Главная · Зубная боль · Кадкам система в стоматологии. Каким образом данные системы могут быть использованы в стоматологии? Краткий обзор различных моделей

Кадкам система в стоматологии. Каким образом данные системы могут быть использованы в стоматологии? Краткий обзор различных моделей

CAD/CAM технологии в ортопедической стоматологии

к.м.н., стоматолог-ортопед Ервандян Арутюн Гегамович

С момента изобретения человеком компьютера настала новая эра в науке, технике и просто в жизни человека. В то время как большинство людей способны использовать компьютерную технику максимум для общения в социальных сетях, скайпе и совершения онлайн покупок, другие уже давно используют компьютеры для совершения сложнейших математических измерений, 3D проектирования, программирования, изучения сопротивления материалов и усталостных нагрузок, а также в области CAD/CAM технологий. CAD/CAM - это аббревиатура, которая расшифровывается как computer-aided design/drafting и computer-aided manufacturing , что дословно переводится как компьютерная помощь в дизайне, разработке и компьютерная помощь в производстве, а по смыслу - это автоматизация производства и системы автоматизированного проектирования / разработки.

С развитием технологий, ортопедическая стоматология также прошла эволюция от времён бронзового человека, когда привязывались искусственные зубы золотой проволокой к соседним зубам, до современного человека, который использует технологию CAD/CAM.

(112.11 КБ) 3142 просмотра


В момент появления CAD/CAM, основными технологиями изготовления коронок и мостовидных протезов были старая и имеющая много недостатков технология штамповки и пайки, более перспективная и передовая технология литья и менее распространённые технологии, также лишённые недостатков штамповки и пайки, сверхпластичная формовка и спекание. С другой стороны, две последние технологии можно применять для очень ограниченного количества материалов, например, сверхпластичную формовку только для титана. CAD/CAM технология лишена всех недостатков, присущих технологиям литья, например, усадки, деформации, в том числе и при извлечении отлитых коронок, мостовидных протезов или их каркасов. Отсутствует опасность нарушения технологии, например, перегрева металла при литье или повторное использование литников, что приводит к изменению состава сплава. Отсутствует усадка каркаса после нанесения керамической облицовки, возможная деформация при снятии восковых колпачков с гипсовой модели, поры и раковины при литье, непролитые участки и т.д.. Основным недостатком технологии CAD/CAM является высокая себестоимость, что не позволяет широко внедриться этой технологии в ортопедическую стоматологию. Первоначальная технология CAD/CAM представляла из себя компьютер с необходимым программным обеспечением на котором производилось трёхмерное моделирование несъёмного протеза с последующим компьютерным фрезерованием с точностью до 0.8 микрон из цельного металлического или керамического блока.

Соответственно, расходными материалами для данной процедуры становились дорогостоящие блоки и фрезы, в основном твёрдосплавные. Благодаря дальнейшей эволюции CAD/CAM технологии, на смену компьютерному фрезерованию пришла технология 3D печати, которая позволила уменьшить себестоимость и дала возможность изготавливать объекты любой формы и сложности, которые невозможно было произвести до этого ни одной из существующих технологий. Например, благодаря 3D печати можно изготовить цельный полый объект с любой формой внутренней поверхности. Применительно к ортопедической стоматологии, можно изготовить полое тело протеза, что позволит не уменьшая прочности конструкции уменьшить его вес.

В свою очередь технологию 3D печати в стоматологии можно разделить на три ветви.
Первая ветвь - это 3D печать воском, например, каркаса мостовидного протеза, с последующим литьём. Фактически этот способ является более совершенной технологией моделирования конструкций протезов с присущими ей всеми недостатками литья. Т.е. можно смоделировать на компьютере и напечатать из воска идеальный каркас, но при литье опять столкнуться со всеми проблемами, присущими литью. Таким образом, данная технология устраняет все недостатки моделирования каркаса из воска, но не устраняет недостатки технологии литья.
Вторая ветвь - это 3D печать пластмассой. Данная технология позволяет получить как разборные модели челюстей, каркасы из беззольной пластмассы для литья, так и готовые протезы, например коронки или мостовидные протезы из композита, а также напечатать съёмные протезы.

В свою очередь 3D печать пластмассы производится двумя способами:

  • Терпомечать пластмассы
  • Светополимеризационная печать пластмассы
Термопечать можно использовать для 3D печати термопластами, например, съёмных протезов или же для печати беззольной пластмассой. Светополимеризационную печать можно использовать для печати как коронок из композитов, так и каркасов из беззольной пластмассы, съёмных протезов из акрилатов и полиуретана.

