Главная · Боль в деснах · Основы кроветворения. Современное учение о кроветворении. класс- унипотентных клеток предшественников

Основы кроветворения. Современное учение о кроветворении. класс- унипотентных клеток предшественников

Кроветворение (гемопоэз) - многостадийный пролиферативный процесс последовательных клеточных дифференциаций, приводящий к образованию морфологических элементов крови. Он происходит главным образом в кроветворных органах - красном костном мозге, тимусе, селезенке, фабрицевой сумке (у птиц), лимфатических узлах и различных лимфоидных образованиях (миндалины, пейеровые бляшки и др.).
Согласно унитарной теории кроветворения, предложенной русским ученым А. А. Максимовым в 1911 г., все клетки крови происходят из одной родоначальной клетки, которой, по мнению автора, является малый лимфоцит. В последующем родоначальным предшественником для всех ростков гемопоэза (лимфоидный, миелоидный и т. д.) признавался лимфоидоцит (гемоцитобласт), имеющий более рыхлую структуру ядерного хроматина, чем лимфоцит, т. е. «бластную» форму. Наряду с унитарной теорией кроветворения отмечали дуалистическую, триалистическую и полифилетическую теории, допускавшие происхождение двух, трех и более ростков гемопоэза независимо друг от друга. Так, дуалисты (Негели, Тюрк, Шриде и др.) признавали полную обособленность двух систем кроветворения - миелоидной (костный мозг) и лимфоидной (лимфатические узлы), которые при жизни разграничены топографически. По их мнению, существует два типа родоначальныx клеток: миелобласт, из которого образуются гранулоциты и эритроциты, и лимфобласт, который дифференцируется в лимфоцит.
Tриалисты (Ашофф-Таварра, Шиллин) допускали существование, кроме миелоидной и лимфоидной систем, третьей ретикулоэндотелиальной системы (РЭС), или, в дальнейшем, pетикулогистиоцитарной (РГС), где образуется моноциты.
Полифилетисты (Феррата и др.) утверждали о наличии родоначальных клеток для каждого ростка кроветворения (эритроцитарного, гранулоцитарного, моноцитарного, лимфоидного и т. д.).
В последние годы в учении о кроветворении наблюдается стремительный пpoгpеcc благодаря развитию новых цитологических, биологических, молекулярно-биологических и других методов исследования. Так, разработка клональных методов цитологического анализа позволила выявить кроветворные клетки-предшественники разных классов. С использованием радиоактивной метки изучены кинетика клеточных популяции и митотический цикл. Применениe цитохимических методов дополнило морфофункциональную характеристику клеток разного типа кроветворной ткани с учетом степени их дифференциации. С помощью иммунологических методов раскрыта роль лимфоцитов как и кроветворении, так и в иммуногенезе. Оказалось, что однотипные по морфологии лимфоидные клетки представляют собой гетерогенную популяцию, различающуюся и функциональном отношении. Эти новые методические приемы привели к открытию де-ново родоначальной (стволовой) клетки гемопоэза, раскрытию механизмов ее пролиферации и дифференциации. В частности, установлено, что стволовая клетка обладает тремя наиболее важными признаками: высокой пролиферативной активностью, способностью к самоподдержанию популяции и дифференциации в различных, направлениях, т. е. полипотентными свойствами.
Новый морфофункциональный подход к изучению клеток крови, основанный па принципе унитаризма их происхождения, позволил некоторым авторам предложить более детальные схемы кроветворения. В нашей стране наибольшее признание получила схема И. Л. Черткова и А. И. Воробьева, а за рубежом - схема Мате и др. В обеих схемах констатируется существование полипотентной стволовой гемопоэтической клетки, клеток - предшественников миело- и лимфопоэза, колониеобразующией в культуре клетки и эритропоэтинчувствительной клетки. По мнению И. Л. Черткова и А. И. Воробьева, морфология полипотентных, частично детерминированных и унипотентных клеток-предшественников определяется их положением в митотическом цикле и может быть лимфоцитоподобной или «бластной». Все клетки в зависимости от степени дифференциации объединены в шесть классов (рис. 1).


В первый класс выделены родоначальные полипотентные стволовые клетки, во второй - частично детерминированные полипотентные клетки с ограниченной способностью к самоподдержанию (клетки - предшественники миело- и лимфопоэза). В третий класс вошли унипотентные поэтинчувствительные клетки - предшественники гранулоцитов, эритроцитов, тромбоцитов и лимфоцитов. Первые три класса клеток морфологически трудно распознаваемы. К четвертому классу относятся морфологически распознаваемые клетки, способные к пролиферации (делению) и дифференциации только в единственном направлении. Пятый класс - это согревающие, потерявшие способность к делению клетки, по не достигшие стадии морфофункциональной зрелости. Шестой класс объединяет зрелые клетки крови.
Открытие двух типов лимфоцитов (Т- и В-клетки) явилось существенным дополнением к прежним представлениям о лимфопоэзе. Установлено, что В-лимфоиты при воздействии различных антигенов из зрелой клетки превращаются в «бластную» форму и в последующем дифференцируются в клетки плазматического ряда, продуцирующие специфические антитела. Т-лимфоциты при антигенной стимуляции также трансформируются в «бластные» формы и принимают активное участие в клеточном иммунитете. Таким образом, казавшимся ранее единым лимфатический ряд представлен тремя видами клеток: В- и Г-лимфоциты и плазматические клетки. Существенно новое в настоящее время представление о системе макрофагов, где центральной фигурой является моноцит. Покидая сосудистое русло и проникая в различные органы и ткани, он в зависимости от окружающей внутренней среды превращается в специфические макрофаги (гистиоциты кожи, клетки Купфера печени, альвеолярные и перитонеальные макрофаги и др.).

