатической нервной системы.

Концентрация норадреналина в плазме крови составляет 1,8 нмоль / л (в горизонтальной позе), адреналина - 0,16 нмоль / л, дофамина - 0,23 нмоль / л.

Катехоламины принадлежат к дигидроксильованих фенольных аминов и являются производными L-тирозина: тирозин преимущественно поступает в составе пищевых продуктов, а также образуется в печени путем гидроксилирования L-фенилаланина фенилаланингидроксилазы и транспортируется к клеток, синтезирующих катехоламины.

В цитоплазме клеток, синтезирующих катехоламины, тирозин гидроксилируется тирозингидроксилазы до 3,4-дигидроксифенилаланин (L-ДОФА). L-ДОФА в цитозоле превращается ДОФА-декарбоксилазы в дофамина (3,4-дигидроксифенилетиламину). Дофамин входит в хромаффинные гранулы, где превращается в L-норадреналина ферментом дофамина - β-гидроксилазы, которая содержится только в гранулах.

Норадреналин является конечным продуктом около 20% хромаффинных клеток мозгового вещества надпочечников. В 80% хромаффинных клеток норадреналин диффундирует из гранул в цитоплазму, где под влиянием фенилетаноламин-метилтрансферазы (PNMT) вместе с S-аденозилметионином превращается в адреналин . Адреналин из цитоплазмы входит в другие гранулы, где накапливается. Активность PNMT, благодаря которой образуется адреналин, индуцированная очень высокой концентрацией глюкокортикоидов, транспортируемых портальными сосудами из коры надпочечников в мозгового вещества (рис. 6.49).

Катехоламины хранятся в гранулах хромаффинных клеток вместе с белками - хроматогранином А, ферментом дофомин бета-гидроксилазы, липидами и АТФ. Адреналин и норадреналин, циркулирующих в крови, имеют срок полжизни 10-15 с, разрушаются в печени и почках.

Мозговое вещество надпочечников иннервируется преганглионарными симпатичными нейронами от грудных сегментов спинного мозга (Т9-Т11), которые образуют синапсы с хромафинными клетками, где медиатором является ацетилхолин. Хромаффинные клетки не имеют аксонов и функционируют аналогично постганглионарными нейронам.

РИС. 6.49. Образование катехоламинов в хромаффинных клетках мозгового вещества надпочечников. Знак "+" - стимуляция процесса, PNMT - фентетаноламин-К-метилтрансферазы

Секреция катехоламинов осуществляется при активации преганглионарные симпатических нейронов, иннервирующих хромаффинные клетки мозгового слоя, а также под влиянием онгиотензину II, гистамина, брадикинина.

Медиатор преганглионарные симпатических волокон ацетилхолин вызывает деполяризацию хромаффинных клеток, что приводит к входу ионов Са 2+ в клетку и секреции катехоламинов путем экзоцитоза .

Базальный уровень концентрации катехоламинов - 6-Юь10 моль / л. Гипогликемия вызывает увеличение концентрации катехоламинов почти в 10 раз. Ангиотензин II только потенцирует их секрецию.

При постоянном увеличении концентрации катехоламинов в крови количество адренорецепторов увеличивается в клетках-мишенях, и наоборот (рис. 6.50).

Катехоламины взаимодействуют с мембранными α- и β-адренорецепторами клеток-мишеней. Гормон адреналин обладает большим сродством к β-адрено рецепторов, стимуляция которых приводит к изменению физиологических функций клетки-мишени благодаря каскада G-белки - активация аденилатциклазы - образование цАМФ - стимуляция протеинкиназы - фосфорилирования белков.

α-адренорецепторы почти одинаково чувствительны к норадреналина и адреналина. Активация α-адренорецепторов мембран гладких мышц сосудов приводит к образованию внутриклеточного посредника ИФ} и увеличение концентрации в цитоплазме ионов Са 2+, что вызывает их сокращение. Идентифицировано девять подтипов адренорецепторов - пять "а" и четыре "β", определена роль α1, α2, β1, β2 (тaбл. 6.7).

Влияния катехоламинов. Изменения метаболизма и висцеральных функций организма в условиях неспецифической адаптации - напряжении функциональных систем организма - направлены на мобилизацию его энергетических ресурсов.

РИС. 6.50.

Адреналин влияет на углеводный метаболизм и вызывает гипергликемию благодаря таким процессам:

■ стимуляции гликогенолиза в печени путем активации фермента гликогенфосфорилазы и угнетение гликогенсинтетазы; благодаря ферменту глюкозо-6-фосфатазы образуется глюкоза. Однако в скелетных мышцах существует нехватка глюкозо-6-фосфатазы и поэтому образуется лактат или пируват, из которых в печени также синтезируется глюкоза;

ТАБЛИЦА 6.7. Расположение адренорецепторов в различных органах и их физиологическая функция

Клетки-мишени

рецептор

физиологическая функция

типичные кардиомиоциты

Увеличение силы сокращения

атипичные кардиомиоциты синусно-предсердного узла

Увеличение частоты генерации ПД и частоты сокращения сердца

Кровеносные сосуды: гладкие мышцы

Сокращение гладких мышц - сужение сосудов

Расслабление гладких мышц - расширение сосудов

Бронхиолы: гладкие мышцы

Расслабление гладких мышц - расширение бронхиол

Почки: ЮГК

Увеличение секреции ренина

Печень: гепатоциты

увеличение гликогенолиза

Скелетные мышечные волокна

увеличение гликогенолиза

Бета-клетки островков поджелудочной железы

Увеличение секреции инсулина

Подавление секреции инсулина

Жировая ткань: липоциты

увеличение липолиза

угнетение липолиза

■ непосредственного подавления секреции инсулина и активации секреции глюкагона:

■ стимуляции секреции АКТГ, под влиянием которого увеличивается выделение корой надпочечников кортизола, который вызывает глюконеогенез в печени;

■ угнетение использования глюкозы клетками;

■ торможения транспортировки глюкозы в клетки через мембраны в скелетных мышцах, миокарде, жировых клетках.

Адреналин влияет на жировой обмен и стимулирует;

■ липолиз через активацию бета-адренорецепторов мембран жировых клеток:

■ мобилизацию свободных жирных кислот из жировых клеток и транспорт их в печени, способствует кетогенеза; в свою очередь, ацетоацетат и бета-гидроксибутират транспортируются к периферическим тканям, где есть источниками энергии.

Влияние катехоламинов на органы висцеральных систем такой же, как и влияние симпатической нервной системы, и направлен на увеличение минутного объема крови и транспортировки кислорода, регуляторных и питательных веществ к клеткам организма находятся в состоянии повышенной деятельности.

Катехоламины содержат катехоловое ядро (бензольное кольцо с двумя гидроксильными боковыми группами) и боковую цепь с аминогруппой. К катехоламинам относятся дофамин, норадреналин и адреналин.
Катехоламины широко распространены в растительных и животных организмах. У млекопитающих адреналин синтезируется преимущественно в мозговом веществе надпочечников, а норадреналин - не только в надпочечниках, но и в ЦНС и периферических симпатических нервах. Дофамин (предшественник норадреналина) обнаруживается как в мозговом веществе надпочечников, так и в адренергических нейронах. В высоких концентрациях он присутствует в головном мозге, в специализированных нейронах симпатических ганглиев и в сонном гломусе, где играет роль нейротрансмиттера. Дофамин содержится также в специализированных тучных клетках и энтерохромаффинных клетках.
Пептид ХгА запасается и выделяется путем экзоцитоза вместе с катехоламинами; фрагмент его предшественника, катестатин, ингибирует дальнейшую секрецию катехоламинов, являясь антагонистом холинергических рецепторов нейрона. У больных с гипертонической болезнью уровень ХгА в сыворотке несколько повышен, но интересно, что у детей таких больных он снижен. У тех людей белой расы, у которых снижен уровень катестатина, усилена прессорная реакция на катехоламины. Таким образом, относительный дефицит катестатина может увеличивать риск последующего развития гипертонической болезни. Соотношение адреналина и норадреналина в мозговом веществе надпочечников у разных видов различно. У человека на долю норадреналина в этом веществе приходится 15-20% общего количества катехоламинов.

А. Превращение тирозина в ДОФА
Катехоламины синтезируются из тирозина, который поступает с пищей или образуется в печени из фенилаланина. Концентрация тирозина в крови составляет 1-1,5 мг%. Он проникает в нейроны и хромаффинные клетки с помощью механизма активного транспорта и превращается в этих клетках в L-дигидроксифенилаланин (L-ДОФА). Реакция катализируется тирозингидроксилазой, которая с аксональным током перемещается в нервные окончания. Тирозингидроксилаза ограничивает скорость всего процесса синтеза катехоламинов. Транскрипция этого фермента активируется ацетилхолином, действующим через никотиновые холинергические рецепторы, которые в свою очередь (через цАМФ) активируют протеинкиназу А. Многие вещества снижают активность тирозингидроксилазы. Мощным ее ингибитором является α-метилтирозин (метирозин), который иногда используют в лечении злокачественных феохромоцитом.

Б. Превращение ДОФА в дофамин
ДОФА превращается в дофамин под влиянием декарбоксилазы ароматических аминокислот (ДОФА-декарбоксилазы). Этот фермент присутствует во всех тканях, но в особенно высоких концентрациях - в печени, почках, головном мозге и семявыносящих протоках. В разных тканях фермент обладает разной субстратной специфичностью. Конкурентные ингибиторы ДОФА-декарбоксилазы
(такие, как метилдофа) превращаются в соединения (например, в осметилнорадреналин), которые запасаются в гранулах нейронов и секретируются вместо норадреналина. Считалось, что эти соединения (ложные трансмиттеры) опосредуют гипотензивный эффект лекарственных веществ, действующих на уровне периферических симпатических синапсов, но в настоящее время полагают, что они активируют ос-рецепторы ингибиторных кортикобульбарных нейронов, снижая тем самым стимуляцию симпатических нервов.

