Главная · Боль в деснах · Цикл сердечной деятельности. Сердечный цикл. автоматия сердца

Цикл сердечной деятельности. Сердечный цикл. автоматия сердца

Ответ на этот вопрос можно найти в представленной ниже статье. Помимо этого, здесь содержится информация о нарушениях здоровья человека, связанных с названным понятием.

Что такое автоматизм сердца?

Мышечные волокна в организме человека обладают способностью реагировать на раздражающий импульс сокращением и затем последовательно передавать это сокращение по всей мышечной структуре. Доказано, что изолированная сердечная мышца способна самостоятельно генерировать возбуждение и совершать ритмические сокращения. Такая способность называется автоматизмом сердца.

Причины сердечного автоматизма

Понять, в чем заключается автоматизм сердца, можно из нижеследующего. Сердце имеет специфическую способность к генерации электрического импульса с последующим его проведением до мышечных структур.

Синоатриальный узел - скопление пейсмекерских клеток первого типа (содержит около 40 % митохондрий, рыхло расположенные миофибриллы, отсутствует Т-система, содержит большое количество свободного кальция, имеет слаборазвитую саркоплазматическую сеть), располагается в правой стенке верхней полой вены, в месте впадения в правое предсердие.

Атриовентрикулярный узел образован переходными клетками второго типа, которые проводят импульс из синоатриального узла, однако в особых условиях могут самостоятельно генерировать электрический заряд. Переходные клетки содержат меньше митохондрий (20-30 %) и несколько больше миофибрилл, чем клетки первого порядка. Атриовентрикулярный узел расположен в межпредсердной перегородке, по нему возбуждение передается к пучку и ножкам пучка Гиса (содержат 20-15 % митохондрий).

Являются следующим этапом передачи возбуждения. Они отходят приблизительно на уровне середины перегородки от каждой из двух ножек пучка Гиса. Их клетки содержат около 10 % митохондрий, по структуре несколько больше похожи на сердечные мышечные волокна.

Самопроизвольное возникновение электрического импульса происходит в пейсмекерских клетках синоатриального узла, который потенцирует волну возбуждения, стимулирующую 60-80 сокращений в минуту. Он является водителем первого порядка. Затем возникшая волна передается на проводящие структуры второго и третьего уровня. Они способны как проводить волны возбуждения, так и самостоятельно индуцировать сокращения более низкой частоты. Водителем второго уровня после синусового узла является атриовентрикулярный узел, который способен самостоятельно создавать 40-50 разрядов в минуту в отсутствии подавляющей активности синусового узла. Далее возбуждение передается на структуры который воспроизводит 30-40 сокращений в минуту, затем электрический заряд перетекает на ножки пучка Гиса (25-30 импульсов в минуту) и систему волокон Пуркинье (20 импульсов в минуту) и попадает на рабочие мышечные клетки миокарда.

Обычно импульсы из синоатриального узла подавляют самостоятельную способность к электрической активности нижележащих структур. Если нарушается функционирование водителя первого порядка, то его работу на себя берут стоящие ниже звенья проводящей системы.

Химические процессы, обеспечивающие автоматизм сердца

Что такое автоматизм сердца с точки зрения химии? На молекулярном уровне основой для самостоятельного возникновения электрического заряда (потенциала действия) на мембранах пейсмекерских клеток является наличие так называемого импульсатора. Его работа (функция автоматизма сердца) содержит три этапа.

Этапы работы импульсатора:

  • 1-я фаза подготовительная (в результате взаимодействия супероксидного кислорода с положительно заряженными фосфолипидами на поверхности мембраны пейсмекерской клетки она приобретает отрицательный заряд, это нарушает потенциал покоя);
  • 2-я фаза активного транспорта калия и натрия, во время работы которого наружный заряд клетки становится равен +30 мВт;
  • 3-я фаза электрохимического скачка - используется энергия, возникающая при утилизации активных форм кислорода (ионизированного кислорода и перекиси водорода) с помощью ферментов супероксиддисмутазы и каталазы. Возникшие кванты энергии повышают биопотенциал пейсмекера настолько, что он вызывает потенциал действия.

Процессы генерации импульса клетками - пейсмекерами обязательно происходят в условиях достаточного присутствия молекулярного кислорода, который доставляется к ним эритроцитами притекающей крови.