Технология термопечати воска и пластмассы схожи и чем-то похожи на принцип печати обычного цветного струйного принтера. Материал разогревается до температуры плавления и микрокаплями наносится, но в отличии от цветного струйного принтера, который печатает только в двух проекция 3D принтер печатает в трёх проекциях и соответственно не краской, а твёрдыми материалами. Благодаря нанесению материала микрокаплями достигается полная компенсация усадки материала.

Светополимеризационная печать похожа на термопечать и отличается только тем, что материал не нужно разогревать, так как он уже жидкий, а затвердевание т.е. полимеризация происходит под действием света синего спектра 445-470 нм.

Кардинально другой принцип используется при 3D печати металлом. Принцип заключается в нанесении одинарного слоя металлического порошка на подложку и спекание или точнее микросварку лазером микроскопических зёрен металла в необходимых участках слоя. После этого наносится сверху ещё один одинарный слой порошка металла, так же производится микросварка лазером микрозёрен металла уже не только между собой, но и с нижним слоем.

Таким образом, послойно печатается трёхмерный объект из металла. После завершения печати готовый металлический объект извлекается из порошка. Оставшийся порошок можно использовать повторно. Данная технология представляет из себя безотходное производство, которое в конечном счёте приводит к уменьшению себестоимости конструкции. А благодаря применению компьютерных технологий достигается высокие качество и точность порядка 1-10 микрон. Предлагаем вашему вниманию видеоролик о 3D печати металлом.
https://www.youtube.com/watch?v=qvl_O1M5Ykk
Такой же принцип печати используется при печати гипсом, только вместо лазера используется связующий агент, так называемый клей, соединяющий частички гипса. Однако печать гипсом не нашла применения в стоматологии, так как модели начали печатать из пластмассы.
Полная версия статьи

Неужели вам не хочется использовать технологию CAD-CAM в своей повседневной практике? Высокое качество и минимальные временные затраты — вот два показателя успешной работы врача, особенно если дело касается непрямых реставраций в стоматологии. Технология CAD-CAM позволяет сократить количество лабораторных этапов реставрации, которые зачастую занимают много времени.

Доктора, которые работают с CAD-CAM, утверждают, что технология CAD-CAM очень проста. Главное — освоить ее и применять в повседневной практике.

Частичные реставрации непрямым методом

Технология CAD-CAM – уникальное сочетание качества реставрации, её стоимости и временных затрат. Непрямые частичные реставрации в стоматологии являются наиболее современным решением многих дефектов. Они позволяют создать прочные бугры, адаптировать реставрацию к десне и обеспечивают превосходную эстетику.

Для комфортной работы должен использоваться надежный протокол лечения.

Первоначальная ситуация: пациент после эндодонтического лечения и с временной композитной пломбой на мезиальной поверхности зуба 16. Предыдущая реставрация не восстанавливала контактный пункт, препятствовала прохождению зубной нити.

Удаляется медиальная часть старой композитной пломбы, устанавливается коффердам. Сразу после удаления старой композитной пломбы приступаем к реставрации дентинным оттенком A2 (Filtek Supreme XTE).

После снятия коффердама окклюзионная поверхность препарируется на 2 мм. Появляется место для непрямой реставрации в стоматологии. Глубина препарирования может варьироваться в зависимости от типа и свойств реставрационного материала.

Препарируется деминерализованная эмаль в области дистального маргинального гребня. Краевые гребни перенесены в зону, где находились клинья. Эта область легко доступна для зондов, щеток, зубной нити. Считается, что частичные реставрации боковой группы зубов требуют обширного препарирования. Современная методика препарирования представляет собой комбинацию из старых техник. Основные принципы:

1. Незаметный переход пломба-зуб

2. Доступ ко всем поверхностям

3. Минимальный объем препарировани

4. Плоские поверхности

5. Уникальная геометрическая форма.

После удаления клиньев и коффердама возможна кровоточивость десны. Чтобы остановить кровотечение используют гемостатическую вяжущую пасту 3M ESPE. После 5-минутной экспозиции пасты, ее смывают водой и воздухом.

Рабочая область слегка «напудрена» контрастным агентом CAD-CAM. Выполняется внутриротовое сканирование (TrueDef).

Снятие оттисков для изготовления реставраций технологией CAD-CAM требует других навыков и движений по сравнению с обычными силиконовым оттисками. Поэтому, чтобы помочь врачу, были разработаны специальные инструменты.