Синтез эритроцитов - один из наиболее мощных процессов образования клеток в организме. Каждую секунду в норме образуется примерно 2 млн эритроцитов, в день - 173 млрд, в год - 63 триллиона. Если перевести эти значения в массу, то ежедневно образуется около 140 г эритроцитов, каждый год - 51 кг, а масса эритроцитов, образованных в организме за 70 лет составляет порядка 3,5 тонн.

У взрослого человека эритропоэз происходит в костном мозге плоских костей, тогда как у плода островки кроветворения находятся в печени и селезёнке (экстрамедуллярное кроветворение). При некоторых патологических состояниях (талассемия, лейкозы и др.) очаги экстрамедуллярного кроветворения могут быть обнаружены и у взрослого человека.

Одним из важных элементов клеточного деления является витамин В₁₂ , необходимый для синтеза ДНК, являясь, по сути, катализатором этой реакции. В процессе синтеза ДНК витамин В₁₂ не расходуется, а циклично вступает в реакции как активное вещество; в результате такого цикла из уридин-монофосфата образуется тимидин-монофосфат. При снижении уровня витамина В₁₂ уридин плохо включается в состав молекулы ДНК, что и приводит к многочисленным нарушениям, в частности нарушению созревания клеток крови.

Еще одним фактором, оказывающим влияние на делящиеся клетки, является фолиевая кислота . Она как кофермент, в частности, участвует в синтезе пуриновых и пиримидиновых нуклеотидов.

Общая схема постэмбрионального гемопоэза

Гемопоэз (кроветворение) - очень динамичная, четко сбалансированная, непрерывно обновляющаяся система. Единым родоначальником кроветворения является стволовая клетка. По современным представлениям, это целый класс клеток, закладывающихся в онтогенезе, главным свойством которых является способность давать все ростки кроветворения - эритроцитарный, мегакариоцитарный, гранулоцитарный (эозинофилы, базофилы, нейтрофилы), моноцитарно-макрофагальный, Т-лимфоцитарный, В-лимфоцитарный.

В результате нескольких делений клетки теряют способность быть универсальными родоначальниками и превращаются в полипотентные клетки. Такой, например, является клетка-предшественница миелопоэза (эритроциты, мегакариоциты, гранулоциты). Еще через несколько делений вслед за универсальностью исчезает и полипотентность, клетки становятся унипотентными (ˮуниˮ - единственное), то есть способными к дифференцированию только в одном направлении.

Наиболее делящимися в костном мозге являются клетки - предшественники миелопоэза (см. рисунок ⭡), по мере дифференцировки уменьшается количество оставшихся делений, и морфологически различаемые клетки красной крови постепенно перестают делиться.

Дифференцировка клеток эритроидного ряда

Собственно эритроидный ряд клеток (эритрон) начинается с унипотентных бурстобразующих клеток, являющихся потомками клеток-предшественниц миелопоэза. Бурстобразующие клетки в культуре тканей растут мелкими колониями, напоминающими взрыв (бурст). Для их созревания необходим специальный медиатор - бурстпромоторная активность. Это фактор влияния микроокружения на созревающие клетки, фактор межклеточного взаимодействия.

Выделяют две популяции бурстобразующих клеток: первая регулируется исключительно бурстпромоторной активностью, вторая - становится чувствительной к воздействию эритропоэтина. Во второй популяции начинается синтез гемоглобина , продолжающийся в эритропоэтин-чувствительных клетках и в последующих созревающих клетках.

На этапе бурстобразующих клеток происходит принципиальное изменение клеточной активности - от деления к синтезу гемоглобина. В последующих клетках деление приостанавливается (последняя клетка в этом ряду, способная к делению, - полихроматофильный эритробласт), ядро уменьшается в абсолютном размере и по отношению к объему цитоплазмы, в которой идет синтез веществ. На последнем этапе ядро из клетки удаляется, затем исчезают остатки РНК; их можно еще обнаружить при специальной окраске в молодых эритроцитах - ретикулоцитах, но нельзя найти в зрелых эритроцитах.

Cхема основных этапов дифференцировки клеток эритроидного ряда выглядит следующим образом:
плюрипотентная стволовая клетка ⭢ бурстобразующая единица эритроидного ряда (БОЕ-Э) ⭢ колониеобразующая единица эритроидного ряда (КОЕ-Э) ⭢ эритробласт ⭢ пронормоцит ⭢ базофильный нормоцит ⭢ полихроматический нормоцит ⭢ ортохроматический (оксифильный) нормоцит ⭢ ретикулоцит ⭢ эритроцит .

Регуляция эритропоэза

Процессы регуляции кроветворения до сих пор изучены недостаточно. Необходимость непрерывно поддерживать гемопоэз, адекватно удовлетворять потребности организма в различных специализированных клетках, обеспечивать постоянство и равновесие внутренней среды (гомеостаз) - всё это предполагает существование сложных регуляторных механизмов, действующих по принципу обратной связи.