Снижение уровня работы или частичное прекращение функционирования одного или нескольких этапов системы импульсатора нарушает согласованную работу пейсмекерских клеток, что вызывает аритмии. Блокировка одного из процессов этой системы вызывает внезапную остановку сердца. Поняв, что такое автоматизм сердца, можно осознать и этот процесс.

Воздействие автономной нервной системы на работу сердечной мышцы

Помимо собственной возможности генерировать электрические импульсы, работа сердца контролируется сигналами из иннервирующих мышцу симпатических и парасимпатических нервных окончаний, при сбое которых возможно нарушение автоматизма сердца.

Воздействие симпатического отдела ускоряет работу сердца, оказывает стимулирующее действие. Симпатическая иннервация оказывает положительное хронотропное, инотропное, дромотропное действие.

Под преобладающим действием происходит замедление процессов деполяризации пейсмекерских клеток (тормозящее действие), а значит, урежение сердечного ритма (отрицательное хронотропное действие), снижение проводимости внутри сердца (отрицательное дромотропное действие), уменьшение энергии систолического сокращения (отрицательное инотропное действие), но усиливается возбудимость сердца (положительное батмотропное действие). Последнее тоже принимается за нарушение функции автоматизма сердца.

Причины нарушения автоматизма сердца

  1. Ишемия миокарда.
  2. Воспаление.
  3. Интоксикация.
  4. Нарушение баланса натрия, калия, магния, кальция.
  5. Гормональная дисфункция.
  6. Нарушение воздействия автономных симпатических и парасимпатических окончаний.

Типы нарушений ритма вследствие нарушения автоматизма сердца

  1. Синусовая тахи- и брадикардия.
  2. Дыхательная (юношеская) аритмия.
  3. Экстрасистолическая аритмия желудочковая).
  4. Пароксизмальные тахикардии.

Различают аритмии вследствие нарушения автоматизма и проводимости с образованием циркуляции волны возбуждения (волна re-entry) в одном определенном или нескольких отделах сердца, в результате возникает фибрилляция или трепетание предсердий.

Фибрилляция желудочков - одна из наиболее угрожающих для жизни аритмий, следствием которой является внезапная остановка сердца и смерть. Наиболее эффективный метод лечения - электрическая дефибрилляция.

Заключение

Итак, рассмотрев, в чем заключается автоматизм работы сердца, можно понять, какие нарушения возможны в случае заболевания. Это, в свою очередь, дает возможность бороться с болезнью более оптимальными и действенными методами.

АВТОМАТИЯ СЕРДЦА И АРИТМИЯ В ЕГО ДЕЯТЕЛЬНОСТИ

Автоматия сердца - это способность сердца сокращаться под действием импульсов, возникающих в нем самом. Автоматией обладают только атипические мышечные волокна, формирую-


щие проводящую систему. Клетки рабочего миокарда автоматией не обладают. Доказательством автоматии являются ритмические сокращения изолированного сердца лягушки, помещенного в ра­створ Рингера. Сердце млекопитающего, помещенное в теплый, снабжаемый кислородом раствор Рингера, также продолжает рит­мически сокращаться.


Проводящая система сердца имеет в своем составе узлы, образованные скоплением атипических мышечных клеток, пучки и волокна, с помощью которых возбуждение передается на клетки рабочего миокарда (рис. 8.4). Водителем ритма сердца (пейсмеке-ром) является сино-атриальный узел, расположенный в стенке пра­вого предсердия между впадением в него верхней полой вены и ушком правого предсердия. В предсердиях имеются также пучки проводящей системы сердца, идущие в различных направлениях. В межпредсердной перегородке у границы с желудочком располо­жен атриовентрикулярный узел, образующий пучок Гиса - един­ственный путь, связывающий предсердия с желудочками. Пучок


Гиса делится на две ножки (левую и правую) с их конечными раз­ветвлениями - волокнами Пуркинье.

Механизм автоматии. Ритмичное возбуждение пейсмекер-ных клеток объясняется ритмичным спонтанным изменением про­ницаемости их мембраны для ионов, вследствие чего Ыа + и Са 2+ поступают в клетку, а К + и СГ выходят из клетки (СГ в пейсме-керных клетках находится в большом количестве). Все это ведет к развитию медленной диастолической деполяризации клеток пей-смекера и достижению критического уровня деполяризации (-40-50 мВ), обеспечивающего возникновение ПД и распростра­нение возбуждения - сначала по предсердиям, а затем и по желу­дочкам.

