Главная · Уход · Морфо-функциональная характеристика и классификация хромосом. Закономерности существования клетки во времени. Воспроизведение на клеточном уровне: митоз и мейоз. Понятие об апоптозе Морфофункциональная характеристика х и у хромосом

Морфо-функциональная характеристика и классификация хромосом. Закономерности существования клетки во времени. Воспроизведение на клеточном уровне: митоз и мейоз. Понятие об апоптозе Морфофункциональная характеристика х и у хромосом

Генетика человека – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения

Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению.).

Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.

Цитологический метод основан на микроскопическом изучении хромосом в клетках человека. Цитогенетический метод широко применяется с 1956 года, когда Дж. Тио и Л. Леван установили, что в кариотипе человека 46 хромосом.

Цитогенетический метод основывается на данных о хромосомах. В 1960 году на научной конференции в Денвере была принята классификация идентифицируемых хромосом, в соответствии с которой им были даны номера, увеличивающиеся по мере уменьшения размеров хромосом. Эта классификация была уточнена на конференции в Лондоне (1963) и Чикаго (1966).

Применение цитогенетического метода позволяет изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, и, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением структуры хромосом. Цитогенетический метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Метод широко применяется в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней.



Цитологический анализ включает три основынх этапа:

Культивирование клеток;

Окраска препарата;

Микроскопический анализ препарата.

Цитогенетические методы используются и для описания интерфазных клеток. Например, по наличию или отсутствию полового хроматина (телец Барра, представляющих собой инактивированные X-хромосомы) можно не только определять пол индивидов, но и выявлять некоторые генетические заболевания, связанные с изменением числа X-хромосом.

Морфофункциональная характеристика и классификация хромосом. Кариотип человека. Цитологический метод.

Хромосо́мы (HYPERLINK "http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" \o "Древнегреческий язык" др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. В хромосомах сосредоточена большая часть наследственной информации. В основу идентификации хромосом положены следующие признаки: общая длина хромосомы, размещение центромеры, вторичная перетяжка и др.

Типы строения хромосом

Различают четыре типа строения хромосом:

телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);

акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла. Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов.

Политенные хромосомы

Впервые обнаружены Бальбиани в 1881-го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

Бактериальные хромосомы

Прокариоты (археи и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

Кариотип человека (от греч. - орех, ядро и - отпечаток, тип) - диплоидный хромосомный набор человека, представляющий собой совокупность морфологически обособленных хромосом, внесённых родителями при оплодотворении.

Хромосомы набора генетически неравноценны: каждая хромосома содержит группу разных генов. Все хромосомы в кариотипе человека делятся на аутосомы и половые хромосомы. В кариотипе человека 44 аутосомы (двойной набор) - 22 пары гомологичных хромосом и одна пара половых хромосом - XX у женщин и ХУ у мужчин.

Цитологические методы исследования в медицине, цитологическая диагностика, методы распознавания заболеваний и исследования физиологического состояния организма человека на основании изучения морфологии клеток и цитохимических реакций. Применяются: 1) в онкологии для распознавания злокачественных и доброкачественных опухолей; при массовых профилактических осмотрах с целью выявления ранних стадий опухолевого процесса и предраковых заболеваний; при наблюдении за ходом противоопухолевого лечения; 2) в гематологии для диагностики заболеваний и оценки эффективности их лечения; 3) в гинекологии - как с целью диагностики онкологических заболеваний, так и для определения беременности, гормональных нарушений и т.д.; 4) для распознавания многих заболеваний органов дыхания, пищеварения, мочевыделения, нервной системы и т.д. и оценки результатов их лечения.
Разработаны критерии цитологической диагностики болезней крови, ретикулоэндотелиальной системы, некоторых заболеваний желудка, почек, туберкулёза лёгких, кожных болезней и т.д. При необходимости проводят срочную цитологическую диагностику. Цитологические методы исследования часто сочетают с гистологическими исследованием.

88.Оплодотворение и ооплазматическая сегрегация.

Оплодотворение

сингамия, у растений, животных и человека - слияние мужской и женской половых клеток - гамет, в результате чего образуется Зигота, способная развиваться в новый организм. О. лежит в основе полового размножения и обеспечивает передачу наследственных признаков от родителей потомкам. Оплодотворение у растений. О. свойственно большинству растений; ему обычно предшествует образование гаметангиев - половых органов, в которых развиваются гаметы. Часто эти процессы объединяют под общим названием половой процесс. Растения, имеющие половой процесс, имеют в цикле развития и Мейоз, т. е. обнаруживают смену ядерных фаз. Типичного полового процесса нет у бактерий и синезелёных водорослей; неизвестен он и у некоторых грибов. Типы полового процесса у низших растений разнообразны. Одноклеточные водоросли (например, некоторые хламидомонады) как бы сами превращаются в гаметангии, образуя гаметы; Для водорослей конъюгат (например, спирогиры) характерна Конъюгация: протопласт одной клетки перетекает в другую (принадлежащую той же или др. особи), сливаясь с её протопластом. Слияние имеющих жгутики гамет различной величины (большая - женская, меньшая - мужская; например, у некоторых хламидомонад) называется гетерогамией (См. Гетерогамия) (рис. 1, 3). Слияние крупной безжгутиковой женские гаметы (яйцеклетка) и мелкой мужской, чаще имеющей жгутики (сперматозоид), реже - безжгутиковой (спермаций), называется оогамией (См. Оогамия). Женские гаметангии большинства оогамных низших растений называются оогониями, мужские - антеридиями