Командой Styleitaliano вместе с Smile Line под руководством доктора Гаэтано Паолоне разработана серия ретракторов мягких тканей под названием «Photo-CAD», специально предназначенных для одновременной изоляции языка и щек при работе на зубах нижней челюсти (Photo-CAD LOW), и для изоляции щеки на всем протяжении до вторых или третьих моляров на верхней челюсти (Photo-CAD UP). Название Photo-CAD получено из-за 1) способности выступать в качестве ретрактора при фотосъемке и 2) для получения CAD-оттисков (Computer Assisted Design).

STL-файл немедленно отправляется в лабораторию (Джузеппе Мигнани, Болонья). В это же время врач решает другие задачи. При классическом подходе к лечению стоматолог должен проектировать реставрацию и выполнять дальнейшую работу самостоятельно, затрачивая много времени.

Проверка окклюзионных взаимоотношений.

Необходимо четко наладить связь между лабораторией и клиникой. Как только лаборатория получает файл, довольно быстро проектируется 3D-дизайн: примерно через 20 минут файл возвращается назад.

Современные материалы, такие как литий-дисиликат, часто используются для проведения реставраций с превосходными результатами. Однако до сих пор альтернативой керамическим реставрациям остается лабораторно изготовленная композитная реставрация. Очевидные плюсы — мягкость материала и отсутствие вреда для антагонистов, а также несложная коррекция при необходимости и хорошая обрабатываемость. Для данного клинического случая был выбран LAVA ultimate, обладающий отличными свойствами.

Окончательная моделировка и полировка выполняются довольно быстро, обеспечивая идеальную анатомию.

Вкладка Оверлей припасовывается и при необходимости корректируется. Если припасовка не вызывает вопросов, переходим к изоляции рабочего поля и фиксации вкладки.

Контактные пункты должны быть проверены и откорректированы абразивной резиновой головкой, пока не будет получен идеальный переход реставрация-зуб, стабильность и соответствие десневому краю.

Реставрации CAD-CAM довольно точны и требуют лишь незначительных корректировок. Кажется, что цвет реставрации далек от идеала. Однако после цементировки граница зуб-реставрация, скорее всего, исчезнет.

Квадрант изолирован и все готово к фиксации реставрации.

Сразу же выполняется пескоструйная обработка реставрации с давлением 2 бар на расстоянии минимум 5 сантиметров от поверхности.

После тщательной пескоструйной обработки композитной реставрации при изолированных соседних зубах, защищенных матрицами, проводится избирательное кислотное травление эмали с 37% фосфорной кислотой в течение 15 секунд.

Полость обрабатывают универсальной адгезивной системы (Scotchbond Universal, 3M ESPE), брашируют в течение 20 секунд и оставляют на 40 секунд, после этого воздухом удаляют избыток материала. Не полимеризуют.

Такой же адгезив помещается внутрь реставрации, избыток материала удаляется описанным выше способом.

Цемент двойного отверждения помещается внутрь реставрации.

Избыток цемента, вытекающий через край при проведении полимеризации.

С помощью небольшого инструмента (Fissura, LM Arte, LM instruments, Parainen, Финляндия) избыток цемента удаляется со всех поверхностей, в том числе аппроксимальных.

Круглым конденсером (Condensate, LM Arte, LM instruments, Parainen, Финляндия) реставрация удерживается на месте, редко при этом вытекает избыток материала. Флоссом обрабатывают аппроксимальные поверхности.

Избытки материала удаляются кистью.

Длительная полимеризация.

Полимеризованный избыток материала удаляется острым инструментом (Eccesso, LM Arte, LM instruments, Parainen, Finland), особое внимание уделяется проксимальной области.

Финальный вид реставрации.

Минимальные корректировки окклюзионной поверхности.

Финальный вид реставрации.

Перевод выполнен Петрущенко А.. Пожалуйста, при копировании материала не забывайте указывать ссылку на текущую страницу.

Технология CAD-CAM В Современной Стоматологии обновлено: Март 17, 2018 автором: Валерия Зелинская

Зубные протезы из циркония постепенно завоевывают мир. Их основное преимущество состоит в отсутствии металлического основания, что позволяет иметь более натуральный вид и оттенок. Но их нельзя изготовить литьем. Потому что при спекании цирконий дает усадку, первоначальные параметры заготовки уменьшаются, и она становится непригодна к использованию. И только CAD/CAM/CAE системы сделали циркониевые протезы реальностью.