В. Превращение дофамина в норадреналин
Дофамин поступает в гранулы клеток, где под действием дофамин-β-гидроксилазы (ДБГ), локализованной в мембранах гранул, гидроксилируется, превращаясь в норадреналин, который и хранится в этих гранулах. Гранулы перемещаются к клеточной поверхности и секретируют свое содержимое путем экзоцитоза. При этом из клеток выходит не только норадреналин, но и ДБГ. Выделившийся норадреналин жадно поглощается тем же нервом (обратный захват), но часть его диффундирует из синаптической щели в кровь. В норме уровень норадреналина в крови в основном определяется его диффузией из вненадпочечииковых синапсов симпатических нервов.

Г. Превращение норадреналина в адреналин
Норадреналин может диффундировать из гранул в цитоплазму. В некоторых клетках (особенно в мозговом веществе надпочечников) цитоплазматический фермент ФЭМТ катализирует его превращение в адреналин, который либо возвращается в секреторные гранулы, либо диффундирует из клетки, либо разрушается. Высокие концентрации кортизола усиливают экспрессию гена, кодирующего ФЭМТ. В таких высоких концентрациях кортизол присутствует в большинстве участков мозгового вещества надпочечников, поступая туда из коркового вещества с венозной кровью. Именно поэтому в мозговом веществе надпочечников человека на долю адреналина приходится около 80% всех катехоламинов, а на долю норадреналина - лишь 20%. Параганглиомы редко секретируют адреналин, поскольку местная концентрация кортизола в них недостаточна для активации синтеза ФЭМТ. Феохромоцитомы секретируют адреналин и норадреналин в различных соотношениях. Интересно, что при рецидивах феохромоцитомы секреция адреналина происходит в отсутствие коркового вещества, окружающего опухоль. Это свидетельствует о сохранении повышенной активности гена ФЭМТ в дочерних клетках феохромоцитомы. Удаление обоих нормальных надпочечников приводит к резкому падению уровня адреналина в крови, тогда как содержание норадреналина не снижается, поскольку его главным источником являются синапсы симпатических нервов.
ФЭМТ содержится во многих тканях, в том числе в легких, почках, поджелудочной железе и раковых клетках. Поэтому вненадпочечниковые ткани способны превращать норадреналин в адреналин. Однако уровень адреналина в крови лишь в минимальной степени зависит от его продукции этими тканями. Глюкокортикоиды увеличивают содержание ФЭМТ в легких человека, что может определять бронхорасширяющее действие этих соединений (при ингаляционном или системном введении). ФЭМТ присутствует также в эритроцитах, где ее активность возрастает при гипертиреозе и снижается при гипотиреозе. Активность ФЭМТ в почках
настолько высока, что почти половина адреналина, определяемого в моче, может быть следствием его образования из норадреналина именно в этих органах.
Секреция катехоламинов сопряжена с их биосинтезом. Поэтому запасы норадреналина в нервных окончаниях, даже при резком повышении симпатической активности, практически не меняются. Однако длительная гипогликемия может приводить к истощению запасов катехоламинов в мозговом веществе надпочечников. Биосинтез норадреналина при стимуляции симпатических нервов усиливается, по-видимому, за счет активации тирозингидроксилазы. При длительной стимуляции возрастает и количество этого фермента.

Запасание
Содержание катехоламинов в органах отражает плотность их симпатической иннервации и составляет в мозговом веществе надпочечников около 1,5 мг/г, в селезенке, семявыносящих протоках, головном и спинном мозге и сердце - 1-5 мг/г, а в печени, кишечнике и скелетных мышцах - 0,1-0,5 мг/г. Катехоламины запасаются в электрон-ноплотных гранулах диаметром около 1 мкм, в которых присутствуют также АТФ (в молярном отношении 4:1), некоторые нейропептиды, кальций, магний и водорастворимые белки, называемые хромогранинами (см. ниже). Во внутренней мембране гранул локализованы ДБГ и АТФаза. Mg 2+ -зависимая АТФаза облегчает захват катехоламинов гранулами и тормозит их выделение из гранул. Гранулы хромаффинных клеток надпочечников содержат и выделяют целый ряд активных пептидов, включая адреномедуллин, АКТГ, ВИП, хромогранины и энкефалины. Образующиеся из хромогранинов пептиды обладают физиологической активностью и могут модулировать секрецию катехоламинов.

Секреция
Секреция катехоламинов мозговым веществом надпочечников возрастает при физической нагрузке, стенокардии, инфаркте миокарда, кровотечениях, эфирном наркозе, хирургических операциях, гипогликемии, аноксии и асфиксии и во многих других стрессорных ситуациях. В ответ на гипогликемию и большинство других стимулов секреция адреналина увеличивается в большей степени, чем секреция норадреналина. Однако при аноксии и асфиксии надпочечники секретируют больше норадреналина, чем при других стимулах.

Секреция гормонов мозгового вещества надпочечников стимулируется ацетилхолином, который выделяется окончаниями преганглионарных симпатических волокон. Возникающая деполяризация мембраны клеток сопровождается притоком ионов кальция. Повышенная внутриклеточная концентрация этих ионов стимулирует экзоцитоз секреторных гранул, содержащих катехоламины, хромогранины и растворимую ДБГ. Связанная с мембраной гранул ДБГ при экзоцитозе не выделяется.

Транспорт
В крови катехоламины взаимодействуют с альбумином или аналогичным белком, обладающим низким сродством и высокой емкостью для этих гормонов.

Метаболизм и инактивация катехоламинов

Катехоламины быстро превращаются в неактивные вещества - метанефрины, ВМК и конъюгированные соединения.
Избыток норадреналина в клетках инактивируется преимущественно путем дезаминирования; эта реакция катализируется моноаминоксидазой (МАО), локализованной на наружной мембране митохондрий. (МАО регулирует содержание катехоламинов в нейронах; прогестерон повышает, а эстрогены снижают уровень этого фермента). Образующийся альдегид окисляется в 3,4-диги-дроксиминдальную кислоту (ДГМК) или дигидроксифенилгликоль (ДГФГ). Последний под
действием катехол-О-метилтрансферазы (КОМТ) превращается в ВМК, которая выводится с мочой. В ткани феохромоцитомы связанная с мембраной КОМТ превращает адреналин в метанефрин, а норадреналин - в норметанефрин. Эти метаболиты секретируются в кровь. Поэтому у больных с феохромоцитомами основным источником норметанефрина крови (около 93%) является ткань опухоли, а не периферический метаболизм катехоламинов.
Катехоламины, выделяющиеся в синапсы, взаимодействуют со своими рецепторами с относительно низким сродством и быстро отсоединяются от них. Примерно 15% норадреналина диффундирует из синапса в кровь, а остальное его количество поступает обратно в нерв или в клетку-мишень, после чего он может вновь запасаться в гранулах или инактивироваться, как описано выше. Захват катехоламинов является насыщаемым, энерго- и Nа + -зависимым и стереоспецифическим процессом. Трициклические антидепрессанты, фенотиазины, производные амфетамина и кокаин блокируют захват катехоламинов из синаптической щели.
Норадреналин крови под действием КОМТ превращается в норметанефрин; донором метальной группы для этой реакции служит S-аденозил-метионин. КОМТ присутствует во многих тканях, особенно в клетках крови, печени, почках и гладкомышечной оболочке сосудов. Адреналин аналогичным образом превращается метанефрин, часть которого затем превращается в ВМК. Инактивация катехоламинов происходит и путем конъюгирования их фенольных гидроксильных групп с сульфатом или глюкуронидом. Эти реакции протекают главным образом в печени, кишечнике и эритроцитах.
Катехоламины и их метаболиты выводятся из организма с мочой. В норме в моче примерно 50% этих соединений представлено метанефринами, 35% - ВМК, 10% - конъюгированными катехола-минами и другими метаболитами; на долю свободных катехоламинов приходится менее 5%.

Катехоламиновые (адренергические) рецепторы

Согласно современной классификации адрено-рецепторов, тип альфа подразделяется на α 1А, α 1В, α 1С, α 2А, α 2B α 2С, а тип бета - на β 1 , β 2 , β 3 и β 4 . Эти рецепторы по-разному распределены в ЦНС и периферических тканях.
Классификация адренорецепторов исходно базируется на сравнительной силе эффектов их различных агонистов и антагонистов. В целом α-рецепторы сильнее активируются норадреналином, чем адреналином, тогда как β-рецепторы, наоборот, сильнее активируются адреналином.
Адренорецепторы представляют собой трансмембранные белки с N-концевым внеклеточным и С-концевым внутриклеточным доменами. Все адренорецепторы содержат по семь трансмембранных гидрофобных участков. Аминокислотные последовательности этих участков в разных рецепторах высокогомологичны; специфичность связывания агонистов определяется различиями в строении лишь пятого и шестого трансмембранных доменов. От различий пятого и седьмого доменов зависит сопряжение рецепторов с разными G-белками (связывающими гуаниловые нуклеотиды). G-белки состоят из α-, β- и γ-субъединиц, строение которых в разных G-белках различается. При связывании гормона с рецептором β- и γ-субъединицы G-белка диссоциируют, а ГДФ на α-субъединице заменяется на ГТФ. Связанная с ГТФ ос-субъединица активирует пострецепторные пути проведения гормонального сигнала.

А. Альфа-адренорецепторы
Альфа,-рецепторы расположены на постсинаптической мембране клеток органов-мишеней и, как правило, опосредуют вазоконстрикцию, сокращение других гладких мышц и расширение зрачка. Норадреналин обладает несколько большим сродством к этим рецепторам, чем адреналин. При связывании агониста с α 1 -рецепторами от G q -белка отсоединяется альфа-субъединица, которая активирует фосфолипазу С. Этот фермент катализирует превращение фосфатидилинозитол-4,5-дифосфата в инозитол-1,4,5-трифосфат (ИФ 3) и диацилглицерин (ДАГ). ИФ 3 стимулирует высвобождение кальция из внутриклеточных депо, вызывая физиологические реакции клеток. ДАГ активирует протеинкиназу С, которая фосфорилирует ряд белков, инициирующих или поддерживающих эффекты ИФ 3 и ионов кальция. Селективными антагонистами α 1 -рецепторов являются празозин и феноксибензамин.