Наиболее известным гуморальным фактором регуляции эритропоэза, является гормон эритропоэтин . Это стресс-фактор, синтезирующийся в различных клетках и в различных органах. Большее количество его образуется в почках, однако даже при их отсутствии эритропоэтин вырабатывается эндотелием сосудов, печенью. Уровень эритропоэтина стабилен и изменяется в сторону повышения при резкой и обильной кровопотере, остром гемолизе , при подъеме в горы, при острой ишемии почек. Парадоксально, что при хронических анемиях уровень эритропоэтина обычно нормален, за исключением апластической анемии, где его уровень стабильно чрезвычайно высок.

Наряду с эритропоэтином, в крови присутствуют также ингибиторы эритропоэза. Это большое число разнообразных веществ, часть из которых может быть отнесена к среднемолекулярным токсинам, накапливающимся вследствие патологических процессов, связанных с повышенным их образованием либо нарушением их выведения.

На ранних этапах дифференцировки регуляция в эритроне осуществляется в основном за счёт факторов клеточного микроокружения, а позже - при балансе активности эритропоэтина и ингибиторов эритропоэза. В острых ситуациях, когда необходимо быстро создать большое число новых эритроцитов, включается стрессовый эритропоэтиновый механизм - резкое преобладание активности эритропоэтина над активностью ингибиторов эритропоэза. В патологических ситуациях, напротив, ингибиторная активность может преобладать над эритропоэтиновой, что приводит к торможению эритропоэза.

Синтез гемоглобина

В состав гемоглобина входит железо. Недостаточное количество этого элемента в организме может привести к развитию анемии (см. Железодефицитная анемия). Имеется зависимость между возможностью синтезировать определённое количество гемоглобина (что обусловлено запасами железа) и эритропоэза - по всей вероятности, существует пороговое значение концентрации гемоглобина, без которой эритропоэз прекращается.

Синтез гемоглобина начинается в эритроидных предшественниках на этапе образования эритропоэтин-чувствительной клетки. У плода, а затем и в раннем послеродовом периоде у ребёнка образуется гемоглобин F, а далее, в основном, - гемоглобин А. При напряжении эритропоэза (гемолиз, кровотечение) в крови взрослого человека может появляться некоторое количество гемоглобина F.

Гемоглобин состоит из двух вариантов глобиновых цепей а и р, окружающих гем, содержащий железо. В зависимости от изменения последовательностей аминокислотных остатков в цепях глобина изменяются химикофизические свойства гемоглобина, в определённых условиях он может кристаллизоваться, становиться нерастворимым (например гемоглобин S при серповидно-клеточной анемии).

Свойства эритроцитов

Эритроциты обладают несколькими свойствами. Наиболее известным является транспорт кислорода (O₂) и углекислого газа (CO₂). Он осуществляется гемоглобином, который связывается поочередно с одним и другим газом в зависимости от напряжения соответствующего газа в окружающей среде: в лёгких - кислорода, в тканях - углекислого газа. Химизм реакции заключается в вытеснении и замещении одного газа другим из связи с гемоглобином. Кроме того, эритроциты являются переносчиками оксида азота (NO), ответственного за сосудистый тонус, а также участвующего в передаче клеточных сигналов и многих других физиологических процессах.

Эритроциты обладают свойством изменять свою форму, проходя через капилляры малого диаметра. Клетки распластываются, закручиваются в спираль. Пластичность эритроцитов зависит от различных факторов, в том числе от строения мембраны эритроцита, от вида содержащегося в нём гемоглобина, от цитоскелета. Кроме того, эритроцитарная мембрана окружена своего рода ˮоблакомˮ из различных белков, которые могут менять деформируемость. К ним относятся иммунные комплексы, фибриноген. Эти вещества меняют заряд мембраны эритроцита, прикрепляются к рецепторам, ускоряют оседание эритроцитов в стеклянном капилляре.

В случае тромбообразования эритроциты являются центрами образования фибриновых тяжей, это может не только изменять деформируемость, вызывать их агрегацию, слипание в монетные столбики, но и разрывать эритроциты на фрагменты, отрывать от них куски мембран.

Реакция оседания эритроцитов (РОЭ) отражает наличие на их поверхности заряда, отталкивающего эритроциты друг от друга. Появление при воспалительных реакциях, при активации свертывания и т.д. вокруг эритроцита диэлектрического облака приводит к уменьшению сил отталкивания, в результате чего эритроциты начинают быстрее оседать в вертикально поставленном капилляре. Если капилляр наклонить на 45°, то силы отталкивания действуют только на протяжении прохождения эритроцитами поперечника просвета капилляра. Когда клетки достигают стенки, они скатываются по ней, не встречая сопротивления. В результате в наклонённом капилляре показатель оседания эритроцитов увеличивается десятикратно.

Источники:
1. Анемический синдром в клинической практике / П.А. Воробьёв, - М., 2001;
2. Гематология: Новейший справочник / Под ред. К.М. Абдулкадырова. - М., 2004.

Современная схема кроветворения подразделяет все клетки крови на 6 классов.

1) В первом классе определяются только стволовые клетки (СКК) – класс полипотентных клеток – предшественников . Эти клетки лимфоцитоподобные. Обычными способами микроскопирования не выделяются. Редко делятся, обладают свойством самоподдержания.

