Главная · Зубная боль · Какая наука изучает мозг человека. История изучения мозга от Древнего Египта до начала XX века. Можно ли "перевоспитать" нервные клетки

Какая наука изучает мозг человека. История изучения мозга от Древнего Египта до начала XX века. Можно ли "перевоспитать" нервные клетки

Человек летает в космос и погружается в морские глубины, создал цифровое телевидение и сверхмощные компьютеры. Однако сам механизм мыслительного процесса и орган, в котором происходит умственная деятельность, как и причины, побуждающие нейроны взаимодействовать, до сих пор остаются загадкой.

Головной мозг – важнейший орган человеческого организма, материальный субстрат высшей нервной деятельности. От него зависит, что человек чувствует, делает, о чем думает. Мы слышим не ушами и видим не глазами, а соответствующими участками коры головного мозга. Он же вырабатывает гормоны удовольствия, вызывает прилив сил и утоляет боль. В основе нервной деятельности лежат рефлексы, инстинкты, эмоции и другие психические явления. Научное понимание работы мозга все еще отстает от понимания функционирования всего организма в целом. Это, безусловно, связано с тем, что мозг – гораздо более сложный орган по сравнению с любым другим. Мозг – самый сложный объект в известной нам вселенной.

Справка

У человека отношение массы головного мозга к массе тела в среднем равно 2%. А если поверхность этого органа разгладить, получится примерно 22 кв. метра органики. Мозг содержит около 100 миллиардов нервных клеток (нейронов). Чтобы вы могли представить себе это количество, напомним: 100 миллиардов секунд – это примерно 3 тысячи лет. Каждый нейрон контактирует с 10 тысячами других. И каждый из них способен к высокоскоростной передаче импульсов, поступающих от одной клетки к другой химическим путем. Нейроны могут одновременно взаимодействовать с несколькими другими нейронами, в том числе находящимися в удаленных отделах мозга.

Только факты

  • Мозг – лидер по энергопотреблению в организме. На него работает 15% сердца, и он потребляет около 25% кислорода, захватываемого легкими. Для доставки кислорода к мозгу работают три крупные артерии, которые предназначены для его постоянной подпитки.
  • Около 95% тканей мозга окончательно формируются к 17 годам. К концу пубертатного периода мозг человека составляет полноценный орган.
  • Головной мозг не чувствует боли. В мозге нет болевых рецепторов: зачем они, если разрушение мозга приводит к смерти организма? Дискомфорт может чувствовать оболочка, в которую заключен наш мозг, – так мы испытываем головную боль.
  • У мужчин мозг обычно больше, чем у женщин. Средний вес головного мозга взрослого мужчины – 1375 г, взрослой женщины – 1275 г. Они также различаются размерами различных областей. Однако учеными доказано, что это не имеет отношения к интеллектуальным способностям, а самый большой и тяжелый мозг (2850 г), который описывали исследователи, принадлежал пациенту психиатрической больницы, страдающему идиотизмом.
  • Человек использует практически все ресурсы своего мозга. То, что мозг работает всего на 10%, – миф. Ученые доказали, что имеющиеся резервы мозга человек задействует в критических ситуациях. Например, когда кто-то убегает от злой собаки, он может перепрыгнуть через высокий забор, который в обычных условиях он ни за что не преодолел бы. В экстренный момент в мозг вливаются определенные вещества, которые стимулируют действия того, кто оказался в критической ситуации. По сути, это допинг. Однако проделывать такое постоянно опасно – человек может умереть, потому что исчерпает все свои резервные возможности.
  • Мозг можно целенаправленно развивать, тренировать. Например, полезно заучивать тексты наизусть, решать логические и математические задачи, изучать иностранные языки, познавать новое. Также психологи советуют правшам периодически «главной» рукой делать левую, а левшам – правую.
  • Мозг обладает свойством пластичности. Если поражен один из отделов нашего важнейшего органа, другие через некоторое время смогут компенсировать его утраченную функцию. Именно пластичность мозга играет исключительно важную роль в овладении новыми навыками.
  • Клетки головного мозга восстанавливаются. Синапсы, связывающие нейроны, и сами нервные клетки важнейшего из органов регенерируются, но не так быстро, как клетки других органов. Пример тому – реабилитация людей после черепно-мозговых травм. Ученые обнаружили, что в отделе мозга, отвечающего за обоняние, из клеток-предшественниц образуются зрелые нейроны. В нужный момент они помогают «починить» травмированный мозг. Ежедневно в его коре могут образовываться десятки тысяч новых нейронов, однако впоследствии может прижиться не больше десяти тысяч. Сегодня известны две области активного прироста нейронов: зона памяти и зона, ответственная за движения.
  • Мозг активно работает во время сна. Человеку важно иметь память. Она бывает долгосрочная и краткосрочная. Перевод информации из краткосрочной в долгосрочную память, запоминание, «раскладывание по полочкам», осмысление информации, которую человек получает в течение дня, происходит именно во сне. А чтобы тело не повторяло в реальности движения из сна, мозг выделяет особый гормон.

Мозг способен значительно ускорять свою работу. Люди, пережившие ситуации угрозы для жизни, говорят, что за миг перед их глазами «пролетела вся жизнь». Ученые считают, что мозг в момент опасности и осознания грозящей смерти в сотни раз ускоряет работу: ищет в памяти аналогичные обстоятельства и способ помочь человеку успеть себя спасти.

Всестороннее изучение

Проблема исследования мозга человека – одна из самых захватывающих задач науки. Поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось: и атом, и галактика, и мозг животного – было проще мозга человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Ведь главное средство познания не приборы и не методы, им остается наш человеческий мозг.

Существуют различные методы исследования. В первую очередь в практику ввели клинико-анатомическое сопоставление – смотрели, какая функция «выпадает» при повреждении определенной области мозга. Так, французский ученый Поль Брока 150 лет назад обнаружил центр речи. Он заметил, что у всех больных, которые не могут говорить, поражена определенная область мозга. Электроэнцефалография изучает электрические свойства мозга – исследователи смотрят, как электрическая активность разных участков мозга меняется в соответствии с тем, что делает человек.

Электрофизиологи регистрируют электрическую активность «мыслительного центра» организма с помощью электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии. При тяжелейших заболеваниях мозга тонкие электроды могут вживляться в ткань органа. Это позволило получить важную информацию о механизмах работы мозга по обеспечению высших видов деятельности, были получены данные о соотношении коры и подкорки, о компенсаторных возможностях. Еще один метод изучения мозговых функций – электрическая стимуляция отдельных областей. Так канадским нейрохирургом Уайлдером Пенфилдом был исследован «моторный гомункулус». Было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение разных частей тела, и установлено представительство различных мышц и органов. В 1970-е годы, после изобретения компьютеров, представилась возможность еще более полно исследовать внутренний мир нервной клетки, появились новые методы интроскопии: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. В последние десятилетия активно развивается метод нейровизуализации (наблюдение за реакцией отдельных частей мозга после введения определенных веществ).

Детектор ошибок

Очень важное открытие было сделано в 1968 году – ученые обнаружили детектор ошибок. Это механизм, который дает нам возможность производить рутинные действия, не задумываясь: например, умываться, одеваться и одновременно думать о своих делах. Детектор ошибок в подобных обстоятельствах все время следит, правильно ли вы действуете. Или, например, человек внезапно начинает чувствовать себя некомфортно – он возвращается домой и обнаруживает, что забыл выключить газ. Детектор ошибок позволяет нам даже не задумываться о десятках задач и решать их «на автомате», сходу отметая недопустимые варианты действий. За последние десятилетия наука узнала, как устроены многие внутренние механизмы человеческого организма. Например, путь, по которому зрительный сигнал доходит от сетчатки до мозга. Для решения более сложной задачи – мышления, опознания сигнала – задействована большая система, которая распространена по всему мозгу. Однако «центр управления» пока не найден и даже неизвестно, есть ли он.