{module директ4}

Альфа 2 -рецепторы локализованы на пресинаптической мембране окончаний симпатических нервов. Норадреналин и адреналин взаимодействуют с этими рецепторами, что по механизму отрицательной обратной связи тормозит выделение нейротрансмиттера из нервных окончаний. Альфа 2 -рецепторы присутствуют также на тромбоцитах и на постсинаптической мембране адипоцитов, гладких мышц и клеток ЦНС.
В головном мозге α 2 -рецепторы обнаружены в голубом пятне (locus ceruleus), коре больших полушарий и лимбической системе. Стимуляция α 2 -рецепторов постсинаптических мембран также тормозит выделение норадреналина. Агонистом центральных α 2 -рецепторов является клонидин.
Связывание агонистов с α 2 -рецепторами приводит к отделению альфа-субъединицы от G i -белка. Эта субъединица ингибирует аденилатциклазу и снижает продукцию цАМФ. Селективным антагонистом α 2 -рецепторов является йохимбин, тогда как фентоламин блокирует как а 1 -, так и α 2 -рецепторы.

Б. Бета-адренорецепторы
Бета-адренорецепторы представляют собой гликопротеины, расположенные на постсинап-тической мембране клеток органов-мишеней. Связывание β-рецепторов с агонистами приводит
к отсоединению альфа-субъединицы от G s -белка, которая активирует аденилатциклазу и увеличивает образование цАМФ. Последний активирует протеинкиназу А, фосфорилирующую различные белки, включая ферменты, ионные каналы и рецепторы. Различают три основных подтипа р-адренорецепторов.
Бета-адренорецепторы локализованы в основном в сердце и почках и активируются норадреналином, адреналином и дофамином, приводя к увеличению частоты сердечных сокращений и минутного объема сердца, а также секреции ренина юкстагломерулярным аппаратом почек и повышению артериального давления (через ренин-ангиотензиновую систему). Трийодтиронин (Т3) увеличивает число β-рецепторов в сердце, что может усиливать сердечные сокращения и способствовать возникновению тахиаритмий.
Бета2-адренорецепторы присутствуют в бронхах, матке, печени и скелетных мышцах, а также в артериолах сердца, легких и скелетных мышц. Активация β 2 -рецепторов приводит к усилению гликогенолиза, расширению бронхов, вазодилатации и расслаблению матки (вероятно, за счет фосфорилирования легких цепей миозина). Адреналин активирует β 2 -адренорецепторы гораздо сильнее, чем норадреналин. Различия в чувствительности больных бронхиальной астмой к сальбутамолу и женщин с ожирением к адреналину связаны с полиморфизмом этих рецепторов.
Бета 3 -адренорецепторы экспрессируются в жировой ткани, желчном пузыре, толстой кишке, ЦНС и сердце. Активация этих рецепторов увеличивает энергозатраты и усиливает липолиз и перистальтику кишечника. У индейцев племени Пима гомозиготная мутация гена β 3 -рецепторов ассоциируется с ранним началом сахарного диабета 2-го типа. У гомо-и гетерозигот с полиморфизмом гена β 3 -рецептора Трп (64)-Арг снижена активность симпатической нервной системы в покое. Активация β 3 -рецепторов в сердце снижает сократимость желудочков за счет увеличения образования оксида азота.
Бета 4 -адренорецепторы («мнимые» β-рецепторы) кодируются тем же геном и отличаются от других β-рецепторов только своей третичной структурой. Они могут присутствовать в тканях (в частности, в сердце), в которых экспрессируются другие β-рецепторы.

В. Рецепторы дофамина
Дофаминергические рецепторы локализованы в ЦНС, пресинаптических окончаниях симпатических нервов, гипофизе, сердце, почках, мезентериальных сосудах и других местах. Известно пять подтипов дофаминергических рецепторов (D 1 -D 5). Рецепторы D 1 связывают дофамин с большим сродством, чем галоперидол, тогда как рецепторы D 2 - наоборот. Эффекты стимуляции D 1 -рецепторов, расположенных на постсинаптических мембранах клеток головного мозга, опосредуются активацией аденилатциклазы. В гипофизе же экспрессируются D 2 -рецепторы, которые ингибируют продукцию цАМФ, открывают калиевые каналы и тормозят поступление кальция в клетки.
Дофамин, секретируемый гипоталамусом, попадает в венозное сплетение, питающее гипофиз, и угнетает секрецию пролактина лактотрофами. Подобно этому, гипофизарную секрецию пролактина ингибируют дофаминергические вещества (такие как каберголин, бромокриптин и перголид).

Регуляция симпатоадреналовой активности

Симпатоадреналовая активность определяется в основном скоростью секреции катехоламинов. Однако более тонкая регуляция этой активности осуществляется на рецепторном и пострецепторном уровнях.
Как отмечено выше, норадреналин и адреналин, выделяющиеся при стимуляции симпатических нервов, связываются с пресинаптическими ос-рецепторами, тормозя дальнейшее выделение норадреналина из нервных окончаний. Вместе с катехоламинами из нейросекреторных гранул выделяется ХгА. Его фрагмент, катестатин, блокирует холинергические рецепторы симпатических нейронов, снижая, тем самым, симпатоадреналовую активность.
Связывание агонистов с адренорецепторами уменьшает число последних на поверхности эффекторных клеток (так называемая «снижающая регуляция»). В отличие от этого, антагонисты катехоламиновых рецепторов не уменьшают их экспрессии на поверхности клеток-мишеней.
Механизмы «снижающей регуляции» отчасти выяснены. Например, фосфорилирование β-рецепторов рецепторной киназой приводит к их секвестрации в мембранных пузырьках, интернализации и распаду. Фосфорилирование рецепторов увеличивает также их сродство к β-аррестину, еще одному регуляторному белку, который препятствует взаимодействию рецептора с G s α.
Тиреоидные гормоны увеличивают число β-адренорецепторов в миокарде. Эстрогены увеличивают число ос-рецепторов в миометрии, а также повышают сродство некоторых сосудистых ос-рецепторов к норадреналину.
Присутствие адренорецепторов на поверхности большинства клеток организма подчеркивает регуляторное значение периферической симпатической нервной системы. Гормоны же мозгового вещества надпочечников оказывают гораздо более генерализованное влияние. Кроме того, секреция катехоламинов мозговым веществом надпочечников значительно возрастает только при стрессе или резком нарушении гомеостаза.

Эффекты катехоламинов, циркулирующих в крови

Дофамин играет важнейшую роль в качестве центрального нейротрансмиттера и предшественника норадреналина. Однако в крови его концентрация значительно меньше, чем других катехоламинов. Присутствие дофамина в моче обусловлено в основном высокой активностью ДОФА-декарбоксилазы в почках. При повышении уровня дофамина в сыворотке он взаимодействует с сосудистыми α 1 -рецепторами, вызывая вазодилатацию и увеличение почечного кровотока.
Активация сосудистых а,-рецепторов и сужение сосудов происходит лишь при очень высокой концентрации дофамина в сыворотке.
Норадреналин синтезируется в мозговом веществе надпочечников, симпатических параганглиях, головном мозге и нервных клетках спинного мозга. Однако наибольшее количество норадреналина присутствует в синаптических пузырьках постганглионарных симпатических нервов, иннервирующих сердце, слюнные железы, гладкие мышцы сосудов, печень, селезенку, почки и скелетные мышцы. Один симпатический аксон может образовывать до 25 000 синаптических окончаний; норадреналин синтезируется и запасается в секреторных гранулах каждого нервного окончания, контактирующего с клеткой-мишенью.
Норадреналин активирует α 1 -адренорецепторы, что увеличивает приток кальция в клетку-мишень. Альфа,-рецепторы присутствуют на сосудах, питающих сердце, расширяющую зрачок мышцу и гладкие
мышцы. Активация α 1 -адренорецепторов приводит к расширению зрачков, повышению артериального давления, усилению сердечных сокращений и потоотделения из апокринных «стрессовых» потовых желез (не принимающих участия в терморегуляции). Эти железы расположены на ладонях, подмышками и на лбу. Активация β-адренорецепторов норадреналином сопровождается притоком кальция в клетки-мишени. Норадреналин обладает высоким сродством к β 1 -адренорецепторам и увеличивает силу и частоту сердечных сокращений, противодействуя эффекту одновременной стимуляции блуждающего нерва. Сродство норадреналина к β 2 -адренорецепторам, опосредующим вазодилатацию и гликогенолиз в печени, существенно меньше; гиперметаболизм и гипергликемия развиваются лишь при высоких концентрациях этого катехоламина. Норадреналин активирует и β 3 -рецепторы жировых клеток, вызывая липолиз с повышением уровня свободных жирных кислот в сыворотке.
Адреналин также взаимодействует с α 1 -и β 1 -адренорецепторами, вызывая те же эффекты, что и норадреналин. Однако адреналин активирует и β 2 -рецепторы, что приводит к расширению сосудов скелетных мышц. Таким образом, он может вызывать как повышение, так и (редко) снижение артериального давления. Мощным стимулятором мозгового вещества надпочечников является гипогликемия; адреналин усиливает гликогенолиз в печени. Одновременно усиливается и липолиз, возрастает уровень свободных жирных кислот в сыворотке и возрастает основной обмен. Адреналин плохо проникает через гематоэнцефалический барьер, но при высокой концентрации в сыворотке влияет на гипоталамус, вызывая неприятные ощущения (вплоть до страха надвигающейся смерти). Эти эффекты отличаются от действия амфетаминов некатехоламиновой структуры, которые легче проникают в ЦНС и оказывают иные влияния на психику.