Градиент автоматии. Водителем ритма сердца является сино-атриальный узел. Взаимодействуя с экстракардиальнымй нервами, он определяет частоту сокращений сердца 60-80 в 1 мин. В случае повреждения узла функции водителя ритма выполняет атриовентрикулярный узел (40-50 в 1 мин), далее - пучок Гиса (30-40 в 1 мин) и волокна Пуркинье (20 в 1 мин). Убывание часто­ты генерации возбуждения проводящей системой сердца в направ­лении от предсердий к верхушке сердца называют градиентом автоматии.

Скорость распространения возбуждения от сино-атриаль-ного узла по рабочему миокарду предсердий и проводящей системе предсердий одинаковая - около 1м/с. Далее возбуждение перехо­дит на атриовентрикулярный узел, где имеет место задержка воз­буждения на 0,05 с. Задержка объясняется тем, что проводящая сино-атриальная ткань контактирует с атрио-вентрикулярным уз­лом посредством волокон рабочего миокарда, причем толщина их слоя здесь небольшая, типичные нексусы отсутствуют. Эта задер­жка обеспечивает последовательное сокращение предсердий и же­лудочков. Затем возбуждение по пучку Гиса, его ножкам и волок­нам Пуркинье переходит на клетки рабочего миокарда. Скорость распространения возбуждения по проводящей системе желудочков равна 3 м/с, по субэндокардиальным окончаниям волокон Пурки­нье и клеткам рабочего миокарда желудочков, как и по миокарду предсердий, - 1 м/с. Большая скорость распространения возбуж­дения по проводящей системе обеспечивает быстрый, практически синхронный охват возбуждением всех отделов желудочков, что увеличивает мощность их сокращений. При меньшей скорости про­ведения возбуждения различные отделы сердца сокращались бы не одновременно, что значительно снизило бы мощность желудочков. От проводящей системы сердца к рабочему миокарду желудочков возбуждение передается с помощью волокон Пуркинье.


Таким образом, проводящая система сердца обеспечивает: 1) ав­томатик) сердца; 2) последовательность сокращений предсер­дий и желудочков за счет атрио-вентрикулярной задержки; 3) син­хронное сокращение всех отделов желудочков, что увеличивает их мощность; 4) надежность в работе сердца - при повреждении основного водителя ритма его в какой-то степени могут заменить другие отделы проводящей системы сердца, так как они тоже обла­дают автоматией.

Аритмия в сердечной деятельности. Экстрасистола - это внеочередное сокращение сердца. Экстрасистолы могут возникать не только у больного, но и у здорового человека. Их можно полу­чить также в эксперименте. У человека возникающие спонтанно экстрасистолы могут быть желудочковыми (эктопический очаг воз­буждения находится в желудочке) и предсердными: внеочередной (более ранний) импульс возникает в предсердиях. После желудоч­ковой экстрасистолы возникает компенсаторная пауза, которая является следствием выпадения очередной систолы, так как оче­редной импульс от пейсмекера приходит во время экстрасистолы -в период рефрактерное™. Предсердная экстрасистола не сопровож­дается компенсаторной паузой. Другие варианты аритмий изуча­ются в курсе патофизиологии.

Сердце — это полый мышечный орган, который обеспечивает кровообращение. происходят вследствие периодически возникающих в сердечной мышце процессов возбуждения.

Возбуждение в сердце возникает периодически под влиянием процессов, протекающих в нем самом. Эта способность сердца сокращаться под действием импульсов, возникающих в самой ткани без внешних воздействий, получила название автоматии.

Показателем автоматии сердечной мышцы может быть тот факт, что изолированное сердце лягушки, удаленное из организма и помещенное в физиологический раствор, может в течение длительного времени ритмически сокращаться.

Способностью к автоматии обладают определенные участки миокарда, состоящие из специфической (атипической) мышечной ткани, бедной миофибриллами, богатой саркоплазмой и напоминающей эмбриональную мышечную ткань. Специфическая (атипическая) мускулатура образует в сердце проводящую систему.