Гениальный мозг

С середины XIX века ученые делали попытки изучения анатомических особенностей мозга людей с выдающимися способностями. На многих медицинских факультетах Европы хранились соответствующие препараты, в том числе и профессоров медицины, которые еще при жизни завещали свой мозг науке. От них не отставали русские ученые. В 1867 году на Всероссийской этнографической выставке, устроенной Императорским обществом любителей естествознания, было представлено 500 черепов и препаратов их содержимого. В 1887 году анатом Дмитрий Зернов опубликовал результаты исследования мозга легендарного генерала Михаила Скобелева. В 1908 году академик Владимир Бехтерев и профессор Рихард Вейнберг исследовали подобные препараты покойного Дмитрия Менделеева. Аналогичные препараты органов Бородина, Рубинштейна, математика Пафнутия Чебышева сохранены в анатомическом музее Военно-медицинской академии в Санкт-Петербурге. В 1915 году нейрохирург Борис Смирнов подробно описал мозг химика Николая Зинина, патолога Виктора Пашутина и писателя Михаила Салтыкова-Щедрина. В Париже был исследован мозг Ивана Тургенева, вес которого достигал рекордных 2012 г. В Стокгольме работали с соответствующими препаратами знаменитых ученых, в том числе Софьи Ковалевской. Специалисты Московского института мозга тщательно исследовали «мыслительные центры» вождей пролетариата: Ленина и Сталина, Кирова и Калинина, изучали извилины великого тенора Леонида Собинова, писателя Максима Горького, поэта Владимира Маяковского, режиссера Сергея Эйзенштейна... Сегодня ученые убеждены в том, что, на первый взгляд, мозг талантливых людей ничем не выделяется из ряда среднестатистических. Эти органы различаются структурой, размерами, формой, однако от этого ничего не зависит. Мы до сих пор не знаем, что именно делает человека талантливым. Можем только предполагать, что мозг таких людей немножко «сломан». Он может делать то, чего не могут нормальные, а значит, он не такой, как все.

Первые упоминания о наблюдениях за человеческим мозгом, а точнее за изменением поведения человека под влиянием мака, на 26 стр. относит к шумерским записям 4 000 года до н. э. Археологи же говорят, что примерно к этому же времени, может, тысячей лет позже, первые операции на мозге, известные нам как трепанация.

Насколько такие хирургические вмешательства были успешны, сейчас сказать сложно, однако именно с этого времени, как считается, и берет свое начало изучение человеческого мозга, психология, неврология. Внутри, как обычно, много фамилий, дат, ссылок на основные открытия и картинок человеческого мозга: Европа и Восток, от Папируса Эдвина Смита до осознанных сновидений.



Древняя Китайская медицина связана с полумифическим именем - Шень Нун , который кроме того, что определил на долгое время лечение травами, а по легенде и сам по несколько раз на дню «тестировал» их и самоотравлялся, еще и предупредил развитие акупунктуры, или иглоукалывания, которое и по сей день распространено в Китае. Датируется изобретение рефлексотерапии приблизительно 2 700 годом до нашей эры, а сегодня это - нематериальное наследие ЮНЕСКО .

Противоречив Древний Египет. И это неудивительно в стране, где медицина и наука очень тесно сосуществовала с религией. С одной стороны - отношение к мозгу было достаточно «прохладным», и после смерти его вытаскивали и откровенно говоря выбрасывали. Так как «центральным» органом считалось сердце, на что есть указания и в "Древнеегипетской Книге Мертвых ". Сердце - ключ к загробной жизни после процедур взвешивания на весах добра и зла.

С другой стороны широко известен "Папирус Эдвина Смита ", названный по имени коллекционера, выкупившего бумагу в 1862 году. Записан был предположительно ок. 1 700 - 1 600 до н. э. На данный момент - это один из главных текстов древней медицинской литературы, в котором достаточное количество информации посвящено черепно-мозговым травмам, внутричерепным пульсациям, вперемежку, разумеется с традиционными заклинаниями против чумы и т. п.

Всего в бумаге, устные источники которой датируются чуть не 3 000 - 2 500 г. до н. э. приведены 48 «историй», большая часть которых касается неврологии, в том числе открытых травм головы и мозга. Первые описания черепных швов, мозговых оболочек и спинномозговых жидкостей пришли с этим документом . Авторство приписывается основателю Древнеегипетской медицины Имхотепу , личности весьма разносторонней, который служил при фараоне Джосере зодчим, а потом - подался в медицину.


Иероглиф «Мозг», ок. 1 700 до н. э.

Параллельно с этим, ок. 2 000 года до н. э., полагают ученые, в Южной Америке продолжают практиковать трепанацию черепа как профилактику головных болей и психических заболеваний, эпилепсии. При этом значительное количество «вскрытых» черепов указывает на систематическое использование этой «технологии».

В качестве хирургического инструмента использовались бронзовые «клинья» с острыми краями, предположительно, вулканической породы. Однако!

Некоторые историки и археологи предпочитают связывать эти доисторические дырки в головах большей частью с религией, так как первые упоминания об эпилепсии относятся к куда более позднему времени и немного иной культуре. Древняя Индийская медицина, начало которой положено в Атхарваведе , подарила миру ок. 6 века до н. э. Sushruta Samhita - одну из главных книг Аюрведы , где заложены основы хирургии.

Одна из частей - Уттара - посвящена малой хирургии, так называемой «шалакье», или хирургии «выше плеч», где приводятся описания и примеры офтальмологических заболеваний, в том числе сосудистых, а также говорится об удалении катаракты. Наряд с этим текстом, второй по значимости трактат о медицине того периода - описывает психические отклонения людей, рассматривает эпилепсию, ее симптомы и методы лечения. Книги Аюрведы .

Похожей точки зрения о том, что эпилепсия - болезнь, а не божественное наказание, придерживался Гиппократ. Древнегреческому медику отводится значительная роль в медицинской науке, в частности науке о мозге, и именно ему приписывается идея о том, что в мозге зарождается ум, интеллект. Однако веком ранее такую же мысль мог высказать Алкмеон , философ, который нигде не упоминается, однако, как практикующий врач. Несмотря на это, ему приписывают открытие, что мозг, а не сердце - ключевой орган для человека, определяющий его жизнь и судьбу.

Иные философы и теоретики, впрочем, достаточно великие также высказывали гипотезы относительно человеческого мозга, и Платон считал, что мозг место зарождения всех психических процессов, а Аристотель, увлеченный наукой о сне, отводил эту роль душе и сердцу. Так или иначе без серьезной практики изучение мозга было невозможно. Ключевой легендарной фигурой Древней Греции стал Эрасиаст - практикующий медик, анатом, который описал не только отделы мозга и функции мозжечка, но и оставил на тот момент единственное подробное описание кровеносной системы человека.

Эрасиаст работает в паре с «Отцом анатомии» Герофилом , который четко дифференцировал мозг и мозжечок, предположив функции каждого. По мнению Герофила, именно в мозжечке происходит «зарождение» интеллекта.


Герофил

Ученые на пару анатомируют трупы, оставляя нам подробные отчеты о структуре мозга и сердца, а также подробное описание кровеносной системы. На дворе 335 - 280 года до нашей эры, и это последние крупные открытия, касающиеся мозга человека, на тот период.