Физиологические эффекты

А. Сердечно-сосудистые
Катехоламины (особенно адреналин) повышают частоту и силу сердечных сокращений и увеличивают раздражимость миокарда, действуя в основном через р,-адренорецепторы. Регуляторные влияния катехоламинов на гладкие мышцы сосудов опосредуются преимущественно α 1 -, α 2 - и β 2 -рецепторами. Через а,-рецепторы катехоламины вызывают сокращение этих мышц. Хотя на них присутствуют и β-рецепторы, опосредующие расширение сосудов, более важную роль в механизме вазодилатации играют, по-видимому, другие факторы. Таким образом, при повышении секреции или введении катехоламинов следует ожидать учащения сердцебиений, возрастания минутного объема сердца и сужения периферических сосудов, что приводит к повышению артериального давления. Однако увеличение артериального давления рефлекторно усиливает парасимпатические влияния блуждающего нерва, вследствие чего частота сердцебиений и минутный объем могут снижаться. Эти эффекты особенно характерны для норадреналина, тогда как действие адреналина зависит от исходного тонуса гладких мышц сосудов. При повышенном их тонусе небольшие количества адреналина могут расслаблять эти мышцы, снижая среднее артериальное давление, несмотря на повышение частоты сердечных сокращений и минутного объема сердца. Однако при
исходно сниженном тонусе гладкомышечной оболочки сосудов адреналин повышает среднее артериальное давление. Помимо рефлекторных механизмов, кровоток регулируется ЦНС, и в определенных условиях сосуды одних областей тела могут расширяться, а в других - сохранять свой тонус. Центральная организация симпатической нервной системы предполагает возможность дискретной регуляции просвета сосудов, тогда как стресс генерализованно стимулирует эту систему, приводя к выбросу катехоламинов в кровь. Введение катехоламинов сопровождается быстрым уменьшением объема плазмы, что, вероятно, является приспособительной реакцией на сужение артериального и венозного сосудистого ложа.

Б. Внесосудистые гладкие мышцы
Катехоламины влияют также на гладкие мышцы других тканей, вызывая сокращение (через а,-рецепторы) или расслабление (через β 2 -рецепторы) матки, расслабление кишечника и мочевого пузыря (через β 2 -рецепторы), сокращение мочевого пузыря и кишечных сфинктеров (через α 2 -рецепторы), расслабление трахеи (через β 2 -рецепторы) и расширение зрачков (через α 1 -рецепторы).

В. Метаболические эффекты
Катехоламины повышают потребление кислорода и теплопродукцию. Этот эффект опосредуется β 1 -рецепторами, но его механизм остается неизвестным. Катехоламины стимулируют также мобилизацию запасов глюкозы и жира. Гликогенолиз в сердечной мышце и печени обеспечивает возможность утилизации углеводов. Липолиз в жировой ткани с увеличением уровня свободных жирных кислот и глицерина в крови создает возможность утилизации этих соединений другими органами. Эти метаболические эффекты катехоламинов у человека реализуются через β-рецепторы.
Катехоламины влияют на экскрецию воды, натрия, калия, кальция и фосфата с мочой. Стимуляция β 1 -рецепторов увеличивает секрецию ренина юкстагломерулярным аппаратом почек, активируя, тем самым, ренин-ангиотензиновую систему. Это приводит к усилению секреции альдостерона. Однако механизмы и значение всех этих сдвигов остаются неясными.

Регуляция секреции других гормонов

Дофамин представляется собой пролактин-ингибирующий гормон; секреция гипоталамических рилизинг гормонов также, по-видимому, контролируется симпатической нервной системой. На периферии симпатическая нервная система (через почечные нервы и катехоламины крови) регулирует секрецию ренина юкстагломерулярным аппаратом почек. Катехоламины усиливают секрецию ренина, действуя через β-рецепторы. На фоне блокады α-адренорецепторов стимуляция β-рецепторов усиливает секрецию инсулина островковыми β-клетками поджелудочной железы. Однако, действуя через α-адренорецепторы, норадреналин или адреналин ингибируют секрецию инсулина. Аналогичные изменения наблюдаются и в секреции глюкагона α-клетками поджелудочной железы. Действуя через β-рецепторы, катехоламины стимулируют секрецию тироксина, кальцитонина, паратгормона и гастрина.

Хромогранин А (ХгА)

Хромогранины представляют собой кислые одноцепочечные гликопротеины, присутствующие в нейросекреторных гранулах. Различают хромогранины А (ХгА), В (секретогранин I) и С (секретогранин II). Ген ХгА у человека расположен на хромосоме 14 и кодирует пептид из 431-445 аминокислотных остатков. При низком рН или высокой концентрации кальция молекулы ХгА образуют агрегаты, которые способствуют формированию секреторных пузырьков и накоплению в них гормонов.
ХгА является, как бы, прогормоном. Эндопептидазы расщепляют его на пептиды меньших
размеров. N-концевые фрагменты ХгА - вазостатин I (ХгА 1-76) и вазостатин II (ХгА 1-115) - препятствуют сужению сосудов. Кроме того, из ХгА образуется катестатин (ХгА 352-372), который блокирует рецепторы ацетилхолина и, тем самым, снижает активность симпатоадреналовой системы.
ХгА вырабатывается не только в мозговом веществе надпочечников, но и вне этих желез - в нейроэндокринных клетках, секретирующих пептидные гормоны. Он обнаруживается в гипофизе, околощитовидных железах, ЦНС и в клетках островков поджелудочной железы.

Адреномедуллин

Адреномедуллин (AM) был впервые выделен из ткани феохромоцитомы, что и послужило причиной ошибочного названия этого вещества. Оно вырабатывается не только в мозговом, но и в корковом веществе надпочечников (в клубочковой зоне), а также во многих других тканях. На самом деле, надпочечники служат лишь минорным источником AM крови. AM (состоящий из 52 аминокислотных остатков) представляет собой продукт расщепления препроадреномедуллина, который кодируется геном, расположенным на хромосоме 11. По своей структуре AM гомологичен кальцитониноподобному пептиду (КПП) и действует как через рецепторы КПП 1-го типа, так и через свои собственные рецепторы. Взаимодействие AM с рецепторами, сопряженными с G-белком, приводит к активации аденилатциклазы и повышению внутриклеточного уровня цАМФ.
Эффекты AM разнообразны. В надпочечниках он, по-видимому, тормозит секрецию альдостерона. AM секретируется также сердечной мышцей, легкими, почками, головным мозгом, а также эндотелием сосудов, вызывая их расширение. Это вещество оказывает и натрийуретическое действие, выделяясь миокардом при застойной сердечной недостаточности. AM стимулирует рост феохромоцитом и многих других опухолей, тормозит апоптоз опухолевых клеток и подавляет иммунные реакции против них.
В ряде тканей присутствует N-концевой фрагмент AM, проадреномедуллин, состоящий из 20 аминокислотных остатков. Этот пептид снижает артериальное давление. Однако его действие обусловлено угнетением передачи нервных импульсов в окончаниях симпатических нервов, а не прямым расслаблением гладких мышц сосудов.

ДРУГИЕ ГОРМОНЫ, СЕКРЕТИРУЕМЫЕ МОЗГОВЫМ ВЕЩЕСТВОМ НАДПОЧЕЧНИКОВ

Хромаффинные клетки мозгового вещества надпочечников и периферические симпатические нейроны синтезируют и секретируют опиоидные пептиды, включая мет- и лей-энкефалин. Эти вещества запасаются в секреторных гранулах вместе с катехоламина-ми. Они присутствуют также в окончаниях волокон, иннервирующих мозговое вещество надпочечников, и могут снижать симпатическую активность.
В мозговом веществе надпочечников вырабатывается и вазопрессин. Здесь же присутствуют и его рецепторы (V 1 a и V 1 b), через которые, как полагают, вазопрессин регулирует секрецию катехоламинов. В экстрактах мозгового вещества надпочечников обнаруживается также кортикотропин-рилизинг гормон (КРГ), рилизинг-гормон гормона роста (РГГР), соматостатин и пептид гистидин-метионин. Все эти и другие активные пептиды секретируются опухолями мозгового вещества надпочечников и обусловливают некоторые симптомы таких опухолей, но их функция в норме остается неясной.

Все высшие формы поведения человека связаны с нормальной жизнедеятельностью катехоламинергических клеток – нервных клеток, синтезирующих катехоламины и использующих их в качестве медиатора. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, сексуальное поведение, агрессивность и поисковая реакция, уровень настроения и активность в жизненной борьбе, скорость мышления, эмоциональность, уровень общего энергетического потенциала и т.д. Чем активнее идет синтез и выделение катехоламинов в количественном отношении, тем выше настроение, общий уровень активности, сексуальность, скорость мышления, да и просто работоспособность.

Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способность к быстрому переключению мышления с одного объекта на другой. У детей исключительно хорошая память, всегда хорошее настроение, высокая обучаемость и колоссальная работоспособность.

С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется. Тому есть разные причины: это и старение клеточных мембран, и исчерпание генетических резервов, и общее снижение синтеза белка в организме. В результате снижения скорость мыслительных процессов, уменьшается эмоциональность, снижается настроение. С возрастом все эти явления усугубляются: снижается эмоциональность, настроение, нередки случаи депрессии. Причина этого в одном – в возрастном снижении синтеза катехоламинов в организме. Почему работоспособность напрямую зависит от количества в нервных клетках катехоламинов?

Катехоламины оказывают мобилизующее действие на энергетические резервы нервных клеток. Они активизируют окислительно-восстановительные процессы в организме, "запускают" сгорание источников энергии – в первую очередь углеводов, затем жиров и аминокислот.

Катехоламины повышают чувствительность клеточных мембран к половым гормонам и соматотропину. Не обладая собственно анаболическим действием, они усиливают белковый синтез за счет повышения чувствительности клеток к анаболическим факторам. Катехоламины прямо или косвенно повышают активность самих эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе учащение сердцебиения, повышение температуры тела (субъективно ощущается как жар в теле и испарина) – все это вызвано не чем иным, как выделением в кровь большого количества катехоламинов.