У семенных растений, имеющих спермии, последние перемещаются к яйцеклеткам по пыльцевым трубкам. У покрытосеменных происходит Двойное оплодотворение: один спермий сливается с яйцеклеткой, второй - с центральной клеткой зародышевого мешка (женского заростка). Осуществление О. вне зависимости от наличия свободной воды - одно из важнейших приспособлений семенных растений к существованию на суше.

Оплодотворение у животных и человека заключается в слиянии (сингамии) двух гамет разного пола - спермия и яйца. О. имеет двоякое значение: 1) контакт спермия с яйцом выводит последнее из заторможенного состояния и побуждает к развитию; 2) слияние гаплоидиых ядер спермия и яйца - кариогамия - приводит к возникновению диплоидного синкариона, объединяющего отцовские и материнские наследственные факторы. Возникновение при О. новых комбинаций этих факторов создаёт генетическое разнообразие, служащее материалом для естественного отбора и эволюции вида. Необходимая предпосылка О. - уменьшение числа хромосом вдвое, что происходит во время мейоза.Встреча сперматозоида с яйцом обычно обеспечивается плавательными движениями мужских гамет после того, как они выметаны в воду или введены в половые пути самки (см. Осеменение). Встрече гамет способствует выработка яйцами гамонов (См. Гамоны), усиливающих движения спермиев и продлевающих период их подвижности, а также веществ, вызывающих скопление спермиев вблизи яйца. Зрелое яйцо окружено оболочками, имеющими у некоторых животных отверстия для проникновения спермиев - Микропиле. У большинства животных микропиле отсутствует, и, чтобы достигнуть поверхности ооплазмы, спермии должны проникнуть через оболочку, что осуществляется с помощью специального органоида сперматазоида - акросомы. После того как спермий концом головки коснётся яйцевой оболочки, происходит акросомная реакция: акросома раскрывается, выделяя содержимое акросомной гранулы, и заключённые в грануле ферменты растворяют яйцевые оболочки. В том месте где раскрылась акросома, её мембрана сливается с плазматической мембраной спермия; у основания акросомы акросомная мембрана выгибается и образует один или несколько выростов которые заполняются расположенным между акросомой и ядром (субакросомальным) материалом, удлиняются и превращаются в акросомные нити или трубочки. Акросомная нить проходит через растворённую зону яйцевой оболочки, вступает в контакт с плазматической мембраной яйца и сливается с ней.

Сегрегация ооплазматическая (биологическая), возникновение локальных различий в свойствах ооплазмы, осуществляющееся в периоды роста и созревания ооцита, а также в оплодотворённом яйце. С. - основа для последующей дифференцировки зародыша: в процессе дробления яйца участки ооплазмы, различающиеся по своим свойствам, попадают в разные бластомеры; взаимодействие с ними одинаковых по своим потенциям ядер дробления приводит к дифференциальной активации генома. У разных животных С. наступает неодновременно и бывает выражена в разной степени. Наиболее ярко она проявляется у животных с мозаичным типом развития, но наблюдается и у животных с регуляционным типом развития. Примеры С.: образование полярных плазм у моллюсков, концентрация РНК в будущем спинном полушарии яйца млекопитающих.

Совокупность хромосом соматической клетки, характеризующая организм данного вида, называется кариотипом (рис. 2.12).

Рис. 2.12. Кариотип (а ) и идиограмма (б ) хромосом человека

Хромосомы подразделяют на аутосомы (оди­наковые у обоих полов) и гетерохромосомы , или поло­вые хромосомы (разный набор у мужских и женских осо­бей). Например, кариотип человека содержит 22 пары аутосом и две половые хромосомы - ХХ у женщины и XY y мужчи­ны (44+XX и 44+XY соответственно). Соматические клетки организмов содержат диплоидный (двойной) набор хромосом, а гаметы - гаплоидный (одинарный).

Идиограмма - это систематизированный кариотип, в кото-1М хромосомы располагаются по мере уменьшения их разме­ти. Точно расположить хромосомы по размеру удается дале­ки не всегда, так как некоторые пары хромосом имеют близ­кие размеры. Поэтому в 1960 г. была предложена Денверская классификация хромосом , которая помимо размеров учитывает форму хромосом, положение центромеры и наличие вто­ричных перетяжек и спутников (рис. 2.13). Согласно этой классификации, 23 пары хромосом человека разбили на 7 групп - от А до G. Важным признаком, облегчающим клас­сификацию, является центромерный индекс (ЦИ), который от­ражает отношение (в процентах) длины короткого плеча к длине всей хромосомы.

Рис. 2.13. Денверская классификация хромосом человека

Расссмотрим группы хромосом.