Одна СКК обеспечивает суточный объм крови: 200 млрд. эритроцитов и 300 млрд. лейкоцитов.

За прародительницу всех клеток крови принимается единственная СКК. Это привело к разработке Унитарной теории (А.А. Максимов).

2) Класс частично детерминированных клеток-предшественников. Клетки еще полипотентны, но среди них уже выделяют 2 типа клеток:

Клетка-предшественница лимфопоэза;

Клетка-предшественница миелопоэза.

От сюда различают два вида ткани: лимфоидная , которая составляет лимфоидные органы (тимус, селезнка, лимфоузлы, скопления лимфатических узелков); миелоидная , составляющая миелоидные органы (ККМ).

В лимфоидных органах – это ретикулярная и соединительная ткани, и последняя блокирует миелопоэз. В миелоидных органах – это ретикулярная ткань. Т.о., если меняется микроокружение, соединительная ткань теряет блокирующее свойство, и миелоидная ткань встречается в лимфоидных органах.

3) Класс унипотентных клеток-предшественников. Каждая клетка дает свой "росток"

Клетки 2-го и 3-го классов также морфологически не распознаваемы. Но эти клетки могут образовывать колонии в селезнке у смертельно облученных животных или при культивировании на питательных средах – это т.н. колонии-образующие единицы (КОЭ).

На клетки 2-го класса оказывает влияние микроокружение, а на клетки 3-го класса влияют гормоны – поэтины . Поэтому клетки 3-го класса называются поэтин-чувствительными клетками. Поэтины вырабатываются в различных органах: эритропоэтины вырабатываются в почках, желудке, яичке.; В-активин и Т-активин – в тимусе. Поэтины могут быть возбуждающего и блокирующего характера.

При установлении патологий на уровне 3-го класса требуется гормональное лечение. Около 50% патологий для данного класса практически излечимо.

4) Класс пролиферирующих клеток. Это морфологически распознаваемые клетки.

Название каждой клетки данного класса заканчивается на "-бласт". Возможна регуляция пролиферации за счет цитостатинов , цитомитогенетиков .

5) Класс созревающих клеток. Происходит в основном их дифференцировка, при этом:

Они постепенно уменьшаются в размерах;

Изменяется форма ядра (от круглой до сегментоядерного или вообще выбрасывается). Ядро становится менее базофильным;

Меняется цвет цитоплазмы;

Появляется специфическая зернистость.

Часть клеток продолжает делиться

– клетки эритроидного ряда;

– гранулоциты.

6) Класс зрелых клеток.

Они функционируют или в крови (эритроциты, тромбоциты), или за пределами сосудистого русла (лейкоциты).

1 слайд

2 слайд

Современная теория кроветворения Современная теория кроветворения базируется на унитарной теории А.А. Максимова (1918), согласно которой все клетки крови происходят из единой родоначальной клетки, морфологически напоминающей лимфоцит. Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток»

3 слайд

4 слайд

Современная теория кроветворения Нормальное кроветворение поликлональное, т. е. осуществляется одновременно многими клонами. Размер индивидуального клона - 0,5-1 млн зрелых клеток Продолжительность жизни клона - не превышает 1 месяц, около 10% клонов существуют до полугода. Клональный состав кроветворной ткани полностью меняется в течение 1-4 месяцев. Постоянная замена клонов объясняется истощением пролиферативного потенциала стволовой кроветворной клетки, поэтому исчезнувшие клоны никогда не появляются вновь. Различные гемопоэтические органы заселены разными клонами и только некоторые из них достигают такой величины, что оккупируют более чем одну кроветворную территорию.

5 слайд

Дифференцировка клеток гемопоэза Клетки гемопоэза условно подразделены на 5-6 отделов, границы между которыми весьма размыты, а между отделами содержится много переходных, промежуточных форм. В процессе дифференцировки происходит постепенное снижение пролиферативной активности клеток и способности развиваться сначала во все кроветворные линии, а затем во все более ограниченное количество линий.

6 слайд

Дифференцировка клеток гемопоэза I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК) СКК обладают уникальным свойством - полипотентностью, т. е. способностью к дифференцировке во все без исключения линии гемопоэза. В клеточной культуре можно создать условия, когда возникающая из одной клетки колония содержит до 6 различных клеточных линий дифференцировки.

7 слайд

Стволовые кроветворные клетки СКК закладываются в период эмбриогенеза и расходуются последовательно, образуя сменяющие друг друга клоны более зрелых кроветворных клеток. 90% клонов являются короткоживущими, 10% клонов может функционировать в течение длительного времени. СКК обладают высоким, но ограниченным пролиферативным потенциалом, способны к ограниченному самоподдержанию, т. е. не бессмертны. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека.

8 слайд

Стволовые кроветворные клетки Отдел СКК гетерогенен, представлен 2 категориями предшественников, обладающих различным пролиферативным потенциалом. Основная масса СКК находится в фазе покоя G0 клеточного цикла, обладает огромным пролиферативным потенциалом. При выходе из покоя СКК вступает на путь дифференцировки, снижая пролиферативный потенциал и ограничивая набор дифференцировочных программ. После нескольких циклов деления (1-5) СКК может вернуться вновь в состояние покоя, при этом их состояние покоя менее глубоко и при наличии запроса они отвечают быстрее, приобретая маркеры определенных линий дифференцировок в культуре клеток за 1-2 дня, тогда как исходным СКК требуется 10-14 дней. Длительное поддержание кроветворения обеспечивается резервными СКК. Необходимость срочного ответа на запрос удовлетворяется за счет СКК, прошедших дифференцировку и находящихся в состоянии быстро мобилизуемого резерва.