Мозжечок - красный

Римская классика

Приблизительно 177-м годом датируется работа о мозге выдающегося римского хирурга Галена. В круг его исследований попадали физиология, фармакология, неврология, хирургия, а многие из открытий подтверждались и во времена Возрождения, и в наши дни.

Ему принадлежит теория о том, что так как мозжечок более твердый относительно мозга, то он отвечает за мышцы, а сам мозг - так как более мягкий - за чувства. Он отводил мозгу место «одной из трех душ», а его происхождение видел в сперме, так как субстанция была холодная и влажная.

Надо отметить, что так как римское право на момент деятельности Галена запрещало вскрытие трупов, то большинство его экспериментов происходило на свиньях и приматах. Благодаря этому появились его описания трахеи, кровеносной системы, которые оказались очень близки человеческим. Также Галену принадлежит теория «Телесных соков» о темпераментах человека, точнее их зависимости от количества крови, желчи и черной желчи и флегмы.

Как и в Древней Греции, в Риме не было недостатка в философах, и один из них Немезий в работе Nature of Man около 390 года пытается описать человеческий организм, учитывая уже христианские традиции. Он не был врачом, но предполагал , что различные отделы мозга отвечают за различные функции, и тут, как считают ученые, его задачей было не описание строения человеческого мозга, а примирение дохристианской платоновской философии с философией нового времени.

Развивается медицина и на Востоке, куда проникают переводы в том числе греческих книг. Один из центральных памятников медицинской литературы - "Всеобъемлющая книга по медицине ", автор которой, Абу Бакр Мухаммад ибн Закария ар-Рази , был известен и как музыкант, и как меняла, а к 30-ти годам стал увлеченным медиком, оставив в наследие труды по химии, фармакологии, медицине.

Открытие гиппокампа в 1 564 году принадлежит выдающемуся итальянскому анатому Джулио Чезаре Аранци (1 530 - 1 589), и эта часть лимбической системы мозга называется так с тех самых времен. Гиппокамп - парная структура, расположенная в височных отделах и отвечает за образование эмоций и долговременную память.

Ученик Аранци, Костанцо Варолий вошел в историю медицины как первый, кто точно описал механизм эрекции, а также представил новый способ рассечения мозга, благодаря чему появилась возможность исследовать его от основания. В процессе своей работы открыл в 1 573 часть заднего мозга вместе с мозжечком, которая отвечает за передачу информации от спинного мозга к головному. Этот отдел мозга и сейчас носит имя автора - Варолиев мост .


De Nervis Opticis, Варолий

16 век подходит к финалу , и последняя крупная фамилия - Феликс Платтер , основоположник судебной медицины, который немало времени посвятил изучению психических отклонений. Ему принадлежит первая классификация психических расстройств, описание психозов и обсессивно-компульсивного расстройства . Заметил и описал внутричерепные опухоли, в частности доброкачественную менингиому .

В 1 609 году Джулио Кассерио определяет маммилярные тела гипоталамуса , располагающиеся в задней части, которые отвечают за некоторые поведенческие факторы. И в это же время Роберт Бертон, священник, философ и поэт, пишет "Анатомию меланхолии " - прозаическую книгу о депрессии. И надо сказать, если совсем грубо, то начиная с 17-ого века в «неврологию» стало попадать и то, из чего состоит мозг, и то, что в нем происходит, проще говоря: все, что связано с головой прямо или косвенно.

1 641 год. С именем Франциска Сильвия связано открытие латеральной борозды головного мозга, одну из самых глубоких, которая отделяет височную часть от теменной и лобной. И хотя впервые на рисунках она была запечатлена и ранее, а первый, кто заговорил о ней - Каспар Бартолин - скончался к этому времени, подробное описание приводит именно Сильвий.

Почти в середине столетия на центральное место в мозге - Эпифиз, или шишковидную железу, обратил внимание философ Рене Декарт и отвел ей место, «где зарождается душа и все наши мысли». На сегодняшний день функции шишковидной железы изучены не до конца , и к основным относят торможения гормонов роста, торможение полового развития и влияние на половое влечение в целом. Также шикшовидная железа отвечает за выработку мелатонина.


Шишковидная железа в иллюстрации к Декарту

В 1 658 году Иоганн Якоб Вепфер описывает цереброваскулярные болезни и впервые говорит о том, что такое инсульт и описывает его симптомы и причины. Его трактат об этом называется Historiae apoplecticorum , и он оцифрован.

Одна из самых главных фигур в науке этого столетия Томас Уиллис, который и ввел в обиход термин «Неврология». Ему принадлежит ряд важный открытий, в частности, разделение диабета на «сладкий, как мед», сахарный и несахарный, так как он впервые обратил внимание на вкус мочи.

Впервые именно им были пронумерованы черепные нервы, и этот порядок до сих пор применяется в клинической практике, а также в честь Уиллиса назван Виллизиев круг - артериальный круг в основании мозга. Особая роль в его работах была отведена и заболеваниям мозга, и Уиллис впервые проговорил причины эпилепсии, судорожных заболеваний.

Виллизиев круг обеспечивает достаточное кровоснабжение мозга, если произошла закупорка каких-либо сосудов, и абсолютно нормально развитый он встречается лишь в 50% случаев. Большая часть аневризмов сосудов берет начало именно здесь.

В 1 664 году голландский врач Жерар Власий обнаружил и описал арахноидальную, или паутинную оболочку головного мозга. Это одна из трех оболочек, средняя, покрытая с обеих сторон глиальными клетками , которые составляют до 40% центральной нервной системы.

Через 6 лет Уильям Молинс дополняет «картину» черепно-мозговых нервов - блоковым, отклонения в котором вызывает диплопию , или двоение в глазах.

Под занавес 17 века появляются сразу несколько интересных исследований. Ряд из них принадлежит анатому Раймонду Виесессенсу , который, наследуя традиции Уиллиса, дал ряд точных, исчерпывающих описаний многим современным недугам. Его именем назван Полуовальный центр - белое вещество мозга, которое расположено в каждом полушарии и расположено под серым веществом.

С развитием технологий, начинается поиск методов лечения различных заболеваний. Например, известный физик, чьи опыты с электричеством послужили базой для последующих открытий, Жан-Батист ле Рой , предложил лечить психические заболевания с помощью тока, и провел первые опыты в 1 755 году.

Впечатляющие заявления о функциях мозжечка в 1 760 году делает Шарль Лорри , отмечая, что повреждение этой части мозга рушит координацию движений, а также указал, между какими шейными позвонками нужно сделать прокол, чтобы смерть наступила мгновенно.

Крупнейший итальянский ученый Доменико Кутуньо , которому принадлежит ряд открытий в отоларингологии и неврологии, отмечает связь между спинномозговой жидкостью и желудочками головного мозга, впрочем, сделано, это было, видимо, «походя», так как основные работы медика были обращены к спине, и открытие-то спинномозговой жидкости приписывается ему. Также он оставил подробное описание седалищного нерва.

В это же время работает один из представителей медицинской династии Александр Монро II , который позднее опишет межжелудочковое отверстие, или "отверстие Монро ", при закрытии которого может развиваться гидроцефалия. Также оно обеспечивает нормальную циркуляцию цереброспинальной (спинномозговой) жидкости.

А подробное научное описание спинномозговой жидкости в 1 766 оставит Альбрехт фон Галлер . Его исследования в области нервной и мышечной систем позволили доказать реакции мозга на различные воздействия на мышцы, и он же продемонстрировал, что при удалении определенных частей мозга, эти реакции прекращаются.