Группа А (хромосомы 1-3). Это большие, метацентрические и субметацентрические хромосомы, их центромерный индекс - от 38 до 49. Первая пара хромосом - самые большие метацентрические (ЦИ 48-49), в проксимальной части длин­ною плеча вблизи центромеры может быть вторичная перетяжка. Вторая пара хромосом - самые большие субметацент-рические (ЦИ 38-40). Третья пара хромосом на 20% короче первой, хромосомы субметацентрические (ЦИ 45-46), легко идентифицируются.

Группа В (хромосомы 4 и 5). Это большие субметацентрические хромосомы, их центромерный индекс 24-30. Они не различаются между собой при обычном окрашивании. Распределение R- и G-сегментов (см. ниже) у них различное.

Группа С (хромосомы 6-12). Хромосомы среднего раз j мера, субметацентрические, их центромерный индекс 27-35. В 9-й хромосоме часто обнаруживается вторичная перетяжка. К этой группе относят и Х-хромосому. Все хромосомы данной группы можно идентифицировать с помощью Q- и G-окрашивания.

Группа D (хромосомы 13-15). Хромосомы акроцентрические, сильно отличаются от всех других хромосом человека, их центромерный индекс около 15. Все три пары имеют спутники. Длинные плечи этих хромосом различаются по Q- и G- сегментам.

Группа Е (хромосомы 16-18). Хромосомы относительно короткие, метацентрические или субметацентрические, их центромерный индекс от 26 до 40 (хромосома 16 имеет ЦИ около 40, хромосома 17- ЦИ 34, хромосома 18 - ЦИ 26). В длинном плече 16-й хромосомы в 10% случаев выявляется вторичная перетяжка.

Группа F (хромосомы 19 и 20). Хромосомы короткие, субметацентрические, их центромерный индекс 36-46. При обычном окрашивании они выглядят одинаковыми, а при дифференциальном - хорошо различимы.

Группа G (хромосомы 21 и 22). Хромосомы маленькие, акроцентрические, их центромерный индекс 13-33. К этой группе относят и Y-хромосому. Они легко различимы при дифференциальном окрашивании.

В основе Парижской классификации хромосом человека (1971) лежат методы специального дифференциального их окрашивания, при которых в каждой хромосоме выявляется характерный только для нее порядок чередования попереч­ных светлых и темных сегментов (рис. 2.14).

Рис. 2.14. Парижская классификация хромосом человека

Различные типы сегментов обозначают по методам, с помощью которых они выявляются наиболее четко. Например, Q-сегменты - это участки хромосом, флюоресцирующие после окрашивания акрихин-ипритом; сегменты выявляются при окрашива­нии красителем Гимза (Q- и G-сегменты идентичны); R-сегменты окрашиваются после контролируемой тепловой денатурации и т. д. Данные методы позволяют четко дифференци­ровать хромосомы человека внутри групп.

Короткое плечо хромосом обозначают латинской буквой p а длинное - q . Каждое плечо хромосомы разделяют на рай­оны, нумеруемые от центромеры к теломерам. В некоторых коротких плечах выделяют один такой район, а в других (длинных) - до четырех. Полосы внутри районов нумеруются по порядку от центромеры. Если локализация гена точно из­вестна, для ее обозначения используют индекс полосы. На­пример, локализация гена, кодирующего эстеразу D, обозна­чается 13p 14, т. е. четвертая полоса первого района короткого плеча тринадцатой хромосомы. Локализация генов не всегда известна с точностью до полосы. Так, местоположение гена ретинобластомы обозначают 13q , что означает локализацию его в длинном плече тринадцатой хромосомы.

Основные функции хромосом состоят в хране­нии, воспроизведении и передаче генетической информации при размножении клеток и организмов.

Интерфазная хромосома - это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То есть функция интерфазной ХР - передача информации с генома, последовательности нуклеотидов в молекуле ДНК, для синтеза необходимых белков, ферментов и т. д.
Когда приходит время деления клетки необходимо сохранить всю имеющуюся информацию и передать ее в дочерние клетки. В состоянии "раздрая" ХР этого сделать не может. Поэтому хромосоме приходится структурироваться - скручивать нить своей ДНК в компактную структуру. ДНК к этому времени уже удвоена и каждая нить скручивается в свою хроматиду. 2 хроматиды образуют хромосому. В профазе под микроскопом в ядре клетки становятся заметны маленькие рыхлые комочки - это будущие ХР. Они постепенно укрупняются и формируют видимые хромосомы, которые к середине метафазы выстраиваются по экватору клетки. В норме в телофазе равное количество хромосом начинает двигаться к полюсам клетки. (я не повторяю 1-го ответа, там все правильно. Суммируйте информацию) .
Однако случается иногда, что хроматиды цепляются друг за друга, переплетаются, кусочки отрываются - а результате две дочерние клетки получают немного неравную информацию. Такая штука называется патологический митоз. После него дочерние клетки будуи работать неправильно. При сильном повреждении хромосом клетка погибнет, при более слабом не сможет разделиться еще раз или даст череду неправильных делений. Такие вещи приводят к возникновению заболеваний, от нарушений биохимической реакции в отдельной клетке, до заболевания раком какого-то органа. Клетки делятся во всех органах, но с разной интенсивностью, поэтому у разных органов - разная вероятность заболеть раком. К счастью такие патологические митозы бывают не слишком часто и природа придумала механизмы избавления от получившихся неправильных клеток. Только когда среда обитания организма очень плохая (повышен радиоактивный фон, сильные загрязнения воды, воздуха вредными хим. веществами, бесконтрольное применение лекарственных препаратов и т. п.) -природный защитный механизм не справляется. В таком случае вероятность появления заболеваний увеличивается. Нужно стараться свести вредные факторы воздействия на организм к минимуму и принимать биопротекторы в виде живой пищи, свежего воздуха, витаминов и веществ необходимых в данной местности, это может быть иод, селен, магний или что-то еще. Не игнорируйте заботу о своем здоровье.