Помимо специфической ткани, в миокарде сердца есть и неспецифическая (типическая) мышечная ткань. По строению она сходна с поперечно-полосатой скелетной мышечной тканью и образует рабочую часть миокарда.

В клетках специфической ткани находится большое количество межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками атипической ткани и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Представлена тремя узлами — водителями ритма (рис. 1): синусно-предсердный, или синоатриальный, узел расположен в стенке правого предсердия в устье полых вен; предсердно-желудочковый узел, атриовентрикулярный узел, расположенный в нижней трети правого предсердия и межжелудочковой перегородке; от этого узла берет начало предсердно-желудочковый пучок (пучок Гиса ), прободающий предсердно-желудочковую перегородку и делящийся на правую и левую ножки, следующие в межжелудочковой перегородке. В области верхушки сердца ножки пучка Гиса загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокна Пуркинье), погруженных в рабочий (сократительный) миокард желудочков. Проводящая система сердца, как уже говорилось, обладает автоматиеи.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии , выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60-80 в минуту.

Рис. 1. Строение проводящей системы сердца и хронотопография распространения возбуждения: SA — синоатриальный узел. AV- атриовентрикулярный узел. Цифры обозначают охват возбуждением отделов сердца в секундах от момента зарождения импульса в синоатриальном узле

В обычных условиях автоматия всех ниже расположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна пучка Гиса. Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.

Доказательством разной активности водителей ритма является опыт Станниуса с наложением лигатур — перевязок (рис. 2). В опыте на лягушке с помощью лигатуры отделяется часть предсердия вместе с синоатриальным узлом от остальной части сердца. После этого все сердце перестает сокращаться, а отделенный участок предсердия продолжает сокращаться в том же ритме, что и до наложения лигатуры. Это свидетельствует о том, что синоатриальный узел является ведущим, от него зависит частота сердечных сокращений. Станниус назвал этот узел водителем ритма 1-го порядка.

Рис. 2. Лигатуры Станниуса: А — работа сердца без лигатур; Б — лигатура отделяет синусный узел, предсердия и желудочки не сокращаются; В — вторая лигатура, желудочки сокращаются медленно; Г — третья лигатура, верхушка сердца не сокращается, в ней нет атипической ткани

Через 20-30 мин после наложения лигатуры на сердце лягушки проявляется автоматия атриовентрикулярного узла: сердце начинает сокращаться, но в более редком ритме, чем до наложения лигатуры, причем предсердия и желудочки сокращаются одновременно. Атриовентрикулярный узел был назван водителем ритма 2-го порядка. Иногда для включения атриовентрикулярного узла требуется наложить вторую лигатуру, вызвав таким образом механическое раздражение водителя ритма 2-го порядка.

Если на сердце теплокровного животного создать блок между атриовентрикулярным узлов и пучком Гиса, то верхушка сердца будет сокращаться в еще более редком ритме, который зависит от автоматам пучка Гиса или волокон Пуркинье. Наложение третьей лигатуры на верхушку сердца показывает, что в ней отсутствует атипическая ткань, следовательно, она не сокращается, не обладает автоматией.

Автоматизм (греч. automates - самодействующий, самопроизвольный) сердца. Миокард , являясь мышечной тканью, обладает свойствами возбудимости, проводимости и сократимости. Проводящая система сердца обеспечивает последовательные сокращения и расслабления его отделов. Причем это происходит автоматически. Автоматизм сердца - это его способность ритмически сокращаться под влиянием возникающих в нем самом (в клетках его проводящей системы) импульсов. Генератором этих импульсов является синусно-предсердныи узел , в клетках которого возникает потенциал действия (около 90 - 100 мВ), передающийся соседним клеткам проводящей системы, а с них - через вставочные диски на рабочие кардиомиоциты . Возбуждение распространяется по миокарду . Вначале сокращаются предсердия, а затем желудочки. При этом миокард сокращается, когда сила импульса достигает пороговой величины по закону "все или ничего". Согласно этому закону возбудимая ткань дает максимальную ответную реакцию при пороговом или надпороговым раздражении, но если сила раздражения ниже пороговой, ответа нет. Начав сокращаться, миокард уже не отвечает на другие стимулы, пока в нем не начнется процесс расслабления. Здоровый миокард сокращается в течение всей жизни человека и не испытывает при этом утомления. Это связано с рефрактерностью (фр. refractaire "невосприимчивость"). Период абсолютной рефрактерности - это интервал времени, во время которого миокард не отвечает ни на какие импульсы. Миокард является возбудимой тканью. Его клетки обладают потенциалом покоя, генерируют потенциал действия. Возбуждение, которое возникло в любом участке миокарда, передается всем его волокнам. Поэтому в ответ на адекватное раздражение происходит возбуждение всех его волокон. Проводящая система обеспечивает генерацию возбуждения и его проведение к кардиомиоцитам . Клетки синусно-предсердного узла генерируют нервные импульсы, частота которых в покое составляет около 70 в 1 мин, от него возбуждение распространяется в предсердие-желудочковый узел , где задерживается на короткое время, а далее передается на предсердно-желудочковый пучок , по его ножкам и разветвлениям со скоростью около 2 м/с. От окончаний волокон Пуркинье импульс распространяется со скоростью около 1 м/с. Деятельностью сердца управляют