Галлер. Icones anatomicae

В 1 773 году английский медик Джон Фозергилл описывает невралгию троичного нерва , которая долгое время называлась его именем. Болезнь достаточно распространенная и очень мучительная, сопровождающаяся дикими простреливающими болями, которые снимают противоэпилептическими препаратами или костными блокадами.

Средства воздействия на человеческий мозг, химические или «психологические», также открываются в 18 веке. В 1 773 году Джозеф Пристли открывает «веселящий газ», или оксид азота , который используется в качестве ингаляционного наркоза, а в 1 774 году Месмер открывает «животный магнетизм», одну из форм гипноза , ныне не применяемую в медицине.

В 1 776 году Винченцо Малакарне занят исследованиями мозжечка и центральной нервной системы, которые определили направления изысканий многих будущих классиков неврологии. Он стал первым, кто полностью описал верно анатомию мозжечка.

Малакарне - не единственный, кто обобщает и совершенствует опыт предшественников. Так, двумя годами позднее, Самуэль Томас Земмеринг описывает классификацию 12 черепных нервов, которая актуальна до сих пор . Ученому на тот момент было 23 года, и классификация стала частью его дипломной работы.

На самом рубеже, в 1 800 году уже помянутый Самуэль Томас Земмеринг описывает черную субстанцию мозга, которая отвечает за большинство важнейших функций, необходимых для жизни: дыхание, сердечная деятельность, моторика, движения глаз…

В это же время формируются и некоторые лженауки, одна из которых - френология - существовала вплоть до начала XX века. Основоположником теории является Франц Йозеф Галь, который полагал, что психика человека обусловлена строением его черепа. Позднее было доказано, что форма мозга не тождественна форме черепа, и его рельеф не может объяснять психические особенности.

В 1 808 году Луиджи Роландо описывает центральную кору головного мозга, открывая в ней «элементы», которые в дальнейшем будет именоваться в честь него: трещина роландо (центральная борозда), роландические крышки, роландическая кора мозга и другие. Он же открывает один из типов эпилепсии .

Центральная борозда

В 1 813 году Вик-д’Азир открывает Claustrum, или Ограду - тончайшую часть мозга под корой больших полушарий. Ее функции в организме до сих пор оспариваются .

В 1 817 году был описан «Дрожательный паралич», получивший в будущем имя своего «первооткрывателя» - болезнь Паркинсона с характерными симптомами в виде тремора, неэластичность мышц, замедленность движений и трудности при дыхании. Болезнь возникает при поражении нейронов черной субстанции головного мозга и нейромедиаторов ЦНС.

В 1 821 году впервые выявлен нервный паралич, названный именем Чарльза Белла. По сей день остается одним из самых распространенных заболеваний, при этом начинается внезапно и предпосылки до конца не определены.

Параллельно с Беллом нервную систему исследует Мажанди. Также французский физиолог описал отверстие Мажанди , или медиальное отверстие головного мозга, которое соединяет третий и четвертый желудочек.


Median aperture, или отверстие Мажанди

Примерно к этому же времени относятся работы Карла Бурдаха, который в 1 822 году указывает на поясную кору мозга, которая является частью лимбической системы и контролирует болевые ощущения и эмоциональные настроения, а также участвует в процессах памяти.

Начиная с середины 19 века исследования стали все более «точечными», и ученые фокусируются на отдельных органах, широко обсуждается офтальмология, органы слуха. Неврология интересуется позвоночником и нервной системой в целом, слегка «уйдя» из головы человека. К этому периоду относятся открытия дегенерации нервных волокон, спинального шока , ядер серого вещества спинного мозга, Генрих Мюллер описывает клетки сетчатки , а его «коллега» в середине века развивает мысль о том, что рефлексы берут свое начало не только в спинном, но и в головном мозге, определяет таламус как место, где зарождается сознание и впервые указывает на то, что алкоголизм - это болезнь.

В 1 859 один из основоположников клеточной теории Рудольф Вихров вводит и описывает термин нейроглии , совокупности клеток нервной ткани, исследования которых продолжалось и в будущем, в частности Гольджи именно за открытия в этой части нервной системы был удостоен Нобелевской премии.

Карл Кальбаум описывает психическое расстройство, которое позднее «включат» в шизофрению - какатонический синдром , проявлениями которого является невосприимчивость к раздражителям, двигательные расстройства.

В это же время продолжает свою работу Теодор Мейнерт и публикует «Трактат о заболеваниях переднего мозга». В 1 883 Эмиль Крепелин , которого называют основателем современной психиатрии, вводит в обиход и описывает неврозы и психозы, и в его работах впервые называются маниакальная депрессия и раннее слабоумие. В 1 884 году работает Жорж Жиль де ля Туррет, который описывает вокальные и моторные тики, «объединенные» в синдром Туррета.

Под занавес века были изобретены рентген и осциллограф , выделено несколько обезболивающих, фармацевты Байер начали лечить кашель героином, кокаин применяется в качестве анестезии на спинном мозге, а Джон Лэнгли вводит термин автономная (вегетативная) нервная система.

Начинается XX век...

Ситуация еще больше «усложнилась», и исследования становятся все более глубокими, точечными, практически без метафор - на клеточном уровне. И при этом продолжается попытка «разгадать» человеческую психику, эмоциональные закономерности и процессы, чувства и мысли, «привязав» их к конкретным органам или отделам нервной системы.

Самой заметной фигурой в области изучения сознания и подсознания в этот период стал Зигмунд Фрейд. Психика человека и возможности на нее влиять, а не просто исследовать, порождают многочисленные теории в медицине и педагогике, в частности, примечательна деятельность Альфреда Бине по адаптации умственно отсталых детей и выявлении закономерностей интеллектуальных отклонений.

К таким же попыткам исследования процессов в мозге стоит отнести работу Роршаха, автора одноименного теста, изобретение полиграфа, первой энцефалографии (ЭЭГ), которую в 1 928 году продемонстрировал Ганс Бергер .

Во многом, кстати, эта процедура сделала возможным «круглосуточное» изучение деятельности мозга человека, и первые исследования мозга во сне. В 1 935 Бремер проводит первые опыты на кошках, которые дают ему некоторое подтверждение догадкам о «разных» фазах сна. Однако мировую известность в этой области обретет Натаниэл Клейтман (Клайтман), который не только даст начало сомнологии, но и позволит плотнее заняться "осознанными сновидениями ", историю которых я подробно рассказывал на Geektimes, когда делал обзор .

Наука о мозге едина. Она включает не только физиологию, но практически все биологические и ряд медицинских дисциплин, физику с ее техническими достижениями, химию с ее возможностями синтеза новых препаратов, математику и информатику, ибо настало время попытаться систематизировать огромный массив накопленных данных и построить, хотя бы в первом приближении, информационную теорию мозга. И, несомненно, эта наука включает психологию и философию.

Одними из первых, кто начал перекидывать мост от физиологии к психологии, были наши великие ученые Иван Сеченов и Иван Павлов, давшие мощный толчок развитию российской физиологической школы. К счастью, она сохранилась. Достижения современной науки о мозге поразительны. Они вызывают сейчас к жизни грандиозные национальные проекты, нацеленные на здоровье человека и создание новых информационных технологий (США и Китай уже начинают их реализовывать). Этот вызов времени должна принять и Россия. Научный потенциал у нас для этого имеется. Нужна только мощная поддержка. Какие же области нейробиологических исследований наиболее важны для нас? Как мне представляется, можно выделить, по крайней мере, шесть актуальных направлений в изучении мозга.

Ионный канал - мембранный белок, "вставленный" в биологическую мембрану, - ключевой молекулярный "чип" живой клетки.