9 слайд

Стволовые кроветворные клетки Гетерогенность пула СКК и степень их дифференцировки устанавливается на основе экспрессии ряда дифференцировочных мембранных антигенов. Среди СКК выделены: примитивные мультипотентные предшественники (CD34+Thyl+) более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. Истинные СКК не экспрессируют линейно специфические маркеры и дают рост всем линиям гемопоэтических клеток. Количество СКК в костном мозге - около 0,01%, а вместе с клетками-предшественниками - 0,05%.

10 слайд

Стволовые кроветворные клетки Одним из основных методов изучения СКК является метод колониеобразования in vivo или in vitro, поэтому иначе СКК называют “колониеобразующими единицами” (КОЕ). Истинные СКК способны к формированию колоний из бластных клеток (КОЕ-бластные). Сюда же относят клетки, формирующие селезеночные колонии (КОЕс). Эти клетки способны полностью восстанавливать гемопоэз.

11 слайд

Дифференцировка клеток гемопоэза III отдел - По мере снижения пролиферативного потенциала СКК дифференцируются в полиолигопотентные коммитированные клетки-предшественники, имеющие ограниченную потентность, так как коммитированы (commit - принятие на себя обязательств) к дифференцировке в направлении 2-5 гемопоэтических клеточных линий. Полиолигопотентные коммитированные предшественники КОЕ-ГЭММ (гранулоцитарно-эритроцитарно-макрофагально-мегакариоцитарные) дают начало 4 росткам гемопоэза, КОЕ-ГМ - двум росткам. КОЕ-ГЭММ являются общим предшественником миелопоэза. Они имеют маркер CD34, маркер миелоидной линии CD33, детерминанты гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DR.

12 слайд

Дифференцировка клеток гемопоэза Клетки IV отдела - монопотентные коммитированные предшественники являются родоначальными для одного ростка гемопоэза: КОЕ-Г для гранулоцитарного, КОЕ-М - для моноцитарно-макрофагального, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Мгкц - предшественники мегакариоцитов Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Монопотентные коммитированные предшественники экспрессируют маркеры соответствующей клеточной линии дифференцировки.

13 слайд

СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название “homing-effect” (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике.

14 слайд

Дифференцировка клеток гемопоэза V отдел морфологически распознаваемых клеток включает: дифференцирующиеся, созревающие зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности.

15 слайд

Регуляция гемопоэза Кроветворная ткань - динамичная, постоянно обновляющаяся клеточная система организма. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. По мере созревания, образующиеся в костном мозге клетки, равномерно поступают в кровеносное русло. Эритроциты циркулируют в крови - 110-130 суток, тромбоциты - около 10 суток, нейтрофилы - менее 10 ч. Ежедневно теряется 1х10¹¹ клеток крови, что восполняется «клеточной фабрикой» - костным мозгом. При повышении запроса на зрелые клетки (кровопотеря, острый гемолиз, воспаление), производство может быть увеличено в течение нескольких часов в 10-12 раз. Увеличение клеточной продукции обеспечивается гемопоэтическими факторами роста

16 слайд

Регуляция гемопоэза Гемопоэз инициируется ростовыми факторами, цитокинами и непрерывно поддерживается благодаря пулу СКК. Стволовые кроветворные клетки стромозависимы и воспринимают короткодистантные стимулы, получаемые ими при межклеточном контакте с клетками стромального микроокружения. По мере дифференцировки клетка начинает реагировать на дальнедействующие гуморальные факторы. Эндогенная регуляция всех этапов гемопоэза осуществляется цитокинами через рецепторы на клеточной мембране, посредством которых про водится сигнал в ядро клетки, где происходит активация соответствующих генов. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др.

17 слайд

Регуляция гемопоэза Обновление СКК происходит медленно и при готовности к дифференцировке (процесс коммитирования), они выходят из состояния покоя (Go - фаза клеточного цикла) и становятся коммитированными. Это означает, что процесс стал необратимым и такие клетки, управляемые цитокинами, пройдут все стадии развития вплоть до конечных зрелых элементов крови.

20 слайд

Факторы регуляции гемопоэза Факторы регуляции гемопоэза подразделяются на короткодистантные (для СКК) и дальнодействующие для коммитированных предшественников и созревающих клеток. В зависимости от уровня дифференцировки клетки факторы регуляции делят на 3 основных класса: 1. Факторы, влияющие на ранние СКК: фактор стволовых клеток (ФСК), гранулоцитарный колониестимулирующий фактор (Г - КСФ), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). Эта фаза регуляции СКК не зависит от запросов организма.

22 слайд

Регуляция гемопоэза Активация и функционирование клеток зависит от многих цитокинов. Клетка начинает дифференцировку только после взаимодействия с факторами роста, но в выборе направления дифференцировки они не участвуют. Содержание цитокинов определяет количество продуцируемых клеток, число проделываемых клеткой митозов. Так, после кровопотери снижение рО2 в почках приводит к усилению продукции эритропоэтина, под действием которого эритропоэтинчувствительные эритроидные клетки - предшественники костного мозга (БОЕ-Э), увеличивают на 3-5 число митозов, что повышает образование эритроцитов в 10-30 раз. Число тромбоцитов в крови регулирует выработку фактора роста и развитие клеточных элементов мегакариоцитопоэза. Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть

(лейкопоэз) и тромбоцитов (тромбоцитопоэз).