Автоматия сердца — способность сердца ритмически сокращатся под влиянием импульсов возникает в нём самом, без внешних раздражителей.Изолированное сердце может долго сокращатся, если оно находится в физ. растворе В-первые русский врач(Кулябко) оживил сердце ребёнка,умершего от восполения лёгких(через20ч). Позже — восстановил через 20 суток после смерти — работало ~ 13 часов.
Оказалось, что импульсы, обеспечивающие сокращение сердца возникают и распространяются в его особой проводящей систоле. Она образована атипичными мышечными волокнами и нервными волокнами. Импульсы, вызывающие ритмические сокращения сердца возникают в особом участке правого предсердия — синусо-предсердном узле.Он находится у места впадения полой вены.Этот узел — водитель сердечного ритма.В клетках этого узла изменяются биоэлектрические свойства? — возникают биоэлектрические сигналы(участвуют ионы Na).Волна поступает по мышечным волокнам сердца — по стенкам предсердий — сокращение пр. 2-й узел — предсердно-желудочковый -(атриовентрикулярный).Это путь по которомуволна возбуждения идет к желудочку.От 2 узла возбуждение(импульс) идёт по пучку Гиса и волокнам Пуркинье — это видоизменённые мышечные волокна(атипичные) и нервные волокна ножки пучка Гиса и волокон Пуркинье — находятся в стенках желудочка — желудочек начинает сокращатся. Сокращение начинается в верхушке и распространяется вверх.
Возбуждение в сердечной мышце (и других возбужд. тканях) сопровождается изменением разности эл. потенциалов между внутренней и наружной сторонами оболочки мышечного волокна. Возникает потенциал действия. Проведение возб. л. б. зарегистрировано путем приложения электродов к разным участкам сердца; и на поверхность тела.
Методика исследования электрических актов сердца — электрокардиография. ЭКГ отражает состояние сердечной мышцы.


Р — возбуждение предсердия
Р-Q- проходит импульс через л.-желудок узел
QRST- возбуждение желудочков
Q- направлено вниз-сосочк. мышц в П. желудочек(к клапанам)
R- распрастранение возбуждения на основные желудочки
ST- Обмен веществ в миокарде
Метод электрокардиографии точный и чувствительный. При внезапных остановках сердца — электронные стимуляторы; Постоянно — искусственный водитель ритма. При остановке сердца — непрямой и прямой массаж. Сосуды сердца — коронарные сосуды. Сердце нуждается в большом количестве кислорода, чем любой другой орган. Капиллярная сеть сердца очень густая — 1мм в кв.сердечной мышцы приходится 2500 капилляров. Сердце получает кровь из правой и левой венозных артерий (от аорты). Недостаток кровоснабжения приводит к болям.

Автоматия.

Сердечная мышца обладает автоматизмом – способностью самовозбуждаться без раздражителей извне.

Субстратом автоматии в сердце является специфическая мышечная ткань или проводящая система сердца (рис.2).

Рис.2. Схематичное изображение проводящей системы сердца.

Проводящая система включает в себя узлы автоматизма: синоатриальный (СА) , расположенный в стенке правого предсердия между местом впадения верхней полой вены и правым ушком; атриовентрикулярный узел (АВ), расположенный в межпредсердной перегородке на границе предсердий и желудочков.