Основные виды катехоламинов в организме представлены тремя соединениями:

1. Адреналин;

2. Норадреналин;

3. Дофамин.

Адреналин , вещество, вырабатываемое надпочечниками. Его часто называют, "гормоном страха" из-за того, что при испуге сердце часто начинает биться ввиду сильного выброса в кровь адреналина. Это, однако, не совсем так. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад гликогена и жиров. Если человек испуган или взволнован, то его выносливость резко повышается. Адреналин – активный допинг человеческого организма. Чем больше в надпочечниках резервы адреналина, тем выше физическая и умственная работоспособность.

В отличие от адреналина, норадреналин называют гормоном ярости, т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии. От адреналина лицо человека бледнеет, от норадреналина краснеет. Гай Юлий Цезарь отбирал в свое войско только тех воинов, лицо которых краснело в бою. Это говорило о повышенной агрессивности таких солдат. Если адреналин повышает, в основном, выносливость, то норадреналин значительно увеличивает мышечную силу.

Высокое содержание в нервной системе дофамина усиливает все сексуальные рефлексы и повышает чувствительность клеток к половым гормонам, что способствует высокому анаболизму. Самым высоким содержанием дофамина в ЦНС отличаются подростки. Их настроение носит на себе налет эйфории, а поведение отличается выраженной гиперсексуальностью. Любые тренировки, даже неправильные с методической точки зрения, в подростковом возрасте дают хороший анаболический эффект. Возрастное падение содержания дофамина вызывает возрастную депрессию (снижение настроения), падение сексуальной активности (у мужчин) и замедление скорости анаболических реакций.

Катехоламины реализуют энергетический потенциал организма. Если энергетические резервы организма истощены, то выброс катехоламинов приводит к еще большему истощению и даже к гибели.

Реализация энергетического потенциала организма происходит в первую очередь за счет распада гликогеновых депо печени и во вторую очередь за счет гликогена мышц. Распад гликогена в мышцах приводит к значительному увеличению мышечной силы, а мобилизация гликогенного фонда печени увеличивает краткосрочную выносливость. Дальнейший выброс катехоламинов усиливает выброс в кровь жирных кислот из подкожно-жировых депо, а жирные кислоты являются практическим "неисчерпаемым" источником энергии в организме.

Катехоламины увеличивают нервно-мышечную проводимость, повышают быстроту реакции и скорость мышления.

Даже поверхностное знакомство с обменом катехоламинов в организме помогает нам сделать вывод, что катехоламины являются ключевым звеном как в умственной, так и в физической работоспособности, как в скорости, так и в качестве мышления. Творческие способности, способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависит от катехоламинового обмена.

Анализируя жизнь великих людей: политиков, ученых, музыкантов, художников и т.д., можно отметить удивительные особенности. Например, такое заболевание, как подагра, у них встречается почти в 200 раз чаще, чем среди обычных. Основной механизм подагры – это накопление в крови мочевой кислоты. Мочевая кислота обладает способностью стимулировать катехоламиновые рецепторы, повышая чувствительность клеток к катехоламинам. Подагрики поэтому обладают живостью характера и высокой подвижностью мышления.

Стимулирующее действие таких напитков, как чай и кофе, очень похоже на стимулирующее действие мочевой кислоты, т.к. эти напитки воздействуют на те же самые рецепторы, что и мочевая кислота. Алкалоиды чая и кофе "запускают" синтез особого фермента – аденилатциклазы. Аденилатциклаза приводит к накоплению в клетках ц-АМФ (циклического аденозинмонофосфата). Он изменяет механизм клетки, повышая ее чувствительность к катехоламинам. Беда лишь в том, что регулярный прием чая и кофе истощает резервы ц-АМФ в клетке и в конечном итоге истощает нервную систему. По этой причине рекомендовать чай и кофе в качестве спортивных стимуляторов нельзя. Среди людей с выдающимися способностями в десятки раз чаще, чем среди обычных, встречаются люди с повышенной функцией щитовидной железы. И это тоже неудивительно, ведь гормоны щитовидной железы резко симулируют синтез катехоламинов в организме и повышают чувствительность к ним клеток. Почти все великие люди обладают таким качеством, как гиперсексуальность. На это историки особенно часто обращают внимание. Половые гормоны способны замещать рецепторы катехоламинов и тем самым оказывать активизирующее воздействие на ЦНС.

Как видим, все в конечном итоге замыкается на катехоламинах: и подагра, и повышенная функция щитовидной железы и повышенная активность половых желез. У такого признанного гения, как Александр Сергеевич Пушкин, имело место сочетание всех трех вышеупомянутых факторов. Он страдал наследственной подагрой, с которой боролся ежедневными холодными ваннами со льдом. Из-за повышенной функции щитовидной железы он обладал чрезвычайно большой физической и интеллектуальной активностью и никогда не спал более 5-6 часов в сутки. Что же касается любовных похождений Александра Сергеевича, то они все известны и в комментариях не нуждаются.

Физическую активность катехоламины стимулируют в той же степени, как и интеллектуальную. Тот же А.С.Пушкин был прекрасным спортсменом: много плавал, фехтовал, занимался боксом и т.д.

Не только мочевая кислота, тиреоидные гормоны и половые железы активизируют синтез катехоламинов. Существует много заболеваний, да и просто наследственных факторов, в результате которых катехоламины продуцируются в повышенных количествах, но все эти факторы встречаются относительно редко.

Современная фармакология достигла очень многого, с ее помощью мы можем вмешиваться как в синтез отдельных катехоламинов, так и в активность всей симпатико-адреналовой системы1 в целом. Повышая активность катехоламиновых систем, мы можем добиваться такого повышения спортивной работоспособности, о котором раньше можно было только мечтать.

Почти все известные в настоящее время катехоламины причислены к допингам. Допингами считаются не только такие вещества, как адреналин, парадреналин и дофамин. К допингам причислены почти все симпатомиметические вещества2. Самые известные симпатомиметики – это амфетамины. Амфетамины значительно повышают выносливость и используются особенно широко в тех видах спорта, где необходимы как выносливость, так и быстрота реакции (например, в боксе).

Очень популярным допингом является также эфедрин – растительный алкалоид, получаемый эфедрой хвощевой. Эфедрин исключительно популярен среди культуристов, т.к. он очень хорошо сжигает жировую ткань, но при этом "не трогает" мышечную. Симпатомиметики вообще отличаются тем, что не обладая собственно анаболическим действием, они увеличивают посттренировочный выброс в кровь соматотропина и андрогенов, т.е. потенцируют физиологический эффект тренировки на организм.

Не подлежит сомнению, что любой симпатомиметик в больших сверхвысоких дозировках может быть вреден и способен вызвать истощение нервной системы.

Проблемы симпатомиметиков вообще не так проста, как кажется. Запретить их применение в спорте попросту невозможно хотя бы уже потому, что многие препараты держатся в крови всего несколько десятков минут, а уже вызванные ими физиологические эффекты длятся часами. Некоторые катехоламины, как это ни странно может показаться, на первый взгляд в малых дозах обладают анаболическим эффектом, способствуя наращиванию мышечной массы и силы.

Классическим катехоламином считается адреналин. В последнее время появился ряд научных работ, в которых доказано анаболическое и общеоздоровительное действие малых доз адреналина (1/10-1/20 от до, вызывающих стимуляцию). Если большие дозы адреналина (от 1 мл и выше) вызывают сердцебиение, подъем сахара в крови, повышение артериального давления и распад гликогена в гликогеновых депо, то можно дозы его действуют прямо противоположно. Замедляется пульс, снижается артериальное давление, падает сахар в крови и при длительном курсовом применении развивается отчетливый анаболический эффект. Естественно, что применение таких малых доз не дает никакого стимулирующего эффекта и ни о каком допинговом воздействии не может быть и речи.

Симпатомиметики бывают разные. У некоторых из них даже в относительно больших дозах стимулирующий эффект выражен слабо, а анаболическое действие достаточно сильно. В последние годы широкое распространение в спорте получил такой препарат, как кленбутерол. Это синтетический катехоламин, не имеющий аналогов в природе. Используется этот препарат для лечения бронхиальной астмы, а также при некоторых видах одышки, как легочного, так и сердечного происхождения. Как только кленбутерол вошел в медицинскую практику, его сразу же стали широко использовать в спорте и выяснилось, что помимо стимулирующего действия он обладает выраженным анаболическим эффектом, сравнимый с эффектом анаболических стероидов. Кленбутерол, к тому же, не вызывает выраженного сердцебиения, возбуждения ЦНС и подъема артериального давления подобно другим синтетическим катехоламинам.

Действие кленбутерола весьма своеобразно. Подобно малым дозам адреналина, небольшие дозы кленбутерола оказывают отчетливый общеукрепляющий и анаболический эффект. При этом проявляется отчетливое противовоспалительное и противоаллергическое действие препарата. Подобно некоторым другим катехоламинам кленбутерол улучшает половую функцию у мужчин и несколько повышает настроение. Тем не менее необходимо отметить, что медицинская комиссия МОК отнесла кленбутерол к допингам.

Как мы уже знаем, с возрастом содержание катехоламинов в ЦНС снижается как в силу генетических причин, так и в силу истощения запасов (депо) катехоламинов в нервных клетках. Каждая нервная клетка из катехоламинергических структур имеет определенный запас (депо) катехоламинов.

Во время сильных стрессов (в том числе и при больших физических нагрузках) происходит массированный выброс катехоламинов из депо. Иногда такой выброс достигает таких степеней, что депо катехоламинов истощается и нервная клетка сама уже не может восполнить их дефицит. Нет ничего хуже истощения запасов катехоламинов в ЦНС. Раньше в медицине бытовал такой термин, как "истощение нервной системы". Сейчас такое истощение называют "истощением симпатико-адреналовой системы" и подразумевается здесь истощение катехоламиновых депо в нервных клетках. Организм при таком истощении угасает буквально на глазах.