Что такое CAD/CAM системы в стоматологии

CAD/CAM – новейшая технология, по которой изготавливаются каркасы зубных протезов из циркония, стеклокерамики, кобальт-хрома, титана и других материалов. Она основана на моделировании заготовки в специальной компьютерной программе и обработке на фрезеровальном оборудовании с числовым программным управлением.

Название технологий расшифровывается:

  • CAD – Computer-Aided Design – компьютерная помощь в проектировании (технический дизайн виртуального образа с помощью моделирования и CAD CAM программы).
  • CAM – Computer-Aided Manufacturing – компьютерная помощь в производстве (изготовление проектируемой конструкции с помощью специального ПО).

Этапы CAD/CAM технологии в стоматологии:

Помимо специального программного обеспечения в систему входит оборудование: сканер, фрезерный станок с ЧПУ, печь для спекания. Техника CAD/CAM/CAE обеспечивает полный цикл производства протеза – от трехмерной модели до готового изделия.

ПРЕИМУЩЕСТВА СИСТЕМ

  • Высокая точность изготовления изделий;
  • Кратчайшие сроки производства стоматологических конструкций;
  • Учет потребностей конкретного пациента;
  • Изготовление протезов из диоксида циркония;
  • Автоматизированный процесс, исключающий «человеческий фактор».

При выборе системы проектирования CAD/CAM важно обратить внимание на тип: открытая или закрытая. Закрытые могут работать только с определенными видами материалов (дисками, блоками и пр.) компании-производителя. Они хороши тем, что процессы максимально отлажены и синхронизированы.

Преимущество открытых систем в том, что все элементы (сканер, станок, программное обеспечение) максимально адаптированы к совмещению с иным оборудованием и компьютерным ПО. То есть их можно обновлять, расширять набор функций и технологий.

Сравнительный обзор существующих моделей

Фрезерное оборудование открытого типа DYAMACH DT-2 позволяет использовать любые материалы CAD/CAM (керамику, полимеры, металлы), гарантируя высокую точность и производительность. Вертикальный 5-осевой фрезеровальный станок с ЧПУ может работать непрерывно.

ПРЕИМУЩЕСТВА:

  • рабочие оси имеют широкие углы поворота: А на 360 гр., В на +/- 43 гр;
  • скорость шпинделя до 60000 об./мин;
  • подходит для обработки сложных балок и абатментов из металла (в т.ч. титана);
  • использует любые типы фрезы (3, 4, 6 мм) в отличие от аналогичных моделей, в которых предусмотрены фрезы только в 6 мм;
  • профессиональное устройство по цене оборудования среднего класса;
  • высокая скорость фрезеровки (абатмент из металла за 20 минут, мост из кобальт-хрома из трех моляров за 60 минут).

Фрезерный станок Dyamach DT-2 работает быстрее и точнее других с бесколлекторным двигателем Mitsubishi. Это одна из лучших систем по набору характеристик, которая оправдывает свою стоимость.

Видео:


Открытые системы, не требуют ежегодного обновления ПО. Фрезерное оборудование Roland отличается тихой работой, а также высочайшей точностью обработки циркония и других материалов.

Фрезерная установка DWX 51D

ПРЕИМУЩЕСТВА:

  • создает высокоточные коронки из циркония, а также нового материала TRINIA (безметалловые коронки, которые по прочности превосходят цирконий и кобальт) ;
  • фрезеровка заготовки одновременно по 5 осям;
  • угол наклона по оси В для повышения точности увеличен до 30 гр;
  • время обработки одной коронки – 30 минут, одновременно двух – 45 мин, то есть при увеличении количества заготовок уменьшается среднее время на одну единицу; 20 коронок за 6 часов;
  • держатель дисков в форме полумесяца исключает проворачивание диска;
  • автозамена фрез, магазин на 10 шт. ;
  • встроенный ионизатор.

Видео:



Фрезерная установка DWX 4W (стеклокерамика)



ПРЕИМУЩЕСТВА:

  • обрабатывает до 3-х различных заготовок в безостановочном режиме, что позволяет сократить время изготовления и процесс обслуживания пациентов;
  • обработка стеклокерамики (Vita, Ducera, Ivoclar и др.);
  • специальные алмазные фрезы;
  • фрезеровка по 4 осям, угол поворота 360 гр;
  • автоподача инструментов (4 станции);
  • высокоскоростной шпиндель Jaeger (60000 об./мин);
  • системы водяного охлаждения и очистки оборудования;
  • наличие светового оповещения о стадиях текущих операций;
  • совместимость с большинством моделей сканеров и ПО.