ЭВОЛЮЦИЯ И ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ

Понять природу мозга человека с его высшими психическими способностями невозможно без понимания природы эволюционного процесса. Кстати, термин "эволюционная физиология" был предложен в 1914 г. зоологом Алексеем Северцовым (академик с 1920 г.). А формирование этого фундаментального научного направления связано с отечественной наукой, с именами физиологов академика Леона Орбели и члена-корреспондента АН СССРХачатура Коштоянца. В 1956 г. Орбели создал в Ленинграде Институт эволюционной физиологии и биохимии, добившись присвоения ему имени Ивана Сеченова. Более полувека ведут здесь активные исследования в области эволюционной физиологии. При этом рассмотрению подвергаются различные уровни сложности живых систем. Так, согласно представлению, развиваемому академиком Юрием Наточиным и членом-корреспондентом РАН Николаем Веселкиным, система химической регуляции и сигнализации, возникшая на самых ранних этапах эволюционного процесса у примитивных одноклеточных организмов, оказалась востребованной и при появлении многоклеточных, вплоть до приматов и человека. При этом она эволюционировала в гормональную и специализированную нейроэндокринную системы. Последняя поддерживает гомеостаз, регулирует важнейшие функции мозга и висцеральных (относящихся к внутренним органам) систем.

Изучение механизма онтогенеза - актуальнейшее направление в современной науке о мозге. Этой проблемой успешно занимается академик Михаил Угрюмов в Институте биологии развития им. Н. К. Кольцова РАН (Москва), активно сотрудничая при этом с французскими нейробиологами.

Эволюция сознания - еще одно актуальное и увлекательное направление современной нейробиологии. Если животные обладают "первичным сознанием", то люди - во многом из-за наличия языка - его высшей формой. Вот почему природу человеческого сознания нельзя понять без познания генетических основ и эволюционного развития языка. Вопрос о том, как и когда возник язык, остается открытым. Обсуждаются две возможности: или он продукт генетического "взрыва", или результат постепенного, естественного отбора мелких мутаций. Независимо от ответа, специалисты наносят на эволюционном древе отряда приматов, семейства гоминид, рода Homo sapiens следующую датировку: нейроанатомический субстрат языка возник у Homo erectus около 2 млн. лет назад; протоязык появился у Homo habilis около 1 млн. лет назад; наконец, полностью сформированный язык у Homo sapiens датируется примерно 75 тыс. лет назад. Интереснейшие нейролингвистические исследования на стыке физиологии и лингвистики активно ведет в Санкт-Петербургском университете доктор биологических и доктор филологических наук Татьяна Черниговская.

МОЛЕКУЛЯРНАЯ ФИЗИОЛОГИЯ

Мозг взрослого человека содержит около 100 млрд. нервных клеток и порядка 100 трлн контактов между ними, называемых синапсами. Когда говорят об обработке информации в мозге, о "нервных сетях", необходимо иметь в виду, что "сети" - сугубо информационное понятие. На самом деле нервная система - вовсе не сеть, как думали раньше, а 100 млрд. отдельных клеток, контактирующих друг с другом.

Передача информации между ними осуществляется с помощью электрических и химических сигналов. Одна из ключевых задач молекулярной физиологии - понять, как именно электрический сигнал (речь идет не об электрическом токе, конечно, а об ионных токах - положительно заряженных ионах калия, натрия, кальция и отрицательно заряженных ионах, например, хлора) распространяется по длинному (аксону) и короткому (дендриту) отросткам нервной клетки и как он передается химическим путем в месте контакта (в синапсе).

Носителями химической передачи (нейропередатчиками или нейромедиаторами) служат низкомолекулярные соединения - ацетилхолин, глутамат, дофамин и целый ряд других.

К "элементной базе" нервной клетки можно отнести так называемые "мембранные белки", как бы "вставленные" в биологическую мембрану. Из этих встроенных в мембрану белков остановимся на ионных каналах (через них селективно переносятся положительно либо отрицательно заряженные ионы - катионы или анионы) и на рецепторах - мембранных белках, на которые "садятся" и взаимодействуют с ними молекулы нейропередатчика. В состав белковых рецепторов входят как, собственно, рецепторная часть, "узнающая" молекулу нейропередатчика, так и канальная - через нее ионы переносятся. "Классические" ионные каналы управляются, т.е. открываются и закрываются, путем изменения электрического напряжения на мембране. Именно ионные каналы обеспечивают распространение электрического сигнала (нервного импульса) по отросткам нервных клеток. Информация, передающаяся от нейронов к нейронам, закодирована последовательностью таких импульсов. По существу последовательность импульсов - это информационный "язык" мозга.

В состав огромного семейства белковых рецепторов входят так называемые G-белки, или сигнальные, ибо они служат универсальными посредниками при внутриклеточной передаче световых, химических (вкус, обоняние), нервных, гормональных сигналов к другим белкам, ответственным за ту или иную специфическую функцию живой клетки. Из "суперсемейства" G-белоксвязывающих рецепторов наиболее изучен светочувствительный зрительный белок родопсин. Его первичная структура (аминокислотная последовательность) была установлена в начале 1980-х годов академиком Юрием Овчинниковым и его сотрудниками в московском Институте биоорганической химии РАН, который носит теперь имя М. М. Шемякина и Ю. А. Овчинникова.

Актуальной задачей молекулярной физиологии сегодня является детальное описание трехмерной структуры каналов и рецепторов, понимание тонкостей их взаимодействия с другими белками. Очевидно, что только фундаментальное знание "элементной базы" клетки позволит понять природу ее нарушений. Другого пути для выяснения глубинных причин заболеваний и успешного их лечения, а также для создания новых лекарств, в том числе нейро- и психотропных, просто не существует.

За выдающиеся успехи в изучении структуры и функции ионных каналов и белков-рецепторов за последние десятилетия получена не одна Нобелевская премия. У нас в этой области успешно работают довольно много научных школ, лабораторий и групп. Так, огромный вклад в изучение ионных каналов внес академик Платон Костюк. Его учеников можно встретить сейчас в России, Украине, во многих других странах. Один из ярких представителей этой школы - член-корреспондент РАН и академик Национальной академии наук Украины Олег Крышталь. Его работы, в том числе по обнаруженным им протончувствительным ионным каналам, публикуют самые престижные научные журналы. Широко известна научная школа доктора медицинских наук Бориса Ходорова (Институт общей патологии и патофизиологии РАМН), чьи труды по ионным каналам и возбудимости нервных клеток стали классическими. Исследования самого высокого класса в этой области молекулярной физиологии ведет член-корреспондент РАН Галина Можаева и ее коллеги в Институте цитологии РАН (Санкт-Петербург).

Исключительно важное направление - изучение модельных систем, т.е. искусственных мембран и "вставленных" в них ионных каналов. В этой сфере на мировом уровне работает член-корреспондент РАН Юрий Чизмаджев и его ученики в Институте физической химии и электрохимии им. А. Н. Фрумкина РАН (Москва).

Теперь чуть подробнее о синаптических рецепторах, "узнающих" и взаимодействующих с молекулами-нейропередатчиками. Синаптических контактов в мозге, как говорилось, около 100 трлн. Но синапс - не просто контакт, а сложнейшая молекулярная "машинерия". В нем протекают все процессы, приводящие к основным видам мозговой деятельности: восприятию, движению, обучению, поведению и памяти. Синапс - настолько важная структура, что его изучение вылилось в отдельную область нейронауки - синаптологию, в которой российские ученые занимают достойное место.