На человека обрушиваются все мыслимые и немыслимые болезни. Он быстро стареет. Такое быстрое угасание связано с тем, что в организме многое зависит от регуляторной роли катехоламинов. Даже самообновление клеточных мембран (субклеточный молекулярный уровень!) невозможно без достаточного содержания в организме катехоламинов. Под контролем адреналина и некоторых других веществ фосфолипидные молекулы постоянно "входят" и "выходят" из клеточных мембран, осуществляя их "текущий ремонт". От интенсивности и полноценности такого текущего ремонта зависит стабильность клеточных мембран и жизнеспособность клетки, ее устойчивость ко всем внешним (да и внутренним тоже) повреждающим факторам.

Выводы:

1.Сильные стрессы (в том числе и чрезмерные физические нагрузки) снижают содержание катехоламинов в ЦНС. Чтобы резервы катехоламинов ЦНС не истощились, необходимо правильно тренироваться (не перетренировываться1) и правильно восстанавливаться после нагрузок. Любые соревнования характеризуются максимальной мобилизацией катехоламиновых резервов и их истощением. Поэтому очень важно уметь это истощение предотвращать, восстановить потраченные резервы, иначе рано или поздно они истощатся окончательно, и тогда из спорта придется уходить.

2. Восстановление резервов ЦНС без рациональной лекарственной терапии невозможно. Отрицать это – значит лицемерить. Более того, современные тренировочные нагрузки большого спорта столь велики, что сами по себе являются серьезным истощающим фактором. Восстановительное лечение может потребовался не только в межсоревновательных периодах, но даже и в межтренировочных. Есть несколько способов восстановления резервов катехоламинов в нервных клетках:

1. Введение малых доз катехоламинов;

2. Введение в организм предшественников катехоламинов;

3. Препараты, усиливающие синтез катехоламинов в ЦНС;

4. Ноотропные средства;

5. Адаптогены;

1) Физиологические стимуляторы.

Введение малых доз катехоламинов

Введение малых доз катехоламинов (строго под наблюдением врача) способно восстановить истощенные резервы катехоламинов ЦНС и повысить работоспособность как общую, так и спортивную.

Логично было бы предположить, что введение катехоламинов в организм вызовет ответную реакцию – уменьшение синтеза катехоламинов самим организмом. Это называется реакцией по типу отрицательной обратной связи. Так оно и происходит, но только в том случае, если вводить катехоламины в больших дозах. Если использовать малые дозировки, то возникает ситуация прямо противоположная: реакция по типу положительной обратной связи. В ответ организм начинает вырабатывать собственные катехоламины в повышенных количествах. На сегодняшний день наиболее детально разработана методика введения в организм малых доз адреналина. Адреналин вводится 1 раз в день подкожно в дозах от 1/10 до 1/20 от среднетерапевтических. Подкожное введение адреналина позволяет добиться вполне ощутимого анаболического эффекта и, что немаловажно, снижает риск возникновения простудных заболеваний.

2) Введение в организм предшественников катехоламинов

Все катехоламины синтезируются в организме из аминокислоты – фенилаланина. В общем виде цепочку синтеза катехоламинов можно представить следующим образом: фенилаланин -› L1-ДОФА1 -› дофамин -› норадреналин -› адреналин.

Наиболее физиологичным является введение в организм аминокислоты фенилаланина в больших количествах, порядка нескольких граммов. Это мягко активизирует всю симпатико-адреналовую систему, увеличивая содержание в организме всех катехоламинов. Такие методики уже существуют, но они пока еще находятся на стадии экспериментальной проверки. Лечение большими дозами фенилаланина проходит сейчас апробацию в ряде ведущих клиник США как средство для борьбы с нервной депрессией.

На сегодняшний день наиболее детально разработана методика введения в организм такого предшественника катехоламинов, как L1– ДОФА. L1– ДОФА принимается внутрь в таблетках 1 раз в день по 0,5 г. Лечение L1– ДОФА применяется в ряде московских клиник как средство восстановления истощенной нервной системы. L1-ДОФА повышает посттренировочный выброс в кровь соматотропного гормона и с этой целью достаточно широко применяется в США.

3) Препараты, усиливающие синтез катехоламинов в ЦНС

Существует большой класс фармакологических соединений, т.н. антидепрессанты, которые используются для лечения нервных депрессий – расстройств, связанных с пониженным настроением. В спортивной практике применение антидепрессантов не распространено, т.к. собственно стимулирующим действием они не обладают. Антидепрессанты, однако, используются в тех случаях, когда нужно реабилитировать спортсмена, восстановить его после сильного истощения симпатико-адреналовой системы. Обычно это бывает после трудных и ответственных соревнований.

4) Ноотропные средства .

К ноотропным средствам относится целая группа препаратов, которая используется для улучшения умственных способностей. Отличительной особенностью ноотропов является то, что они нетоксичны, способны повышать как умственную, так и физическую работоспособность. Механизм действия ноотропов основан на их способности повышать энергетический потенциал нервных клеток. Самым слабым звеном в нервной клетке являются митохондрии – внутриклеточные образования, вырабатывающие для клетки энергию. В эволюционном плане это самые молодые образования, поэтому они чрезвычайно уязвимы и страдают от любого вредного воздействия в первую очередь. Но они также откликаются в первую очередь и на любое положительное воздействие. Энергетическое обеспечение – ключевое звено любого обмена.

На синтез катехоламинов как таковой ноотропы не влияют, однако их общее энергетизирующее действие так укрепляет нервные клетки, что увеличивается синтез всех нейромедиаторов, и катехоламинов в том числе.

Наиболее широко распространены в спортивной практике такие ноотропы, как пирацетам (ноотропил), оксибутират натрия (ГОМК), пикамилон, пиридитол (энцефабол). Помимо всего прочего, эти препараты обладают еще и определенным анаболическим действием, за исключением пиридитола. Пиридитол, однако, отличается от других ноотропных препаратов тем, что способен стимулировать непосредственно синтез катехоламинов в нервных клетках.

Применять строго под наблюдением врача.

5) Адаптогены

Это целая группа растений, нетоксична для организма, которые широко применяются как в медицине, так и в спорте для стимуляции работоспособности. К адаптогенам относятся такие растения, как женьшень, элеутерококк колючий, лимонник китайский, аралия маньчжурская, радиола розовая, заманиха высокая, стеркулия платанолистная, левзея сафлоровидная. Заслуживает внимания то, что тонизирующее действие адаптогенов достигается за счет повышения чувствительности нервных клеток к катехоламинам. Подобно кофеину, адаптогены воздействуют на аденилатциклазу клеточных мембран и способствуют накоплению внутриклеточного фонда ц-АМФ. Это и повышает чувствительность клеток к катехоламинам, ведь ц-АМФ – внутриклеточный посредник нейрамедиаторного сигнала. Однако, в отличие от кофеина, даже очень длительное введение адаптогенов не приводит к истощению внутриклеточного фонда ц-АМФ и поэтому их можно рекомендовать к длительному применению. В некоторых странах, таких, например, как Япония, адаптогены употребляются всем населением наравне с пищевыми продуктами от младенческого возраста до самой смерти без каких-либо вредных последствий.

6) Физиологические стимуляторы

В некоторых случаях усиление синтеза катехоламинов в ЦНС удается добиться физиологическими стимуляторами. Их количество очень велико и одно лишь перечисление таких способов воздействия заняло бы много места. Рассмотрим лишь самый банальный из них – обливание холодной водой.

С самых давних времен обливание холодной водой используется как средство для укрепления нервной системы и даже как средство лечения многих заболеваний. Каков механизм его воздействия? Исключительно рефлекторный. Резкое воздействие холодом вызывает сильный выброс в кровь адреналина и других катехоламинов. В данном случае цель массивного выброса в кровь катехоламинов – сузить кожные сосуды, чтобы холод не проник вглубь тела, к внутренним органам. По мере развития тренированности, выброс катехоламинов в ответ на воздействие холодом становится все сильнее и сильнее, благодаря увеличению резервных возможностей нервной системы.

С возрастом происходит снижение активности катехоламинергических структур головного мозга, что негативно сказывается на эндокринном балансе организма. В ЦНС начинается преобладание активности тех нервных структур, где нейромедиатором служит ацетилхолин – вещество антагонистическое по отношению к катехоламинам.

Катехоламины и ацетилхолин находятся как бы на двух разных чашах одних весов. Преобладание катехоламиновых структур подавляет ацетилхолиновые и, наоборот, преобладание ацетилхолиновых подавляет катехоламиновые. Нервные клетки, где нейромедиатором служит ацетилхолин в эволюционном плане являются более древними, чем те, где медиаторами служат катехоламины, поэтому они более устойчивы по отношению к старению организма.

С возрастом активность ацетилхолиновых структур головного мозга начинает преобладать. Старение катехоламиновых нервных центров приводит к растормаживанию ацетилхолиновых. Человек становится более спокойным, уравновешенным, малоподвижным. Старческое дрожание рук – это результат преобладания активности ацетилхолиновых структур над катехоламиновыми. Мышление становится замедленным. Даже относительно простые дела, которые в молодом возрасте делались шутя, становятся очень трудоемкими.

Беда еще и в том, что ацетилхолин вызывает избыточную активность коры надпочечников. Это приводит к повышенному содержанию в крови глюкокортикоидных гормонов. Их избыток оказывает сильный отрицательный эффект и причины этого следующие:

1. Глюкокортикоидные гормоны обладают сильным катаболическим действием. Усиливается распад белка в мышечной ткани и мышечный рост даже в результате самых интенсивных тренировок становится невозможным. Снижение белково-синтетических процессов еще больше замедляет синтез катехоламинов и все начинается сначала. Возникает замкнутый "порочный круг".