Хроматин (греч. χρώματα - цвета, краски) - это вещество хромосом - комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК

Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.

Половой хроматин - особые хроматиновые тельца клеточных ядер особей женского пола у человека и других млекопитающих. Располагаются у ядерной оболочки, на препаратах имеют обычно треугольную или овальную форму; размер 0,7-1,2 мк (рис. 1). Половой хроматин образован одной из Х-хромосом женского кариотипа и может быть выявлен в любой ткани человека (в клетках слизистых оболочек, кожи, крови, биопсированной ткани), Наиболее простым исследованием полового хроматина является исследование его в клетках эпителия слизистой оболочки полости рта. Взятый шпателем соскоб со слизистой оболочки щеки помещают на предметное стекло, окрашивают ацетоорсеином и анализируют под микроскопом 100 светлоокрашенных клеточных ядер, подсчитывая, сколько из них содержат половой хроматин. В норме он встречается в среднем в 30-40% ядер у женщин и не обнаруживается у мужчин

15.Особенности строения метафазных хромосом. Типы хромосом. Хромосомный набор. Правила хромосом.

Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНП, уложенную в виде суперспирали. При спирализа-ции участки эу- и гетерохроматина укладываются закономерным образом, так что на протяжении хроматид образуются чередующиеся поперечные полосы. Их выявляют при помощи специальных окрасок. Поверхность хромосом покрыта различными молекулами, главным образом, рибонуклеопротеинами (РНП). В соматических клетках имеются по две копии каждой хромосомы, их называют гомологичными. Они одинаковы по длине, форме, строению, расположению полос, несут одни и те же гены, которые локализованы одинаково. Гомологичные хромосомы могут различаться аллелями генов, содержащихся в них. Ген - это участок молекулы ДНК, на котором синтезируется активная молекула РНК. Гены, входящие в состав хромосом человека, могут содержать до двух млн пар нуклеотидов.

Деспирализованные активные участки хромосом не видны под микроскопом. Лишь слабая гомогенная базофилия нуклеоплазмы указывает на присутствие ДНК; их можно выявить также гистохимическими методами. Такие участки относят к эухроматину. Неактивные сильно спирализованные комплексы ДНК и высокомолекулярных белков выделяются при окрасках в виде глыбок гетерохроматина. Хромосомы фиксированы на внутренней поверхности кариотеки к ядерной ламине.



Хромосомы в функционирующей клетке обеспечивают синтез РНК, необходимых для последующего синтеза белков. При этом осуществляется считывание генетической информации - ее транскрипция. Не вся хромосома принимает в ней непосредственное участие.

Разные участки хромосом обеспечивают синтез различных РНК. Особенно выделяются участки, синтезирующие рибосомные РНК (рРНК); ими обладают не все хромосомы. Эти участки называют ядрышковыми организаторами. Ядрышковые организаторы образуют петли. Верхушки петель разных хромосом тяготеют друг к другу и встречаются вместе. Таким образом формируется структура ядра, именуемая ядрышком (рис. 20). В нем различают три компонента: слабоокрашенный компонент соответствует петлям хромосом, фибриллярный - транскрибированной рРНК и глобулярный - предшественникам рибосом.

Хромосомы являются ведущими компонентами клетки, регулирующими все обменные процессы: любые метаболические реакции возможны только с участием ферментов, ферменты же всегда белки, белки синтезируются только с участием РНК.

Вместе с тем хромосомы являются и хранителями наследственных свойств организма. Именно последовательность нуклеоти-дов в цепях ДНК определяет генетический код.

Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. хромосомный набор-Кариоти́п - совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида, данного организма или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора. Термин «кариотип» был введён в 1924 году советским цитологом

Правила хромосом

1. Постоянство числа хромосом.

Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, У мушки дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность хромосом.

Каждая. хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Правило индивидуальности хромосом.

Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Правило непрерывности.

Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде, таким о6разом, хромосомы непепрывны: от хромосомы образуется хромосома.

16.Кариотип человека. Его определение. Кариограмма, принцип составления. Идиограмма, ее содержание.

Кариотип .(от карио... и греч. typos - отпечаток, форма),ттипичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч. idios - свой, своеобразный и...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Кариограмма (от карио... и... грамма),графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. - идиограмма -схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. - график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа -выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.

Поток информации в клетке, биосинтез белка и его регуляция. Пластический и энергетический обмен.