Еще в 1946 г. упомянутый Хачатур Коштоянц и Тигран Турпаев (академик с 1992 г.) опубликовали в журнале "Nature" пионерскую статью, где впервые представили результаты, свидетельствовавшие о белковой природе синаптического рецептора к нейропередатчику - ацетилхолину. В 60-х - начале 80-х годов XX в. работы мирового класса, касающиеся синапсов спинного мозга и эволюции синаптической передачи, выполнил член-корреспондент АН СССР Александр Шаповалов из Института эволюционной физиологии и биохимии им. И. М. Сеченова.

А недавно сотрудники того же Института - член-корреспондент РАН Лев Магазаник и его ученик доктор биологических наук Денис Тихонов - опубликовали работу об эволюции глутаматных рецепторов - важнейшего класса белковых рецепторов центральной нервной системы и мозга.

Глутамат - ключевой возбуждающий нейропередатчик, а рецептор к нему, как оказалось, - один из самых древних: его предшественники найдены даже у растений и прокариот (примитивных одноклеточных безъядерных организмов). Знание пространственной организации и молекулярной физиологии этих рецепторов позволяет лаборатории Магазаника вести осмысленный, целенаправленный поиск новых нейро- и психотропных препаратов. Некоторые из них уже проходят испытания на животных.

Еще один пример успехов в понимании эволюции, структуры и функции белкового рецептора - изучение рецептора к ацетилхолину. Как и глутамат, ацетилхолин также ключевой нейропередатчик. Приоритетные исследования в этой "горячей" области синаптологии ведут члены-корреспонденты РАН Виктор Цетлин и Евгений Гришин в Институте биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова.

Оригинальное и вместе с тем традиционное направление синаптологии - изучение синапса между нервной и мышечной клетками. Его успешно развивают член-корреспондент РАН Евгений Никольский и член-корреспондент РАМН Андрей Зефиров (Казанский институт биохимии и биофизики РАН и Казанский государственный медицинский университет).

Повторю: синапс - это сложнейшая молекулярная "машинерия". В ее нарушениях лежат причины нервных и психических расстройств; с синапсом связана нейро- и психофармакология настоящего и будущего.

ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

В нашей стране это традиционно одно из сильных направлений. У его истоков стояли академики физиолог Леон Орбели и физик Сергей Вавилов. Именно они в 1930-х годах дали мощный толчок исследованиям сначала в области физиологии зрения, которыми сами занимались, а затем слуха и других сенсорных модальностей. В работе любой сенсорной системы можно выделить три основных этапа. Первый - рецепция, т.е. восприятие и преобразование энергии внешнего воздействия - светового (зрение), механического (осязание, слух) или химического (вкус, обоняние) в физиологический сигнал. Второй - передача и информационная обработка сигнала на всех уровнях сенсорной системы: от рецепторного до специализированных подкорковых и корковых отделов головного мозга. Третий - формирование в коре головного мозга субъективного образа объективного внешнего мира. Каждый этап - предмет исследований специалистов различных областей знания.

Сенсорную фоторецепцию успешно изучают в нескольких лабораториях, в том числе докторов биологических наук Виктора Говардовского в Институте эволюционной физиологии и биохимии им. И. М. Сеченова РАН, Олега Синещекова и Павла Филиппова в МГУ им. М. В. Ломоносова, автора данной статьи в Институте биохимической физики им. Н. М. Эмануэля РАН. Работы по вкусовой рецепции успешно ведутся в лаборатории Станислава Колесникова в Институте биофизики клетки РАН в Пущине Понимание "молекулярной машинерии" сенсорной рецепции открывает новые возможности как для медицины, так и для техники. Например, результаты исследования первичных фотохимических реакций в молекуле светочувствительного зрительного белка родопсина могут оказаться перспективными для создания устройств высокого быстродействия для обработки информации. Дело в том, что эта фотохимическая реакция совершается в родопсине за ультракороткое время - 100 - 200 фс (1 фемтосекунда - 10 - 15 с). Недавно в совместной работе лабораторий доктора физико-математических наук Олега Саркисова в Институте химической физики им. Н. Н. Семенова РАН, академика Михаила Кирпичникова в Институте биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова РАН и автора данной статьи было показано, что реакция эта является не только сверхбыстрой, но и фотообратимой. Это означает, что по образу и подобию родопсина может быть создан молекулярный "фотопереключатель" или "фоточип", работающий в фемто- и пикосекундной шкалах времени.

Передача и обработка сенсорной информации, опознание и формирование субъективного образа внешнего мира, оценка его биологической и смысловой значимости - стремительно развивающаяся область сенсорной физиологии. В этой области у нас плодотворно работает лаборатория в Институте высшей нервной деятельности и нейрофизиологии РАН, которую до начала 2010 г. возглавлял академик Игорь Шевелев, а также лаборатории доктора медицинских наук Юрия Шелепина, члена-корреспондента РАН Якова Альтмана в Институте физиологии им. И. П. Павлова РАН (Санкт-Петербург), доктора биологических наук Александра Супина в Институте проблем экологии и эволюции им. А. Н. Северцова РАН (Москва).

ФИЗИОЛОГИЯ ДВИЖЕНИЯ

Слова Сеченова о том, что "все внешние проявления мозговой деятельности могут быть сведены на мышечное движение", справедливы и сегодня. Современная физиология движения - это область интереса физиологов, математиков и специалистов в области теории управления.

Ключевую роль в организации двигательного поведения играет обратная связь, позволяющая оценить ход выполнения и результат движения и при необходимости скорректировать их. Первыми это осознали еще в 1930 - 1940-х годах наши выдающиеся физиологи член-корреспондент АМН СССР Николай Бернштейн и академик Петр Анохин. Последующие исследования, выполненные в 1960-е годы академиками физиологом Виктором Гурфинкелем и математиком Израилем Гельфандом совместно с их учениками, стали классическими. Полученные тогда результаты легли в основу создания шагающего робота, новых методов реабилитации больных с повреждениями спинного мозга. Классической стала и работа сотрудников Института проблем передачи информации АН СССР Григория Орловского, Федора Северина и Марка Шика, опубликованная в 1967 г., в которой впервые был описан спинальный генератор шагательных движений.

Совсем недавно доктор биологических наук Юрий Герасименко из лаборатории физиологии движений Института физиологии им. И. П. Павлова РАН совместно с американскими физиологами показали, что электрическая стимуляция спинного мозга в сочетании с фармакологическим воздействием вызывала у крыс хорошо координированные шагательные движения, т.е. ходьбу, с полной поддержкой веса тела (эти результаты опубликованы в нейробиологическом научном журнале "Nature Neuroscience" в 2009 г.)

Успех проведенных на животных экспериментов дает надежду тысячам парализованных спинальных больных на хотя бы частичную реабилитацию.

Физиология движения продолжает оставаться у нас предметом активного изучения.

Физиология двигательной системы - важнейшая составная часть гравитационной физиологии, в которую наши ученые внесли исключительно большой вклад. Исследования в условиях невесомости позволили определить роль систем мозга, в первую очередь сенсорных, в обеспечении нормального двигательного поведения. В этом направлении активно работает лаборатория члена-корреспондента РАН Инесы Козловской в Институте медико-биологических проблем РАН.

Понимание физиологических механизмов движения составляет основу неврологии, и в этой важной медико-физиологической области у нас давно и успешно работает лаборатория доктора медицинских наук Марата Иоффе в Институте высшей нервной деятельности и нейрофизиологии РАН.