2. Самообновление белковых структур наиболее быстро протекает в тканях желудочно-кишечного тракта, поэтому катаболическое действие глюкокортикоидов в первую очередь отражается на желудке и кишечнике. Чаще всего возникают язвы желудка и 12-и перстной кишки. Реже – язвенная болезнь кишечника. Зная этот механизм, уже нетрудно догадаться, каким образом истощение нервной системы приводит к развитию язвенной болезни. Язвенная болезнь, в свою очередь, нарушает процесс всасывания аминокислот в кишечнике и уменьшает анаболизм.

3. Распад белка под действием глюкокортикоидов приводит к повышенному содержанию в крови глюкозы, которая образуется из распавшихся аминокислот, что приводит к возникновению возрастного сахарного диабета (диабет II типа).

4. Повышение содержания сахара в крови вызывает ответную реакцию – усиление выделения в кровь инсулина. Инсулин снижает содержание в крови сахара, в результате чего он преобразуется в жировую ткань. Развивается возрастной тип ожирения.

5. Возрастное ожирение вызывает повышенное содержание в крови свободных жирных кислот. Жир распадается на жирные кислоты и глицерин, которые поступают в кровь и затем вновь возвращаются в подкожножировые депо. Таким образом осуществляется в организме постоянный кругооборот жирных кислот и глицерина. Чем больше количества жира под кожей, тем больше в крови жирных кислот, их количество в крови прямо пропорционально количеству нейтрального жира в подкожном депо. Возрастное нарастание количества жирных кислот в крови блокирует Т-лимфоциты крови, вызывая нейтрализацию клеточного иммунитета, что приводит к развитию злокачественных опухолей.

Даже поверхностный взгляд на формирование возрастной патологии подводит нас к мысли о том, что ее можно и нужно лечить с помощью всего арсенала средств, повышающих содержание катехоламинов в ЦНС. Выбор таких средств в настощее время довольно широк. Применяя их, мы можем не только повысить общую и спортивную работоспособность, не только увеличить творческий потенциал человека, но и активно препятствовать развитию возрастных изменений, задерживать старение организма, продлять творческое долголетие.

________________________________________

1 Симпатико-адреналовая система – это система нейронов (нервных клеток), продуцирующих катехоламины, которых в настоящее время насчитываются десятки.

2 Симпатомиметиеские вещества (симпатомиметики) – соединения, способные стимулировать нервные клетки, вырабатывающие катехоламины.

1 Перетренированность как таковая – это и есть снижение содержания катехоламинов в ЦНС. Перетренированность – это самое настоящее заболевание, истощение ЦНС.

1 L1 – L1– диоксифенилаланин.

1 "Hooe" – мышление.

В 1856 г. Вульпиан впервые указал на свойство надпочечника вырабатывать химические продукты. Он обнаружил, что при обработке хлористым железом мозговая часть надпочечника приобретает зеленую окраску.

В 1895 г. Оливер и Шайер, а также Н. О. Цыбульским и Л. Шимоновичем было установлено, что надпочечник секретирует биологически активные продукты, играющие важную роль в деятельности организма.

В 1901 г. первым из гормонов был получен эпинефрин, или адреналин, в кристаллическом виде. В надпочечниках было обнаружено и другое активное вещество, отличавшееся от адреналина лишь отсутствием одной метильной группы, что и определило его название "норадреналин". В связи с особенностями структуры эти вещества получили название катехоламинов, или пирокатехиновых аминов. Биосинтез катехоламинов, образующихся, из фенилаланина и тирозина, в мозговом слое надпочечников доходит до стадии адреналина, а в симпатических нервных образованиях до стадии норадреналина.

В надпочечниках взрослого человека содержится (в расчете на 1 г ткани) примерно 500 мкг адреналина и 100 мкг норадреналина. В надпочечниках плодов и новорожденных преобладает норадреналин, а указанное количественное соотношение между адреналином и норадреналином появляется лишь ко 2-3-му году жизни.

Вопрос о нервной регуляции секреторной деятельности мозгового слоя надпочечников давно привлекал внимание ученых. М. Н. Чебоксаров считал, что большой чревный нерв является непосредственно секреторным нервом надпочечников.

В настоящее время установлено, что иннервация надпочечников осуществляется из сплетений, которые расположены между узлами солнечного сплетения и медиальными краями надпочечников и образованы ветвями солнечного, аортального, почечных, семенных диафрагмальных сплетений, а также большого и малого чревных и блуждающего нервов. Надпочечники имеют двусторонние нервные связи со спинальными сегментами. Иногда к надпочечникам идут ветви, отходящие непосредственно от блуждающих и диафрагмальных нервов.

В капсуле надпочечника нервные волокна образуют густые сплетения, от которых часть волокон проникает в клубочковую зону коры, а часть направляется в мозговое вещество. Как указывает Г. Б. Агарков, мозговое вещество иннервируется волокнами нервных пучков, идущих от капсулы, из сплетения коры и нервных образований по ходу центральной вены надпочечника.

Работами Б. И. Лаврентьева, В. И. Ильиной, А. А. Богомольца с соавторами доказано, что надпочечник обладает мощным рецепторным аппаратом. Таким образом, и морфологически, и функционально была установлена тесная двусторонняя связь надпочечника с нервной системой, что способствовало утверждению в эндокринологии нейроэндокринного направления.

Параганглии, являясь главными хромаффинными образованиями у плодов и детей, иннервируются ветвями аортальных, надпочечниковых, почечных, внутренних семенных и подчревных нервных сплетений. Когда же происходит обратное развитие параганглиев, дегенерируют и их нервные образования.

В настоящее время схема регуляции деятельности мозгового слоя надпочечников представляется следующим образом. Начальным звеном рефлекторной дуги, ведущей к возбуждению клеток мозгового вещества надпочечников, являются различные нервные окончания. Раздражение различных нервов может приводить к качественно отличной секреции.

К центральным звеньям рефлекторной дуги относятся дно IV желудочка, гипоталамус, ретикулярная формация н ряд отделов коры головного мозга. Раздражение отдельных участков гипоталамуса и коры головного мозга может приводить к изменениям секреции избирательно адреналина или норадреналина. В эффекторное звено рефлекторной цепи входит и большой чревный нерв.

Секреция катехоламинов надпочечниками, очевидно, происходит постоянно, но объем ее зависит от разнообразных раздражителей, на которые надпочечник очень чутко реагирует. Этим, по-видимому, и объясняются те значительные расхождения в величинах секреции мозгового слоя надпочечников, которые приводили в своих работах многочисленные исследователи.

Малмеджак пришел к выводу, что физиологическая секреция надпочечников не является стабильной величиной, а зависит от различных причин, условий опыта. Пределы этих изменений для адреналина 0,1-0,2 мкг на 1 кг веса в минуту, для норадреналина 0,0059-0,017 мкг па 1 кг веса в минуту; величина 0,1 мкг адреналина на I кг веса в минуту, вызывающая угнетение секреции надпочечников, является порогом. В абсолютном покое секреция должна быть ниже этого порога.

Понятие "секреция покоя" является довольно абстрактным, поскольку абсолютного покоя (физического и психического) добиться чрезвычайно трудно, тем более в условиях эксперимента, при котором из надпочечниковой вены забирают кровь для исследования. Строго говоря, изъятие из русла крови само по себе является раздражителем, так как меняет и объем крови в организме и концентрацию катехоламинов в кровотоке. Следовательно, секреция покоя - это минимальный уровень секреции, наблюдающийся при выключении максимального количества раздражителей, возбуждающих секреторную деятельность исследуемого эндокринного органа.

Наряду с нервными влияниями на секрецию катехоламинов надпочечниками оказывают действие и другие гуморальные продукты. Так, секреция катехоламинов усиливается при внутриартериальном введении ацетилхолина и хлористого калия. АКТГ в малой дозе потенцирует этот эффект, большие дозы АКТГ непосредственно стимулируют секрецию катехоламинов.

Будучи секретирована, молекула катехоламинов тотчас же захватывается либо белками плазмы, в основном альбуминами, либо белками клеток крови, в частности тромбоцитов.

Имеются наблюдения, что клетки крови содержат больше адреналина и меньше норадреналина, чем плазма. По данным автора, у мужчин плазма содержит норадреналина и адреналина почти в 5 раз больше, чем у женщин, тогда как в кровяных клетках у мужчин по сравнению с женщинами определяется больше адреналина, чем норадреналина. Другие авторы не находили столь четких различий в содержании катехоламинов в крови у мужчин и женщин.

Поступившие в кровь катехоламины интенсивно поглощаются прежде всего сердцем, селезенкой, надпочечниками, гипофизом, причем интенсивность захвата норадреналина выше, чем адреналина. Связывание циркулирующих катехоламинов тканью зависит от симпатических нервных окончаний. Денервированная ткань поглощает катехоламины менее интенсивно, чем здоровая. Отмечены конкурентные отношения между обоими аминами, например при введении адреналина повышается содержание этого амина в ткани и одновременно снижается содержание в ней норадреналина.

В органах катехоламины вступают в соединение с различными белками, образуя разные комплексные соединения. А. М. Утевский указывал, что образование комплексов имеет большое значение в стабилизации и временной инактивации гормона.

К числу наиболее вероятных путей ферментативных изменений структуры катехоламинов относятся хиноидное окисление, окислительное дезаминирование, метилирование.

Хиноидное окисление происходит, очевидно, за счет катехолоксидазы, цитохромоксидазы, в результате чего образуются вещества индоловой структуры типа адренолютина и аденохрома.

В моче здорового человека продукты хиноидного окисления почти не обнаруживаются.

Некоторые исследователи считают, что для первоначальной инактивации катехоламинов в одних органах (мозг, сердце) наибольшее значение имеет моноаминоксидаза, а в других органах (печень, почки) первоначальная инактивация осуществляется преимущественно катехол-О-метил-трансферазой.

Количественное взаимоотношение этих путей инактивации катехоламинов, по-видимому, являющихся основными, может варьировать в различных условиях, В моче больных феохромоцитомой обнаружено наряду с метанефрином и норметанефрином значительное количество N-метилметанефрина.