От атриовентрикулярного узла начинается пучок Гиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, идущие к желудочкам. Ножки пучка Гиса разделяются на более тонкие проводящие пути, заканчивающиеся волокнами Пуркинь е, которые контактируют с клетками сократительного миокарда. Верхушка сердца не обладает автоматией, а лишь сократимостью.

Способность к автоматизму различных отделов проводящей системы сердца изучалась Станниусом путем последовательного наложения на сердце лигатур.

1. Автоматия сердца.

В нормальных условиях генератором возбуждения в сердце является синоатриальный узел. Частота зарядов СА узла в покое 60-80 в мин. СА узел – водитель ритма (пейсмекер) I порядка. Атриовентрикулярный узел является водителем ритма сердца II порядка и работает с частотой 40-50 в мин.

В норме частота разрядов в АВ перекрывается импульсами из СА, поэтому сердце сокращается с частотой СА (пейсмекер I порядка). АВ берет на себя роль водителя ритма, если по каким-либо причинам возбуждение в СА нарушается.

Автоматизм волокон пучка Гиса еще меньше, с частотой 30-40 в мин и, наконец, волокна Пуркинье обладают наименьшей способностью к автоматии, с частотой 20 в мин. Следовательно, существует градиент автоматии сердца – уменьшение способности к автоматизму различных отделов проводящей системы сердца по мере их удаления от синоатриального узла.

Механизм автоматии рассмотрен в следующем разделе.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

(греч. «автоматос» - самодвижущийся) - свойство сердечной мышцы ритмически расслабляться и сокращаться независимо от сознания и внешних раздражителей. Работа сердца осуществляется под контролем сердечно-сосудистого центра, находящегося в продолговатом мозге. От этого центра через вегетативную нервную систему передается возбуждение к специальным клеткам сердечной мышцы, расположенным в правом предсердии (синусный узел). Проводящая система сердца состоит из синусного узла, расположенного у впадения верхней полой вены, в котором самопроизвольно возникают ритмические сокращения клеток.

Эти клетки имеют свойства как мышечной, так и нервной ткани - они возбуждаются, сокращаются и проводят импульс в предсердия. На границе предсердий этот импульс принимают клетки предсердно-желудочкового узла, которые обладают свойствами синусного узла.

От этого узла отходит пучок Гиса, состоящий из нервных волокон. В перегородке между желудочками он делится на две ветви - ножки пучка Гиса, которые, в свою очередь, в стенках желудочков ветвятся на волокна Пуркинье.

Сердце человека

Скорость проведения импульса по проводящей системе в 10 раз превышает скорость проведения по мышечной системе (5 м/с и 0,5 м/с соответственно).

Все части желудочков сокращаются одновременно, что позволяет избежать повреждение мышечной ткани при несогласованном сокращении и расслаблении. Синусный узел задает ритм - он водитель ритма, а темп (частота ритма) зависит от симпатической и парасимпатической нервных систем, волокна которых подходят соответственно от грудного отдела спинного мозга и сердечного центра продолговатого мозга (блуждающий нерв).

Эти же центры получают информацию от чувствительных нервов в стенке аорты и сонных артерий, а также полых вен, которые непосредственно реагируют на увеличение физической нагрузки, повышение температуры тела, уровень CO2 в крови, гормон адреналин.

Л. Богданова «Пособие для поступающих в вузы»

СЕРДЕЧНЫЙ ЦИКЛ. АВТОМАТИЯ СЕРДЦА.

Механическая работа сердца связана с сокращением его миокарда.

Работа правого желудочка в три раза меньше работы левого желудочка.

Ритмические сокращения и расслабления сердца обеспечивают непрерывный ток крови.

Сокращение сердечной мышцы называется систолой, его расслабление — диастолой. При каждой систоле желудочков происходит выталкивание крови из сердца в аорту и легочный ствол.

В обычных условиях систола и диастола четко согласованы во времени. Период, включающий одно сокращение и последующее расслабление сердца, составляет сердечный цикл.

Его продолжительность у взрослого человека равна 0,8 секунды при частоте сокращений 70 — 75 раз в минуту. Началом каждого цикла является систола предсердий. Она длится 0,1 сек.