У взрослых животных он совершается в красном костном мозге, где образуются эритроциты, все зернистые лейкоциты, моноциты, тромбоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе проходит дифференцировка Т-лимфоцитов, в селезенке и лимфатических узлах — дифференцировка В-лимфоцитов и размножение Т-лимфоцитов.

Общей родоначальной клеткой всех клеток крови является полипотентная стволовая клетка крови, которая способна к дифференцировке и может дать начало роста любым форменным элементам крови и способна к длительному самоподдержанию. Каждая стволовая кроветворная клетка при своем делении превращается в две дочерние клетки, одна из которых включается в процесс пролиферации, а вторая идет на продолжение класса полипотентных клеток. Дифференцировка стволовой кроветворной клетки происходит под влиянием гуморальных факторов. В результате развития и дифференцировки разные клетки приобретают морфологические и функциональные особенности.

Эритропоэз проходит в миелоидной ткани костного мозга. Средняя продолжительность жизни эритроцитов составляет 100-120 сут. В сутки образуется до 2 * 10 11 клеток.

Рис. Регуляция эритропоэза

Регуляция эритропоэза осуществляется эритропоэтинами, образующимися в почках. Эритропоэз стимулируется мужскими половыми гормонами, тироксином и катехоламинами. Для образования эритроцитов нужны витамин В 12 и фолиевая кислота, а также внутренний фактор кроветворения, который образуется в слизистой оболочке желудка, железо, медь, кобальт, витамины. В нормальных условиях продуцируется небольшое количество эритропоэтина, который достигает клеток красного мозга и взаимодействует с рецепторами эритропоэтина, в результате чего изменяется концентрация в клетке цАМФ, что повышает синтез гемоглобина. Стимуляция эритропоэза осуществляется также под влиянием таких неспецифических факторов, как АКТГ, глюкокортикоиды, катехоламины, андрогены, а также при активации симпатической нервной системы.

Разрушаются эритроциты путем внутриклеточного гемолиза мононуклеарами в селезенке и внутри сосудов.

Лейкопоэз происходит в красном костном мозге и лимфоидной ткани. Этот процесс стимулируется специфическими ростовыми факторами, или лейкопоэтинами, которые воздействуют на определенные предшественники. Важную роль в лейкопоэзе играют интерлейкины, которые усиливают рост базофилов и эозинофилов. Лейкопоэз также стимулируется продуктами распада лейкоцитов и тканей, микроорганизмами, токсинами.

Тромбоцитопоэз регулируется тромбоцитопоэтинами, образующимися в костном мозге, селезенке, печени, а также интерлейкинами. Благодаря тромбоцитопоэтинам регулируется оптимальное соотношение между процессами разрушения и образования кровяных пластинок.

Гемоцитопоэз и его регуляция

Гемоцитопоэз (гемопоэз, кроветворение) - совокупность процессов преобразования стволовых гемопоэтических клеток в разные типы зрелых клеток крови (эритроцитов — эритропоэз, лейкоцитов — лейкопоэз и тромбоцитов — тромбоцитопоэз), обеспечивающих их естественную убыль в организме.

Современные представления о гемопоэзе, включающие пути дифференциации полипотентных стволовых гемопоэтических клеток, важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации полипотентных стволовых клеток в зрелые клетки крови представлены на рис. 1.

Полипотентные стволовые гемопоэтические клетки находятся в красном костном мозге и способны к самообновлению. Они могут также циркулировать в крови вне органов кроветворения. ПСГК костного мозга при обычной дифференциации дают начало всем типам зрелых клеток крови — эритроцитам, тромбоцитам, базофилам, эозинофилам, нейтрофилам, моноцитам, В- и Т-лимфоцитам. Для поддержания клеточного состава крови на должном уровне в организме человека ежесуточно образуется в среднем 2,00 . 10 11 эритроцитов, 0,45 . 10 11 нейтрофилов, 0,01 . 10 11 моноцитов, 1,75 . 10 11 тромбоцитов. У здоровых людей эти показатели достаточно стабильны, хотя в условиях повышенной потребности (адаптация к высокогорью, острая кровопотеря, инфекция) процессы созревания костномозговых предшественников ускоряются. Высокая пролиферативная активность стволовых гемопоэтических клеток перекрывается физиологической гибелью (апоптозом) их избыточного потомства (в костном мозге, селезенке или других органах), а в случае необходимости и их самих.

Рис. 1. Иерархическая модель гемоцитопоэза, включающая пути дифференциации (ПСГК) и важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации ПСГК в зрелые клетки крови: А — миелоидная стволовая клетка (КОЕ-ГЭММ), являющаяся предшественницей моноцитов, гранулоцитов, тромбоцитов и эротроцитов; Б — лимфоидная стволовая клетка-предшественница лимфоцитов

Подсчитано, что каждый день в организме человека теряется (2-5) . 10 11 клеток крови, которые замешаются на равное количество новых. Чтобы удовлетворить эту огромную постоянную потребность организма в новых клетках, гемоцитопоэз не прерывается в течение всей жизни. В среднем у человека за 70 лет жизни (при массе тела 70 кг) образуется: эритроцитов — 460 кг, гранулоцитов и моноцитов — 5400 кг, тромбоцитов — 40 кг, лимфоцитов — 275 кг. Поэтому кроветворные ткани рассматриваются как одни из наиболее митотически активных.