Клеточная теория, ее положения и основные этапы развития (М. Шлейден, Т. Шванн, Р. Вирхов). Современное состояние клеточной теории, и значение для медицины.

Кариотип человека. Морфофункциональная характеристика и классификация хромосом человека. Роль изучения кариотипа для выявления патологии человека.

Медико-биологические аспекты экологических проблем человека.

Организация открытых биологических систем в пространстве и во времени.

Закономерности проявления свойств живого в развитии и структурно-функциональной организации органов и тканей организма человека.

Задачи биологии человека, как базисной дисциплины в системе естественнонаучной и профессиональной подготовки врача широкого профиля.

Организм, как открытая саморегулирующая система. Понятие о гомеостазе. Теория генетическая, клеточные и системные основы гомеостаза.

Исторический метод и современный системный подход – основа познания общих законов и закономерности жизнедеятельности человека.

Прокариотипические и эукариотипические клетки, их сравнительная характеристика.

Фундаментальные свойства жизни, их разнообразие и атрибуты жизни.

Создание хромосомной теории наследственности.

молекулярная организация органических веществ (белки, углеводы, нуклеиновые кислоты, АТФ) и их роль.

Развитие представлений о сущности жизни. Определение жизни с позиции системного подхода (витализм, механицизм, диалектический материализм).

Иммунитет, как свойство поддержания индивидуальности организмов и разнообразия внутри вида. Виды иммунитета.

Предпосылки и современные представления о возникновении жизни на Земле.

Закон физико-химического единства живого вещества В.И. Вернадского. Природные биогенные элементы.

Различия жизненных циклов нормальных и опухолевых клеток. Регуляция клеточного цикла и митотической активности.

Закономерности потока веществ в про- и эукариотипических клетках.

Особенности потока информации в про- и эукариотипических клетках.

Возрастные изменения различных тканей, органов в системе человека.

Дискретность и целостность. Живые существа – дискретная форма жизни, как разнообразие и единый принцип организации.

Биологические науки, их задачи, объекты и уровни познания.

История и современный этап развития биологии.

Клетка – генетическая и структурно-функциональная единица многоклеточного организма. Возникновение клеточной организации в процессе эволюции.

Особенности потока энергии в про- и эукариотипических клетках.

Связь биологии с другими естественными науками. Генетика, экология хронобиология как общественные дисциплины.

Строения и функции плазмалеммы. Транспорт веществ через плазмалемму.

Проявления фундаментальных свойств живого на основных эволюционно-обусловленных уровнях организации. Иерархия уровней организации живых организмов.

Общие закономерности эмбрионального развития: зигота, дробление, гаструляция, гисто- и органогенез. Типы плаценты.

Осеменение. Оплодотворение. Партеногенез. Андрогенез. Биологические особенности репродукции человека.

Постэмбриональный антогенез. Периодизация постэмбрионального онтогенеза у человека.

Модификационная изменчивость. Норма реакции, ее генетическая детерминированность. Модификационная изменивость у человека.

Клеточный цикл, его периодизация. Митотический цикл. Динамика строения хромосом митотическом цикле.

Правила единообразия и закон расщепления. Доминантность и рецессивность.

Мутационная изменчивость. Мутация, как качественные или количественные изменения генетического материала. Классификация мутации, краткая характеристика.

Биологические аспекты строения, смерти. Теория старения. Молекулярно-генетические клеточные и системные механизмы старения. Проблемы долголетия.

Половой процесс, как механизм обмена наследственной информации внутри вида. Эволюция форм полового размножения.

Пролиферация и дифферинцировка клеток, активация дифферинциальное включение генов, эмбриональная индукция.

Митоз и его биологическое значение. Репликация ДНК. Митотическая активность в клетках различных тканей органов организма человека.

Молекулярные и клеточные основы размножения организмов. Эволюция размножения.

Генетический код: его свойства и понятие.

Яйцевые оболочки позвоночных животных и их биологическое значение. Типы яйцеклеток. Строение яйцеклетки человека.

Генетика человека. Основные методы генетики человека: генеалогический, близнецовый, цитогенетический, популяционно-статистический, культивирование соматических клеток, исследование ДНК с помощью «зондов» и т.д.

Биологическая роль и формы бесполого размножения. Эволюция форм бесполого размножения. Мейоз, цитологическая и цитогенетическая характеристика. Биологическое значение. Сущность.

Мейоз. Цитологическая и цитогенетическая характеристика. Биологическое значение. Сущность.

Относительная биологическая целесообразность биологического вида. Видообразование, способы и пути.

Тератогенез. Фенокопин. Наследственные и ненаследственные пороки развития тела человека, как следствие нарушения регуляции онтогенеза.

Структурно-функциональные уровни организации генетического материала генный хромосомный, геномный. Ген – функциональная единица наследственности. Строение, функции и регуляции действия генов у прокариот и эукариот. Прерывистость генов.

Критические периоды онтогенеза. Роль средовых факторов в онтогенезе.

Ядерный аппарат – система управления клетки. Хромосомы. Строение и функции. Типы хромосом. Уровни упаковки ДНК в хромосомах.