По окончании систолы предсердий наступает их диастола, а также систола желудочков. В момент систолы в желудочках повышается давление крови. По окончании систолы желудочков начинается фаза общего расслабления, длящаяся.

Физиологическое значение периода расслабления состоит в том, что за это время в миокарде происходят обменные процессы между клетками и кровью.

АВТОМАТИЯ — это способность к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце.

Природа автоматии до сих пор до конца не выяснена. Но однозначно ясно, что возникновение импульсов связано с деятельностью атипических мышечных волокон, заложенных в некоторых участках миокарда.

Внутри атипических мышечных клеток спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусный узел.

В атипических волокнах этого узла спонтанно возникают импульсы с частотой 60-80 раз в минуту. Он является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковый узел. Третий участок — это атипические волокна, составляющие пучок Гиса, лежащий в межжелудочковой перегородке. От пучка Гиса берут начало тонкие волокна атипической ткани — волокна Пуркинье, ветвящиеся в миокарде желудочков.

Все участки атипической ткани способны генерировать импульсы, но их частота самая высокая в синусном узле, поэтому его называют водителем ритма первого порядка (пейсмекером первого порядка), и все другие центры автоматии подчиняются этому ритму.

Совокупность всех уровней атипической мышечной ткани составляют проводящую систему сердца.

Благодаря проводящей системе волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду.

Изолированное сердце при снабжении его питательным раствором способно сокращаться вне организма продолжительное время.

ВОЗБУДИМОСТЬ СЕРДЕЧНОЙ МЫШЦЫ.

Возбудимость сердечной мышцы заключается в том, что под действием различных раздражителей (химических, механических, электрических и др.) сердце способно приходить в состояние возбуждения.

В основе процесса возбуждения лежит появление отрицательного электрического потенциала на наружной поверхности мембран клеток, подвергшихся действию раздражителя. Как и в любой возбудимой ткани, мембрана мышечных клеток поляризована. В покое она снаружи заряжена положительно, изнутри — отрицательно. Разность потенциалов определяется различной концентрацией ионов Nа + и К + по обе стороны мембраны. Действие раздражителя увеличивает проницаемость мембраны для ионов К + и Nа +, происходит перестройка мембранного потенциала в результате возникает потенциал действия, распространяющийся и на другие клетки.

Таким образом происходит распространение возбуждения по всему сердцу.

Импульсы, возникшие в синусном узле, распространяются по мускулатуре предсердий. Дойдя до атриовентрикулярного узла, волна возбуждения распространяется по пучку Гиса, а затем по волокнам Пуркинье.

Благодаря проводящей системе сердца наблюдается последовательное сокращение частей сердца: сначала сокращаются предсердия, затем желудочки.

Особенность атриовентрикулярного узла — проведение волны возбуждения только в одном направлении: от предсердий к желудочкам.

ПЕРЕДАЧА ВОЗБУЖДЕНИЯ В МИОКАРДЕ.

Появление электрических потенциалов в сердечной мышце связано с движение ионов через клеточную мембрану.

Основную роль при этом играют катоины натрия и калия. Известно, что внутри клетки калия больше, чем в околоклеточной жидкости, концентрация внутриклеточного натрия, наоборот, меньше, чем околоклеточного. В состоянии покоя наружная поверхность клетки миокарда имеет положительный заряд в результате перевеса катионов натрия; внутренняя поверхность клеточной мембраны имеет отрицательный заряд в связи с перевесом внутри клетки анионов.

В этих условиях клетка поляризована. Под влиянием внешнего электрического импулься клеточная мембрана становится проницаемой для катионов натрия, которые направляются внутрь клетки, и переносит туда свой положительный зарад. Наружная поверхность данного участка клетки приобретает отрицательный заряд в связи с перевесом там анаонов.

Этот процесс называется ДЕПОЛЯРИЗАЦИЕЙ и связан с потенциалом действия. Скоро вся поверхность клетки снова приобретет отрицательный заряд, а внутренная – положительный. Таким образом, происходит ОБРАТНАЯ ПОЛЯРИЗАЦИЯ . Реполяризация мембраны вызывает постепенное закрывание калиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается - это период так называемой относительной рефрактерности.

В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал поддерживается на более или менее постоянном уровне.