Современные представления о гемоцитопоэзе базируются на теории стволовой клетки, основы которой были заложены русским гематологом А.А. Максимовым в начале XX в. Согласно данной теории, все форменные элементы крови происходят из единой (первичной) полипотентной стволовой гемопоэтической (кроветворной) клетки (ПСГК). Эти клетки способны к длительному самообновлению и в результате дифференциации могут дать начало любому ростку форменных элементов крови (см. рис. 1.) и одновременно сохранять их жизнеспособность и свойства.

Стволовые клетки (СК) являются уникальными клетками, способными к самообновлению и дифференцировке не только в клетки крови, но и в клетки других тканей. По происхождению и источнику образования и выделения СК разделяют на три группы: эмбриональные (СК эмбриона и тканей плода); региональные, или соматические (СК взрослого организма); индуцированные (СК, полученные в результате репрограммирования зрелых соматических клеток). По способности к дифференцировке выделяют тоти-, плюри-, мульти- и унипотентные СК. Тотипотентная СК (зигота) воспроизводит все органы эмбриона и структуры, необходимые для его развития (плаценту и пуповину). Плюрипотентная СК может быть источником клеток, производных любого из трех зародышевых листков. Мульти (поли) потентная СК способна образовывать специализированные клетки нескольких типов (например клетки крови, клетки печени). Унипотентная СК в обычных условиях дифференцируется в специализированные клетки определенного типа. Эмбриональные СК являются плюрипотентными, а региональные — полипотентными или унипотентными. Частота встречаемости ПСГК составляет в среднем 1:10 000 клеток в красном костном мозге и 1:100 000 клеток в периферической крови. Плюрипотентные СК могут быть получены в результате репрограммирования соматических клеток различного типа: фибробластов, кератиноцитов, меланоцитов, лейкоцитов, β-клеток поджелудочной железы и другие, с участием факторов транскрипции генов или микроРНК.

Все СК обладают рядом общих свойств. Во-первых, они недифференцированы и не располагают структурными компонентами для выполнения специализированных функций. Во- вторых, они способны к пролиферации с образованием большого числа (десятков и сотен тысяч) клеток. В-третьих, они способны к дифференцировке, т.е. процессу специализации и образованию зрелых клеток (например, эритроцитов, лейкоцитов и тромбоцитов). В-четвертых, они способны к асимметричному делению, когда из каждой СК образуются две дочерние, одна из которых идентична родительской и остается стволовой (свойство самообновления СК), а другая дифференцируется в специализированные клетки. Наконец, в-пятых, СК могут мигрировать в очаги повреждения и дифференцироваться в зрелые формы поврежденных клеток, способствуя регенерации тканей.

Различают два периода гемоцитопоэза: эмбриональный — у эмбриона и плода и постнатальный — с момента рождения и до конца жизни. Эмбриональное кроветворение начинается в желточном мешке, затем вне его в прекардиальной мезенхиме, с 6-недельного возраста оно перемещается в печень, а с 12 — 18-недельного возраста — в селезенку и красный костный мозг. С 10-недельного возраста начинается образование Т-лимфоцитов в тимусе. С момента рождения главным органом гемоцитопоэза постепенно становится красный костный мозг. Очаги кроветворения имеются у взрослого человека в 206 костях скелета (грудине, ребрах, позвонках, эпифизах трубчатых костей и др.). В красном костном мозге происходит самообновление ПСГК и образование из них миелоидной стволовой клетки, называемой также колониеобразующей единицей гранулоцитов, эритроцитов, моноцитов, мегакариоцитов (КОЕ-ГЭММ); лимфоидную стволовую клетку. Мислоидная полиолигопотентная стволовая клетка (КОЕ-ГЭММ) может дифференцироваться: в монопотентные коммитированные клетки — предшественницы эритроцитов, называемые также бурстобразующей единицей (БОЕ-Э), мегакариоцитов (КОЕ- Мгкц); в полиолигопотентные коммитированные клетки гранулоцитов-моноцитов (КОЕ-ГМ), дифференцирующиеся в монопотентные предшественницы гранулоцитов (базофилы, нейтрофилы, эозинофилы) (КОЕ-Г), и предшественницы моноцитов (КОЕ-М). Лимфоидная стволовая клетка является предшественницей Т- и В- лимфоцитов.

В красном костном мозге из перечисленных колониеобразующих клеток через ряд промежуточных стадий образуются регикулоциты (предшественники эритроцитов), мегакариоциты (от которых «отшнуровываются» тромбоцит!,i), гранулоциты (нейтрофилы, эозинофилы, базофилы), моноциты и В-лимфоциты. В тимусе, селезенке, лимфатических узлах и лимфоидной ткани, ассоциированной с кишечником (миндалины, аденоиды, пейеровы бляшки) происходит образование и дифференцирование Т-лимфоцитов и плазматических клеток из В-лимфоцитов. В селезенке также идут процессы захвата и разрушения клеток крови (прежде всего эритроцитов и тромбоцитов) и их фрагментов.