Секерис и Херрлих нашли в моче больных феохромоцитомой еще один вид продуктов обмена катехоламинов - N-ацетилпроизводные дофамина и норадреналина.

В последнее время появились указания на то, что конечным продуктом обмена катехоламинов является ванилиновая кислота.

Физиологическое действие катехоламинов . Основное действие катехоламины оказывают на обмен углеводов и жиров, на дыхание, на сосудистый тонус и деятельность сердца, на нервную систему и эндокринные железы.

Действие на обмен веществ . Введение адреналина быстро вызывает гипергликемию и глюкозурию, уменьшает запасы гликогена в печени и других тканях, влияет на распределение глюкозы в тканях.

При введении адреналина восстанавливается деятельность утомленной мышцы, увеличивается поглощение кислорода мышечной и другими тканями организма. Уже небольшие дозы адреналина повышают окислительное расщепление веществ, усиливают теплопродукцию и повышают температуру тела. Большие дозы адреналина быстро и значительно повышают обмен за счет распада жиров.

Адреналин и норадреналин увеличивают содержание неэстерифицированных жирных кислот в плазме за счет распада жиров и высвобождения этих кислот из депо. В мобилизации жирных кислот значительное участие принимает сывороточный альбумин.

Усилению окислительных процессов способствует также то, что катехоламины вызывают расслабление гладких мышц бронхов, повышение дыхательного объема и частоты дыхания.

Избыток адреналина нарушает деятельность окислительных ферментов, утилизация кислорода тканью значительно отстает от уровня его поглощения. Этот эффект приводит, в частности, к существенному нарушению обмена в миокарде, сопровождаемому изменениями электрокардиограммы, сходными с теми, которые наблюдаются при ишемии миокарда.

Норадреналин в гораздо меньшей степени, чем адреналин, влияет на обменные процессы. Свойство катехоламина в большой концентрации влиять на обмен веществ в миокарде, нарушая его нормальное течение, может быть в некоторых условиях причиной развития так называемых некоронарогенных некрозов миокарда.

Катехоламины угнетают перистальтику и понижают тонус кишечника и желудка, вызывают сокращение сфинктеров и некоторое торможение секреции желудка, и кишечника.

Действие на сердечно-сосудистую систему . Адреналин усиливает сократимость и повышает возбудимость сердца, иногда вызывает мерцание желудочков. Он способен возбуждать идиовентрикулярный синусовый узел при полном сердечном блоке. При замедлении проводимости под влиянием возбуждения блуждающего нерва адреналин сокращает время проведения импульса из предсердия в желудочек. Норадреналин обладает этим действием в гораздо меньшей степени.

Еулер считает, что гомеостатическую циркуляторную роль выполняет норадреналин, выделяемый в симпатических нервных окончаниях. Норадреналин, выделяемый надпочечником, в этом отношении имеет значение лишь при циркуляторном стрессе. Еулер рассматривает адреналин как "аварийный гормон", влияющий на кровообращение лишь в особых условиях.

Действие на нервную систему и эндокринные железы . А. Ю. Изергина установила, что адреналин в малых дозах увеличивает подвижность раздражительного процесса, в средних - повышает возбудимость коры головного мозга, увеличивает подвижность возбудительного процесса, вызывая выраженное преобладание его над тормозным, в больших дозах обусловливает развитие запредельного торможения. Избыток адреналина понижает возбудимость симпатического пограничного ствола, продолговатого мозга, гипоталамической области. В экспериментах прямое нанесение адреналина на кору больших полушарий оказывает возбуждающее действие. Однако в организме прямому действию катехоламинов на мозг мешает гематоэнцефалический барьер. Центральное действие катехоламинов обычно рассматривается как результат воздействия через гипоталамическую область, где локализуются симпатические центры и имеется высокая концентрация норадреналина, или как проявление воздействия через периферические рецепторы по нервным афферентным путям.

Делл считает, что адреналину принадлежит важная роль в поддержании активности ретикулярной формации головного мозга. Установлено, что восходящая активирующая ретикулярная система мезэнцефального уровня, гипоталамуса и зрительных бугров обладает химическим сродством к катехоламинам. Это означает, что адреналин возбуждает через ретикулярную формацию кору больших полушарий головного мозга. Особенно чувствителен к адреналину ростральный отдел ретикулярной формации.

Адреналин имеет отношение к выработке медиаторов симпатического отдела нервной системы. Экстирпация мозгового вещества надпочечников влечет за собой появление быстрой "истощаемости" симпатической иннервации при длительном повторном раздражении. Введение адреналина снимает ослабление функции адренергического нерва.

Марраззи обнаружил, что адреналин подавляет в больших дозах передачу возбуждения с преганглионарного на постганглионарное волокно в симпатических ганглиях. Это наблюдение помогает понять механизм ортостатической гипотонии, отмечаемой иногда у больных феохромоцитомой. Очевидно, избыток катехоламинов при этом вызывает ганглиоблокирующее действие, которое и проявляется в резком падении артериального давления при перемене положения тела больного.

В. С. Шевелева показала, что адренергический синапс может тормозить действие холинергических синапсов симпатического узла. Марраззи также признает существование специфических адренергических волокон, которые, образуя синапсы с дендритами постганглионарных волокон, оказывают на последние тормозящий эффект.

Отмеченный выше факт возбуждающего влияния адреналина на гипоталамус тем более важен, что раздражение гипоталамуса повышает секреторную деятельность гипофиза, что приводит к выделению ряда его гормонов: адренокортикотропного, тиреотропного. Кроме того, адреналин может непосредственно стимулировать секрецию гипофиза, а также оказывать прямое действие на кору надпочечника, активируя ее.

По наблюдениям Акерман и Аронс, перфузия щитовидной железы раствором адреналина даже при удаленном гипофизе вызывает увеличение объема железы и усиленное выделение ее гормона.

Имеются данные, что адреналин тормозит функцию мужских и женских половых желез. Гипергликемия, возникающая при введении адреналина, усиливает образование инсулина. Катехоламины находятся во взаимодействии и с медиаторными системами. Ряд эффектов, которые ранее приписывались катехоламинам, на самом деле зависит от совместного действия этих веществ с серотонином. Введение адреналина повышает содержание гистамина в крови. И, наоборот, введение гистамина резко усиливает выделение катехоламинов в кровь, что послужило основанием для разработки гистаминовой пробы, широко применяемой в клинике для диагностики феохромоцитомы.

Механизм действия катехоламинов . В основе механизма действия катехоламинов лежит их способность активировать фермент циклазу, катализирующий образование циклического 3,5-аденозинмонофосфата (АМФ) из аденозинтрифосфата (АТФ). Это в свою очередь через киназную систему вызывает переход дефосфофосфорилазы из неактивной в активную форму, что влечет за собой усиление фосфоролиза гликогена. Возникающая при этом энергия может расходоваться различным образом: на продукцию тепла, на активный транспорт ионов, т. е. на процессы поляризации клеточной мембраны, и т. д.

В настоящее время считают, что биологически активные вещества (гормоны, медиаторы) и лекарства дают тот или иной физиологический (фармакологический) эффект через определенные ферментные системы, активируя или тормозя их действие. Каждая ферментная система представлена некоторым числом молекул, которые занимают лишь небольшую часть клетки. Именно с этим местом клетки и проявляют сродство определенные биологически активные вещества. Клеточный химический рецептор - это место ферментативного процесса, или реагирующая часть молекулы фермента. В том случае, когда рецептор связан с поверхностью клетки, биологически активное вещество способно влиять на обменные процессы без проникновения в клетку. В случае локализации рецептора внутри клетки гормон или медиатор для оказания эффекта должен преодолеть клеточную мембрану.

Чувствительность адренорецепторов может меняться в зависимости от функционального состояния ткани и всего организма. Строение и природа этих рецепторов пока не изучены.

Физиологическая роль симпатоадреналовой системы . Известно, что увеличение количества катехоламинов обнаруживается при таких обстоятельствах, когда от систем, обеспечивающих нормальное существование организма, требуется экстренное повышение их функции. При возбуждении симпатоадреналовой системы усиливается деятельность сердца, учащается пульс, повышается артериальное давление, угнетается перистальтика кишечника, расширяется зрачок, усиливается сгорание углеводов, расширяются бронхи, вызывается спазм сосудов кожи и брюшной полости; сосуды сердца, головного мозга, скелетных мышц при этом не суживаются.

Приведенные данные показывают, что адреналин имеет большое значение в осуществлении реакций организма на различные раздражители. Не удивительно, что симпатоадреналовой системе отводится такое значительное место в уравновешивании организма с внешней средой и обеспечении постоянства внутренней среды организма.

Согласно представлениям Л. А. Орбели и А. Г. Гинецинского, физиологическая роль симпатоадреналовых влияний состоит в постоянном приспособлении интенсивности обменных процессов и физико-химических соотношений в тканях к функциональным потребностям данного момента.

Влияние адреналина на гипоталамус, гипофиз и кору надпочечников доказывает его особое значение в развитии общего адаптационного синдрома. Сформировавшееся в настоящее время представление о важной для реакций организма неспецифической роли симпатического тонуса, определяемого ретикулярной формацией головного мозга, некоторыми авторами рассматривается как своего рода синоним адаптационно-трофической функции симпатической нервной системы. Все сказанное выше о физиологической роли симпатоадреналовой системы в организме имеет самое прямое отношение к опенке значения катехоламинов, поскольку они выполняют функции гормонов - медиаторов этой системы.

Таким образом, выделение адреналина и норадреналина надпочечниками и активность симпатического отдела нервной системы находятся под постоянным контролем со стороны высших отделов нервной системы. В свою очередь поступившие в кровь катехоламины рефлекторно или непосредственно влияют на центральную нервную систему. Мозговой слой надпочечников и симпатический отдел нервной системы являются важным звеном нейрогуморальной регуляции функций различных органов и тканей организма.