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ПСИХИЧЕСКИХ ФУНКЦИЙ

Это направление одно из самых увлекательных, бурно развивающихся и, можно сказать, революционных. За последние годы в этой области достигнуты поразительные успехи и, что, пожалуй, еще важнее, сформулированы новые вопросы, на которые еще предстоит ответить. Мостик, перекинутый Иваном Сеченовым и Иваном Павловым от физиологии к психологии, превращается в генеральный путь современной нейронауки. Что здесь главное с точки зрения физиологических механизмов? То, что в них задействованы как синапсы, так и гены, как межклеточные взаимодействия, так и внутриклеточная "машинерия". В этой связи нельзя не вспомнить великого испанского гистолога Рамон-и-Кахаля. Еще в 1894 г. он высказал идею: в основе обучения лежит повышение эффективности работы синапса (ныне это установлено с помощью тонких современных методов). Причем повторная активация приводит к еще большей эффективности.

Исключительно важным является электрофизиологическое изучение механизмов обучения и памяти. У нас оно успешно развивается, например, в лаборатории члена-корреспондента РАН и РАМН Владимира Скребицкого (Научный центр неврологии РАМН): здесь разрабатывают лекарственные препараты, улучшающие память, нарушенную при заболеваниях головного мозга или слабеющую вследствие старения.

Начиная с 1970-х годов успехи в исследовании клеточных и молекулярных механизмов памяти в значительной мере связаны с изучением простых нервных систем беспозвоночных животных. Во-первых, они - удобный объект для различного рода экспериментов, во-вторых, крайне интересны с точки зрения эволюции и сравнительной физиологии. Одним из первых, кто подробно исследовал еще в 1960 - 1970-е годы синаптическую передачу и разнообразие нейропередатчиков на моллюсках, стал доктор биологических наук Дмитрий Сахаров в Институте биологии развития им. Н. К. Кольцова РАН. Среди ведущих научных коллективов, изучающих механизмы обучения, памяти и поведения у беспозвоночных, - лаборатория доктора биологических наук Павла Балабана в Институте высшей нервной деятельности и нейрофизиологии РАН. Используя современные электрофизиологические и оптические методы регистрации активности нейронов улитки, ему с сотрудниками удалось описать организацию нервных сетей в простых нервных системах. Для построения будущей информационной теории мозга накопление экспериментальных данных такого рода представляет исключительную ценность.

В механизмах обучения и памяти задействованы, как говорилось, и синапсы, и внутриклеточная "машинерия". Кратковременная память (минуты - десятки минут) зависит от конформационных изменений белковых молекул синаптических структур, тогда как долговременная (дни и годы) обусловлена экспрессией генов, синтезом новых белков, молекул РНК и появлением новых синапсов. Вопрос в том, какие именно гены активируются при обучении и что именно они делают в нервных клетках? У нас в этом направлении успешно работает лаборатория члена-корреспондента РАН и РАМН Константина Анохина в Институте нормальной физиологии им. П. К. Анохина РАМН (Москва).

Поразительные успехи достигнуты в понимании локализации различных видов памяти благодаря новым методам визуализации мозга. Речь прежде всего идет о функциональной магнитно-резонансной томографии, хотя у нас ее пока применяют, в основном, в клинике. Что касается позитронно-эмиссионной томографии, то для фундаментальных исследований ее успешно используют член-корреспондент РАН Святослав Медведев и его сотрудники в Институте мозга человека им. Н. П. Бехтеревой РАН (Санкт-Петербург).

С помощью этих методов показано, что память не диффузно распределена по мозгу, как думали раньше, а локализована в определенных его отделах. Это принципиально важный вывод для физиологии (нейро- и психофизиологии) и медицины (неврологии, нейрохирургии, психиатрии).

Теперь о сознании - проблеме на стыке, по крайней мере, трех наук - физиологии, психологии и философии. Что здесь главное? Осознание того важнейшего положения, согласно которому СОЗНАНИЕ - это процесс, действие, а не "нечто" такое, что пассивно лежит в мозге. Никто не может сейчас дать краткого и ясного определения сознания. По поводу его механизмов выдвинуто довольно много гипотез. Одну из них в 1980 - 1990-е годы предложил член-корреспондент РАН Алексей Иваницкий (Институт высшей нервной деятельности и нейрофизиологии РАН). Суть ее в том, что важнейший элемент сознания - субъективный образ внешнего мира - возникает в проекционной коре мозга в результате синтеза поступающей извне сенсорной информации с информацией, содержащейся в памяти. Сопоставление потока новой, поступающей и хранящейся информации - ключевой момент в "потоке сознания". Синтез же происходит в результате кругового движения нервных импульсов. Подобные идеи несколько позднее стали развивать и другие ученые, в том числе нобелевский лауреат 1972 г. Джералд Эдельман (США).

Заключая этот раздел, следует подчеркнуть: проблема "сознание и мозг" требует соединения естественно-научного и гуманитарного знания.

НЕЙРОИНФОРМАТИКА

Становится очевидным, что научная политика развитых стран в первой половине XXI в. будет ориентирована на исследования мозга и его высших функций. Важнейшая роль в решении этих задач принадлежит нейроинформатике. Математика и вычисления в нейроинформатике немыслимы в отрыве от нейробиологии.

Материальным субстратом передачи, обработки и анализа информации в мозге являются электрические нервные импульсы в синапсах - от нейрона к нейрону. Поэтому, когда говорят об обработке информации в "нервных сетях", речь идет о понимании кодов импульсов, несущих информацию, и об устройстве самих этих "сетей", т.е. систем связей между нейронами. Кроме того, необходимо понять "молекулярную машинерию" отдельных нейронов. Необходимо это потому, что многие физико-химические процессы, происходящие внутри клетки, не только обеспечивают ее жизнедеятельность, но, по всей видимости, одновременно выполняют и роль вычислительных операций.

Несмотря на огромный фронт работ в области нейроинформатики, следует признать, что удовлетворительного математического языка для описания неформализуемых живых систем - живой клетки или "нервных сетей" - пока не создано. Это - одна из самых "горячих точек" современной науки о мозге. Вычислительные нейроисследования во всем мире ведутся очень активно. У нас в этом направлении успешно работают группы и лаборатории в Москве, Ростове-на-Дону, Санкт-Петербурге, Нижнем Новгороде. Но, в отличие от США, многих стран Европы и Азии, они, к сожалению, крайне немногочисленны.

Что же касается практических приложений, в частности медицинских, то они имеются, и довольно впечатляющие. Одно из них - технология прямого сопряжения мозга с внешним техническим устройством. Сейчас созданы системы, способные передавать информацию в одном направлении - от мозга к компьютеру. Скажем, регистрируя вызванные потенциалы от определенных областей коры головного мозга и передавая их во внешнее устройство, пациент, не способный говорить и двигаться, может на расстоянии сообщить медицинскому персоналу нужную информацию. В обозримом будущем стандартной операционной процедурой станет вживление в мозг электронной системы, позволяющей управлять инвалидной коляской, протезом руки или ноги.

Во всех этих случаях речь идет о регистрации и передаче надежно детектируемых электрических сигналов (потенциалов), генерируемых определенными областями мозга. Работы в этой прикладной области у нас ведут несколько коллективов. Например, в лаборатории доктора биологических наук Александра Фролова в Институте высшей нервной деятельности и нейрофизиологии РАН предложены оригинальные методы ранней диагностики двигательных заболеваний.

Еще одно медицинское приложение - нейропротезирование. Миллионам пациентов уже установлены слуховые чипы, воспринимающие звук и передающие информацию непосредственно нейронам соответствующих центров мозга. Благодаря этому глухие люди слышат и понимают речь. В будущем возможно появление зрительных и обонятельных электронных протезов. Предпринимаются попытки передачи информации извне, помимо органов чувств, непосредственно в мозг.