В красном костном мозге человека гемоцитопоэз может происходить только в условиях нормального гемоцитопоэзиндуцирующего микроокружения (ГИМ). В формировании ГИМ принимают участие различные клеточные элементы, входящие в состав стромы и паренхимы костного мозга. ГИМ формируют Т-лимфоциты, макрофаги, фибробласты, адипоциты, эндотелиоциты сосудов микроциркуляторного русла, компоненты экстрацеллюлярного матрикса и нервные волокна. Элементы ГИМ осуществляют контроль за процессами кроветворения как с помощью продуцируемых ими цитокинов, факторов роста, так и благодаря непосредственным контактам с гемопоэтическими клетками. Структуры ГИМ фиксируют стволовые клетки и другие клетки-предшественницы в определенных участках кроветворной ткани, передают им регуляторные сигналы, участвуют в их метаболическом обеспечении.

Гемоцитопоэз контролируется сложными механизмами, которые могут поддерживать его относительно постоянным, ускорять или тормозить, угнетая пролиферацию и дифферен- цировку клеток вплоть до инициирования апоптоза коммитированных клеток-предшественниц и даже отдельных ПСГК.

Регуляция гемопоэза — это изменение интенсивности гемопоэза в соответствии с меняющимися потребностями организма, осуществляемое посредством его ускорения или торможения.

Для полноценного гемоцитопоэза необходимо:

  • поступление сигнальной информации (цитокинов, гормонов, нейромедиаторов) о состоянии клеточного состава крови и ее функций;
  • обеспечение этого процесса достаточным количеством энергетических и пластических веществ, витаминов, минеральных макро- и микроэлементов, воды. Регуляция гемопоэза основана на том, что все типы взрослых клеток крови образуются из гемопоэтических стволовых клеток костного мозга, направление дифференцировки которых в различные типы клеток крови определяется действием на их рецепторы локальных и системных сигнальных молекул.

Роль внешней сигнальной информации для пролиферации и апоптоза СГК выполняют цитокины, гормоны, нейромедиаторы и факторы микроокружения. Среди них выделяют раннедействующие и позднедействующие, мультилинейные и монолинейные факторы. Одни из них стимулируют гемопоэз, другие — тормозят. Роль внутренних регуляторов плюрипотентности или дифференцировки СК играют транскрипционные факторы, действующие в ядрах клеток.

Специфичность влияния на стволовые кроветворные клетки обычно достигается действием на них не одного, а сразу нескольких факторов. Эффекты действия факторов достигаются посредством стимуляции ими специфических рецепторов кроветворных клеток, набор которых изменяется на каждом этапе дифференцировки этих клеток.

Раннедействующими ростовыми факторами, способствующими выживанию, росту, созреванию и превращению стволовых и других кроветворных клеток-предшественниц нескольких линий клеток крови, являются фактор стволовых клеток (ФСК), ИЛ-3, ИЛ-6, ГМ-КСФ, ИЛ-1, ИЛ-4, ИЛ-11, ЛИФ.

Развитие и дифференцировку клеток крови преимущественно одной линии предопределяют позднедействующие ростовые факторы — Г-КСФ, М-КСФ, ЭПО, ТПО, ИЛ-5.

Факторами, ингибирующими пролиферацию гемопоэтических клеток, являются трансформирующий ростовой фактор (TRFβ), макрофагальный воспалительный белок (МIР-1β), фактор некроза опухолей (ФНОа), интерфероны (ИФН(3, ИФНу), лактоферрин.

Действие цитокинов, факторов роста, гормонов (эритропоэтина, гормона роста и др.) на клетки гемоноэтических органов чаще реализуется всего через стимуляцию 1-TMS- и реже 7-ТМS-рецепторов плазматических мембран и реже — через стимуляцию внутриклеточных рецепторов (глюкокортикоиды, Т 3 иТ 4).

Для нормального функционирования кроветворная ткань нуждается в поступлении ряда витаминов и микроэлементов.

Витамины

Витамин B12 и фолиевая кислота нужны для синтеза нуклеопротеинов, созревания и деления клеток. Для защиты от разрушения в желудке и всасывания в тонком кишечнике витамину В 12 нужен гликопротеин (внутренний фактор Кастла), который вырабатывается париетальными клетками желудка. При дефиците этих витаминов в пище или отсутствии внутреннего фактора Кастла (например, после хирургического удаления желудка) у человека развивается гиперхромная макроцитарная анемия, гиперсегментация нейтрофилов и снижение их продукции, а также тромбоцитопения. Витамин В 6 нужен для синтеза тема. Витамин С способствует метаболизму (родиевой кислоты и участвует в обмене железа. Витамины Е и РР защищают мембрану эритроцита и гем от окисления. Витамин В2 нужен для стимуляции окислительно-восстановительных процессов в клетках костного мозга.

Микроэлементы

Железо, медь, кобальт нужны для синтеза гема и гемоглобина, созревания эритробластов и их дифференцирования, стимуляции синтеза эритропоэтина в почках и печени, выполнения газотранспортной функции эритроцитов. В условиях их дефицита в организме развивается гипохромная, микроцитарная анемия. Селен усиливает антиоксидантное действие витаминов Е и РР, а цинк необходим для нормального функционирования фермента карбоангидразы.