Наследственность и изменчивость – фундаментальные, универсальные свойства живого. Наследственность. Как свойство, обеспечивающее материальную преемственность между поколениями.

Хромосомная теория определения пола. Наследование признаков сцепленных с полом.

Роль нервной, эндокринной и иммунной систем в обеспечении постоянства внутренней среды и адаптивных изменений.

Иммунологические механизмы тканей. Органов и система органов человека.

Генетический груз, его биологическая сущность. Принципы популяционной экологии. Определение и типы онтогенеза. Периодизация онтогенеза.

Определение и типы онтогенеза. Периодизация онтогенеза.

Генотип, как единая целостная исторически сложившаяся система. Фенотип, как результат реализации генотипа в определенных условиях среды. Пенетрантность и экспрессивность.

Половой диморфизм: генетический, морфофизиологический, эндокринный и поведенческий аспекты.

Регенерация органов и тканей, как процесс развития. Физиологическая и репаративная регенерации. Механизмы и регуляция регенерации.

Мутагенез у человека. Мутационная изменчивость и эволюция. Проявление и роль мутации в патологенетических проявлениях у человека.

Закладка, развитие и формирование тканей, органов, систем органов в эмбриогенезе человека. Преобразование жаберного аппарата.

Приэмбриональный (прозиготный), эмбриональный (атенатальный) и постэмбриональный (постнатальный) периоды развития.

Теория эволюции Ч. Дарвина (эволюционный материал, факторы эволюции).

Филогенез выделительной системы.

Перспективы генной инженерии в лечении генных болезней. Профилактика наследственных заболеваний.

Популяционная структура вида. Популяция, как элементарная эволюционная единица. Критерии популяции.

Типы наследования. Моногенное наследование. Понятие об аллелях, гомозиготности, гетерозиготности.

Гибридизация, значение для развития генетики. Ди- и поли- гибридное скрещивание. Закон независимого расщепления признаков.

Изменчивость, как свойство, обеспечивающее возможность существования живых организмов в различных состояниях. Формы изменчивости.

Класс Ракообразные. Высшие и низшие раки - промежуточные хозяева гельминтов человека. Строение и значение.

Понятие о биологической эволюции. Становление эволюционных идей в додарвинский период.

Связь индивидуального и исторического развития. Биогенетический закон. Теория филоэмбриогенезов А.Н. Северцова.

Популяционно-генетические эффекты действия естественного отбора, стабилизация генофонда популяций, поддержание во времени состояния генетического полиморфизма.

Значение работ Н.И. Вавилова, Н.К. Кольцова, С.С. Четверикова, А.С. Серебровского и др. видных русских ученых-генетиков в становлении отечественной генетической школы.

Предмет биологии. Биология, как наука о живой природе планеты, об общих закономерностях жизненных явлений и механизмах жизнедеятельности и развитии живых организмов.

Предмет, задачи и методы генетики. Значение генетики для подготовки специалистов медиков и медицины в целом. Этапы развития генетики. Мендель – основоположник современной генетики.

Взаимодействие алельных генов: полное доминирование, рецессивность, неполное деминирование, кодоминирование. Примеры.

Филогенез дыхательной системы.

Концепция В.И. Вернадского о биосфере. Экологическая сукцессия, как главное событие эволюции экосистем.

Формы естественного отбора. Его адаптивное значение, давление и коэффициенты отбора. Ведущая и творческая роль естественного отбора.

Популяционная структура человечества. Люди – как объект действия эволюционных факторов. Дрейф генов и особенности генофондов изоляторов.

Пищевые цепи, экологическая пирамида. Поток энергии. Биогеоценоз. Антропоценоз. Роль В.Н. Сукачева в изучении биогеоценоза.

Филогенез эндокринной системы.

Вклад русских ученых в развитие теории биологической эволюции. Видные отечественные эволюционисты.

Филогенез половой системы.

Микроэволюция. Правила и способы эволюции групп. Общие закономерности, направления и пути эволюции.

Филогенез кровеносной системы.

Ранняя диагностика хромосомных болезней и их проявление в организме человека. Последствия родственных браков для проявления наследственной патологии у человека.

Тип членистоногие, значение в медицине. Характеристика и классификация типа. Особенности строения основных представителей классов, имеющих эпидемиологическое значение.

Биологический и социальный аспекты адаптации человека и населения в условиях жизнедеятельности. Опоследственный характер адаптации людей. Человек, как творческий экологический фактор.

100.Медицинская генетика. Понятие о наследственных болезнях. Роль среды в их появлении. Генные и хромосомные болезни, их частота.

101.Летальное и полелетальное действие генов. Множественный аллелизм. Плейотропия. Наследование группы крови человека.

102.Хромосомы, как группы сцепления генов. Геном – видовая, генетическая система. Генотипы и фенотипы.

103.Класс инфузории.

105.Человек и биосфера. Человек – как природный объект, а биосфера. Как среда обитания и источник ресурсов. Характеристика природных ресурсов.

106.Биологическая изменчивость людей и биологическая характеристика. Понятие об экологических типах людей. Условия их формирования в историческом развитии человечества.