Другое бурно развивающееся направление практического приложения нейроинформатики - робототехника. В 1970 - 1990-х годах именно в этой области были выполнены пионерские работы в рамках отечественной лунной программы. Речь идет о создании робота, способного передвигаться по сильно пересеченной местности. Вначале задача казалась почти невыполнимой. Решить ее позволило понимание механизмов организации двигательной активности животных. Коллективом физиологов под руководством академика Виктора Гурфинкеля (Институт проблем передачи информации АН СССР) и механиков, возглавляемых академиком Дмитрием Охоцимским и доктором физико-математических наук Евгением Девяниным (Институт прикладной математики АН СССР и Институт механики МГУ им. М. В. Ломоносова) была создана знаменитая "Шестиножка" - механическое "насекомое". Она стала прообразом множества современных, изощренных антропоморфных роботов, способных, например, играть в настольный теннис (Япония). Работы в этом направлении (управление движениями) у нас продолжаются в лаборатории доктора биологических наук Юрия Левика в Институте проблем передачи информации им. А. А. Харкевича РАН.

Что касается создания искусственного интеллекта и компьютеров нового поколения, то в этой бурно развивающейся области заняты специалисты различного профиля. Конечно, современные суперкомпьютеры во многих отношениях превосходят возможности человеческого мозга. Но в отличие от Homo sapiens даже самые совершенные из них разумом не обладают. Однако, по мнению ряда исследователей в области информатики, проблема эта техническая, и в относительно недалеком будущем будет решена.

Прекрасное или ужасное будущее ждет человечество? К этой ключевой этической проблеме приводит стремительный прогресс в области нейронаук. Удивительные возможности, открывающиеся для воздействия на человеческую личность и социальную жизнь общества, перспектива создания антропоморфных "когнитивных компьютеров" и многое другое с неизбежностью ставят этот "проклятый" вопрос. Ответ на него, как это неоднократно случалось в истории, зависит не только и не столько от ученых, сколько от самого общества.

Академик Михаил ОСТРОВСКИЙ, президент Физиологического общества им. И. П. Павлова, заведующий лабораторией Института биохимической физики им. Н. М. Эмануэля РАН

, психогенетики . Важным направлением когнитивной нейробиологии является изучение людей, имеющих нарушения психической деятельности вследствие повреждений головного мозга.

Связь строения нейронов с когнитивными способностями подтверждается такими фактами, как увеличение количества и размеров синапсов в мозге крыс в результате их обучения, уменьшение эффективности передачи нервного импульса по синапсам, наблюдаемое у людей, страдающих болезнью Альцгеймера .

Одним из первых мыслителей, утверждавших, что мышление осуществляется в головном мозге, был Гиппократ . К девятнадцатому веку такие учёные, как Иоганн Петер Мюллер предпринимают попытки изучить функциональную структуру головного мозга в аспекте локализации мыслительных и поведенческих функций в отделах головного мозга.

Приемы и методы

Томография

Структура мозга изучается при помощи компьютерной томографии , магнитно-резонансной томографии , ангиографии . Компьютерная томография и ангиография имеют меньшее разрешение при отображении мозга чем магнитно-резонансная томография.

Исследование активности зон мозга на основе анализа метаболизма позволяет осуществить позитронно-эмиссионная томография и функциональная магнитно-резонансная томография .

  • Позитронно-эмиссионная томография сканирует повышенное потребление глюкозы в активных участках мозга. Интенсивность потребления вводимой радиоактивной формы глюкозы рассматривается как параметр более высокой активности клеток данного участка мозга.
  • Функциональная магнитно-резонансная томография сканирует интенсивность потребления кислорода . Кислород фиксируется в результате приведения частиц атома кислорода в сильном магнитном поле в нестабильное состояние. Преимуществом данного вида томографии является большая временна́я точность по сравнению с позитронно-эмиссионной томографией - возможность фиксировать изменения длительность которых не превышает нескольких секунд.

Электроэнцефалограмма

Отделы головного мозга и психическая деятельность

Передний мозг

  • Кора больших полушарий играет важнейшую роль в психической деятельности. Кора головного мозга выполняет функцию обработки информации полученной через органы чувств, осуществление мышления, другие когнитивные функции. Кора головного мозга функционально состоит из трех зон: сенсорная, моторная и ассоциативная зоны. Функция ассоциативной зоны связывать между собой активность сенсорных и моторных зон. Ассоциативная зона, предполагается, получает и перерабатывает информацию из сенсорной зоны и инициирует целенаправленное осмысленное поведение. Центр Брока и область Вернике расположены в ассоциативных зонах коры. Ассоциативная зона лобных долей коры головного мозга, предполагается, ответственна за логическое мышление, суждения и умозаключения осуществляемые человеком.
  • Лобная доля коры больших полушарий - планирование, контроль и выполнение движений (двигательная (моторная) область коры больших полушарий - прецентральная извилина), речь, абстрактное мышление, суждение.
Искусственное стимулирование моторной области коры больших полушарий обуславливает движение соответствующей части тела. Контроль движения части тела контралатерально соответствующей зоны моторной области коры больших полушарий ответственной за движение этой части тела. Верхние части тела контролируются более нижележащими частями моторной области коры больших полушарий.
  • Теменная доля коры головного мозга - соматосенсорные функции. В постцентральной извилине заканчиваются афферентные пути поверхностной и глубокой чувствительности . Развитие моторных и чувствительных функций коры головного мозга определило большую площадь тех зон которые соответствуют частям тела, наиболее значимым в поведении и получении информации из внешнего мира. Электростимулирование постцентральной извилины обуславливает чувство прикосновения в соответствующей части тела.
  • Затылочная доля коры головного мозга - зрительная функция. Волокна по которым поступает зрительная информация в кору головного мозга направлены как контралатерально так и ипсилатерально.(Зрительный перекрест Optic Chiasm)
  • Височная доля коры головного мозга - слуховая функция,

Средний мозг

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Когнитивная нейробиология" в других словарях:

    Нейробиология наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии. За рубежом, а в последние 5 6 лет также и в России… … Википедия

    Нейробиология наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии. За рубежом, а в последние 5 6 лет также и в России всё… … Википедия

    Нейробиология наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии. За рубежом, а в последние 5 6 лет также и в России всё… … Википедия

    - (когнитивная наука) (лат. cognitio познание) междисциплинарное научное направление, объединяющее теорию познания, когнитивную психологию, нейрофизиологию, когнитивную лингвистику и теорию искусственного интеллекта. В… … Википедия

    - (англ. Applied Neuroscience) междисциплинарные научные направления нейронауки с другими науками, имеющие теоретическое и практическое значение. Быстрое развитие в настоящее время получила нейронаука (англ. Neuroscience), поскольку она существенно … Википедия

    Логотип трансгуманизма (один из вариантов) Трансгуманизм (от лат. trans сквозь, через, за; лат. humanitas человечность, humanus человечный, homo человек) изменение и развитие человечес … Википедия

    Пример управления с помощью однонаправленного нейро компьютерного интерфейса Нейро компьютерный интерфейс (НКИ) (называемый также прямой … Википедия

    Мозговой имплантат потенциальное возможное устройство, вводимое в полость черепа и осуществляющее взаимодействие с головным мозгом человека. На нынешнем техническом уровне человеческой цивилизации не представляется возможным полноценного… … Википедия

    Дисциплина лежащая на стыке нейробиологии и биомедицинской инженерии и занимающаяся разработкой нейронных протезов. Нейронные протезы являются устройствами, которые могут восстанавливают двигательные, сенсорные и когнитивные функции, которые… … Википедия