Вышеперечисленные процессы происходит во времы систолы. Если вся поверхность снова приобретает положительный заряд, а внутренняя – отрицательный, то это соответствует диастоле.

Во время диастолы происходит постепенные обратные движения ионов калия и натрия, которые мало влияют на заряд клетки, поскольку ионы натрия выходят из клетки, а ионы калия входят в нее одновременно. Эти процессы уравновешивают друг друга.

Вышенезванные процессы относятся к возбуждению единичного мышечного волокна миокарда.

Возникнув при деполяризации, импульс вызывает возбуждение соседных участков миокарда, которые постепенно охватывает весь миокард, и развивается по типу цепной реакции. Возбуждение сердца начинается в снусном узле. Затем от синусного узла процесс возбуждения распространяется на предсердия.

От предсердий оно идет к узлу. Обогнув это соединение, возбуждение переходит на ствол пучка Гиса.

ЭЛЕКТРОКАРДИОГРАФИЯ.

ЭЛЕКТРОКАРДИОГРАФИЯ (ЭКГ) — является тестом, проведение которого позволяет получать ценную информацию о состоянии сердца.

Автоматия сердца

Суть данного метода состоит в регистрации электрических потенциалов, возникающих во время работы сердца и в их графическом отображении на дисплее или бумаге.

ПРИМЕНЕНИЕ

Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений - аритмии).

Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).

Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.

Выявление нарушений внутрисердечной проводимости (различные блокады).

Зубец Р отражает период возбуждения предсердий; зубец Q отражает период возбуждения межжелудочковой перегородки; зубец R самый высокий в ЭКГ, он соответствует периоду напряжения оснований желудочков; зубец S — полный охват миокарда желудочков возбуждением; зубец Т отражает полное восстановление мембранного потенциала клеток миокарда, т.е.

потенциал покоя.

ЭКГ представляет собой запись суммарного электрического потенциала, появившегося при возбуждении множества миокардиальных клеток, а метод исследования называется электрокардиографией.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Автоматия сердца

Сердце, удаленное из организма, продолжает ритмически сокращаться. Эта особенность сердца дает основание заключить, что причины, которые вызывают сокращение сердца, находятся в нем самом. Способность сердца ритмично сокращаться независимо от каких-либо внешних раздражений называется автоматией.

Автоматию сердца легко можно наблюдать, если вырезать сердце у лягушки и поместить на стеклышко. Такое сердце первое время продолжает сокращаться, но вскоре прекращает свою деятельность.

Если же через вырезанное из организма сердце холоднокровного или теплокровного животного пропускать раствор Рингера или какой-либо другой раствор, заменяющий кровь, то сердце очень долгое время продолжает работать.

Такое сердце называется изолированным.

Русский физиолог А. А. Кулябко проделал замечательный опыт. Он оживил сердце, ребенка, умершего от воспаления легких, через 20 часов после его смерти. Пропусканием через сердце, вернее через сосуды сердца, солевого раствора ученому удалось восстановить работу сердца, и оно начало ритмично работать. Все эти опыты показывают, что причины, вызывающие автоматическую деятельность сердца, находятся в самом сердце. Возникает вопрос, где же зарождается импульс, т.

АВТОМАТИЯ СЕРДЦА

е. возбуждение?

У высших животных возбуждение возникает в особых скоплениях нервных и мышечных элементов. В этих скоплениях нервные и мышечные элементы так тесно переплетены между собой, что отделить их друг от друга практически невозможно. Местом возникновения возбуждения у теплокровных животных являются именно эти сложные скопления нервной и мышечной ткани, получившие название узлов. Однако мышечные элементы, входящие в состав узлов, не являются обычными мышечными волокнами; они видоизменены и отличаются своим строением от остальных мышечных волокон.

Причиной автоматии является изменение обмена веществ в узлах и их клетках.

Возникновение периодических волн возбуждения зависит также от реакции крови: сдвиг реакции в щелочную сторону вызывает учащение сердцебиения, а в кислую сторону - замедление.

Большое значение имеет соотношение между собой ионов натрия, калия и кальция. При относительном увеличении концентрации ионов натрия и калия деятельность сердца замедляется и ослабляется. При относительном увеличении концентрации ионов кальция сердце постепенно перестает расслабляться.

Статья на тему Автоматия сердца