108.Филогенез нервной системы.

109.Класс Сосальщики. Общая характеристика класса, циклы развития, пути заражения, патогенное воздействие, обоснование методов лабораторной диагностики и профилактики.

110.Класс Насекомые: внешнее и внутреннее строение, классификация. Медицинское значение.

111.Вклад русских ученых в развитие учения о биосфере. Проблемы охраны окружающей среды и выживания человечества.

112.Класс ленточные черви. Морфология, циклы развития, пути заражения, патогенное воздействие, основные методы лабораторной диагностики

113.Функции биосферы в развитии природы Земли и поддержания в ней

динамического развития.

114.Класс паукообразные. Общая характеристика и классификация класса. Строение, циклы развития, меры борьбы и профилактика.

115.Тип простейшие. Характерные черты организации, значение для медицины. Общая характеристика системы типа.

116.Филогения человека: эволюция приматов, австралопитеки, архантропы, палеонтропы, неантропы. Факторы антропогенеза. Роль труда в эволюции человека.

117.Среда. Как сложный комплекс абиотических, биотических и антропогенных факторов.

119.Класс споровики. Морфофункциональная характеристика, циклы развития, пути заражения, патогенное действие, диагностика и профилактика.

120.Класс паукообразные. Иксодовые клещи – переносчики возбудителей заболевания человека.

121.Биосфера, как глобальная экосистема Земли. В.И. Вернадский – основоположник учения о биосфере. Современные концепции биосферы: биохимическая, биогеоценотическая, термодинамическая, геофизическая, социально-экономическая, кибернетическая.

122.Понятие о расах и видовое единство человечества. Современная (молекулярно-генетическая) классификация и распространение человеческих рас.

123.Организация биосферы: живое, костное, биогенное, биокостное вещество. Живое вещество.

124.Класс насекомые. Общая характеристика и классификация отрядов имеющих эпидемиологическое значение.

125.Филогенез органов пищеварительной системы.

126.Влияние экологических факторов на состояние органов, тканей и систем человека. Значение экологических факторов в развитии пороков организма человека.

127.Тип плоские черви, характеристика, черты организации. Медицинское значение. Классификация типа.

128.Биогеоценоз, структурная элементарная единица биосферы и элементарная единица биогеохимического круговорота Земли.

129.Понятие о гельминтах. Био- и геогельминты. Биогельминты с миграцией, без миграции.

130.Человечество, как активный элемент биосферы – самостоятельная геологическая сила. Ноосфера – высший этап эволюции биосферы. Биотехносфера.

131.Социальная сущность и биологическое наследство человека. Положение вида Homo sapiens в системе животного мира.

132.Эволюция биосферы. Космопланетарные условия для возникновения жизни на Земле.

133.Методы получения метафазных хромосом. Номенклатура хромосом человека. Специфика и возможности методов генетики человека.

134.Тип плоские черви, характеристика, черты классификация типа.

135.Тип круглые черви. Характеристика, черты организации и медицинское значение. Классификация типа. Основные представители. Морфология, циклы развития, пути проникновения в организм, патогенное действие, диагностика и профилактика.

136.Человек, как закономерный результат процесса исторического развития органического мира.

5.9. Список литературы (основная и дополнительная)

Основная литература

1.Биология / Под ред. В.Н. Ярыгина . - М, Высшая школа. 2004. -Т. 1,2.

2.Гилберт С. Биология развития. - М.: Мир, 1993. - Т.1; 1994. - Т.2.

3.Дубинин Н.П. Общая генетика. - М.: Наука, 1976.

4.Кемп П. Армс К. Введение в биологию. – М.: Мир, 1988.

6.Пехов А.П. Биология и общая генетика. - М.: Изд. Российского университета дружбы народов, 1993.

7. Пехов А.П. Биология с основами экологии.-Санкт.-П.-М.-Краснодар, 2005.

8.Риклефс Р. Основы общей экологии. - М.: Мир, 1979.

9.Рогинский Я.Я., Левин М.Г. Антропология. - М.: Высшая -школа, 1978.

10. Слюсарев А.А, Жукова С.В Биология. –К.: Вища школа. Головное издательство, 1987., 415с.

11.Тейлер Миллер. Жизнь в окружающей среде. - Прогресс, Пангея, 1993.-4.1; 1994.-4.2.

12.Федоров В.Д„ Гильманов Т.Г. Экология. - М.: МГУ, 1980.

14.Шилов И.А. Экология. – М.: Высшая школа, 1998.

15.Шварц С.С. Экологические закономерности эволюции. - М.: Наука, 1980.

16.Яблоков А.В. и Юсуфов А.Г. Эволюционное учение. - М.: Высшая школа, 1989.

17. Ярыгин В.Н. и др . Биология. / - М.: Высш.шк., 2006.-453с.

Дополнительная литература

1..Альберт Б., Брей Д., Льюис Дж., Рэфф М, Роберте К., Уотсон Дж. Молекулярная биология клетки. - М.: Мир, 1994. - Т.1,2,3.

2.Беляков Ю.А. Стоматологические проявления наследственных болезней и синдромов. - М.: Медицина, 1993.

3.Бочков Н.П. Клиническая генетика. - М.: Медицина, 1993.

4.Дзуев Р.И. Исследование кариотипа млекопитающих. – Нальчик, 1997.

5.Дзуев Р.И. Хромосомной набор млекопитающих Кавказа. – Нальчик: Эльбрус, 1998.

6.Козлова С.И., Семанова Е.Е., Демикова Н.Н., Блинникова О.Е. Наследственные синдромы и медико-генетическое консультирование. -2-е изд. - М.: Практика, 1996.

7. Прохоров Б.Б. Экология человека: Учеб. для студ.высш. учеб. заведений/ - М.:Изд.центр «Академия», 2003.-320с.

8. Харитонов В.М., Ожигова А.П. и др. Антропология: Учебн. Для студ. высш. Учебн. Заведений.-М.:Гуманит. Изд. Центр ВЛАДОС, 2003.-272с.

5.10. Протокол согласования РУПД с другими дисциплинами направления (специальности)

ПРОТОКОЛ СОГЛАСОВАНИЯ РАБОЧЕЙ ПРОГРАММЫ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Наименование дисциплины, изучение которых опирается на данную дисциплину

Кафедра

Предложения об изменении в пропорциях материала, порядке изложения и содержания занятий

Принятое решение (протокол №, дата) кафедрой, разработавшей программу

Гистология, цитологии и эмбриология

Нормальной и патологической анатомии

Кафедра общей биологии, при чтении курса лекций и проведения лабораторных занятий по общей биологии на 1 курсе медицинского факультета (лечебное и стоматологическое дело) исключает лекционного материала следующие разделы: «Цитология» и «Эмбриология» (особенно при изложении методов исследования, клеточная поверхность и микросреда, цитоплазма, типы плацент млекопитающих, зародышевые листки, их значение и дифференцировка, понятие об эмбриональном гистогенезе).

№4 от 10.02.09.

5.11. Дополнение и изменения в РУПД на очередной учебный год

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В РАБОЧЕЙ ПРОГРАММЕ

НА 200__ /200__ УЧЕБНЫЙ ГОД

В рабочую программу внесены следующие изменения:

Разработчик:

Должность _______________ И.О. Фамилия

(подпись)

Рабочая программа рассмотрена и одобрена на заседании кафедры

«______» ________________ 200___г.

Протокол №____

Зав. кафедрой _______________ Дзуев Р.И.

(подпись)

Внесенные изменения утверждаю:

«____» _________________ 200___ г.

Декан БФ ____________________ Паритов А.Ю.

(подпись)

Декан МФ ____________________ Захохов Р.Р.

6. Учебно методическое обеспечение дисциплины биология с экологией

Одной из важнейших задач, стоящих перед высшим образованием, является подготовка высококвалифицированных специалистов в таких сферах социального общества, где биологическая наука служит теоретической основой практической деятельности. Особое место это имеет в подготовке кадров.

В последние годы, с целью улучшения биологической подготовки специалистов медицинского профиля, в соответствии с Государственным образовательным стандартом (1999) в вузах для всех медицинских специальностей введена дисциплина «Биология».

Реализация этой актуальной задачи во многом зависит от умения преподавателя отбирать материал для занятий. Выбирать форму его подачи, приемы и виды работ, композиционную структуру занятий и их этапы, установления связей между ними. Строить систему тренировочных, проверочных и прочих видов работ, подчиняя их поставленным целям.

Основная задача обучения в вузе: вооружить студентов знаниями основ науки о жизни и на основе закономерностей и систем ее организации - от молекулярно-генетического до биосферного - максимально способствовать биолого-, генетико-, экологическому образованию студентов, развитию их мировоззрения, мышления. Для проверки знаний и умений предлагаются различные формы контроля. Наиболее эффективной формой контроля является компьютерное тестирование по отдельным блокам пройденного материала. Оно позволяет существенно увеличить объем контролируемого материала по сравнению с традиционной письменной контрольной работой и тем самым создает предпосылки для повышения информативности и объективности результатов обучения.

Учебно-методический комплекс

Учебно -методический комплекс по дисциплине : «Методика внеклассной работы по биологии» к. п. н., доцент Осипова И.В. Методические указания студенту по изучению дисциплины Дисциплина «Методика внеклассной...

  • Учебно-методический комплекс по дисциплине «государственное регулирование экономики»

    Учебно-методический комплекс

    ... Учебно -методический комплекс по дисциплине «ГОСУДАРСТВЕННОЕ РЕГУЛИРОВАНИЕ ЭКОНОМИКИ» УФА -2007 Государственное регулирование экономики: Учебно -методический комплекс ... экономических наук Учебно -методический комплекс по дисциплине «Государственное...

  • Учебно-методический комплекс по дисциплине общепрофессиональной подготовки «теория и методика обучения биологии» специальности «050102 65 – биология»

    Учебно-методический комплекс

    Учебно -методический комплекс по дисциплине общепрофессиональной подготовки «Теория и методика обучения... работ учащихся по биологии с микроскопом и микропрепаратами. Анализ учебно -методического комплекса на примере комплекса по разделу «Растения» ...