Видео:


Надежные и долговечные фрезерные аппараты Roland имеют лучшие гарантийные и пост продажные условия сотрудничества по сравнению с конкурентами. Благодаря богатому функционалу и привлекательной стоимости они востребованы на рынке.

Sirona предлагает зуботехническим лабораториям полноценную систему, элементы которой отлично функционируют по отдельности и в сочетании друг с другом. Средний ценовой сегмент аппаратов делает их популярными в лабораториях разных размеров.

ПРЕИМУЩЕСТВА SIRONA:

  • прибыльность лаборатории благодаря повышению производительности;
  • гибкость и внедряемость с функциональным ПО;
  • перспективность с возможностью модернизации и дополнения.

Фрезерно-шлифовальные аппараты inLab MC XL и Cerec MC XL одни из самых точных и быстрых. Переключение между шлифованием и фрезерованием займет несколько минут. Вы ощутите экономическую выгоду с большим объемом фрезерования.

Отдельного внимания заслуживает сканер inEos Blue благодаря интуитивному управлению, простому «апгрейду» и крупным масштабам сканирования.

CEREC MC XL

Видео:



Закрытая система Cad/Cam-system 5-tec включает фрезерную установку, сканер, печь, Cad/Cam программы и ПК с монитором. Все сразу для идеальной совместимости и слаженности процессов.

ПРЕИМУЩЕСТВА:

  • уникальная технология производства цельных циркониевых изделий;
  • низкая стоимость обновлений;
  • высококачественные CAD/CAM материалы собственного производства;
  • обучение в режиме онлайн;
  • единая информационная поддержка.

Система ZirkonZahn с 5 осями доступнее других по цене, но не уступает по качеству, поэтому отлично подходит для оснащения зуботехнической лаборатории.

Видео:



Wieland производит самое компактное КАД/КАМ оборудование в мире. Открытая система Zenotec mini весит всего 45 кг и полностью умещается на рабочем столе. Соберите свою комбинацию элементов с нужным функционалом.

В небольшую лабораторию впишется фрезерный станок Zenotec mini. Здесь использована 4-осевая технология, что оптимально для всех типов работ. Zenotec Select – 5-осевое фрезерное устройство, мощнее и функциональнее предыдущего, и выше по стоимости.

Также Wieland производит быстрые и точные сканеры, например, Zeno Scan S 100, которые гарантируют точность изготовления каркаса и экономию рабочего времени.

ПРЕИМУЩЕСТВА КАД КАМ СИСТЕМЫ:

  • компактный размер;
  • бессрочное ПО, гибкое и дружественное;
  • производительность порядка 1800 единиц/мес.

ZENOTEC Mini

Видео:

ZENOTEC SELECT

Видео:



Система CORiTEC 550i обеспечивает наивысшее качество фрезерования при обработке твердых материалов. Новейшая конструкция осей с гранитным основанием обеспечивает идеальную гладкость. Самый скоростной шпиндель (80000 об./мин) гарантирует высокую точность и стойкость. Ценовой сегмент «выше среднего» полностью оправдан широким функционалом, качеством работы и надежностью оборудования.

ПРЕИМУЩЕСТВА:

  • самая высокая производительность;
  • возможность работать круглосуточно;
  • высокоточные линейные электродвигатели без люфта;
  • обработка любых материалов, включая кобальт и хром;
  • наивысшая точность и динамика работы.

Видео:

Современная реставрационная стоматология немыслима без компьютерных технологий. Через 2-3 года каждая современная клиника будет осуществлять CAD/CAM протезирование. Чтобы не оказаться в числе отстающих, приличные лаборатории заботятся о покупке системы уже сейчас.

Изучение продуктов различных производителей поможет определиться с необходимым функционалом и сделать осознанный выбор. С CAD/CAM-system технологии будущего доступны уже сегодня!

к.м.н., стоматолог-ортопед Ервандян Арутюн Гегамович

Дата публикации — 4.10.2015

С момента изобретения человеком компьютера настала новая эра в науке, технике и просто в жизни человека. В то время как большинство людей способны использовать компьютерную технику максимум для общения в социальных сетях, скайпе и совершения онлайн покупок, другие уже давно используют компьютеры для совершения сложнейших математических измерений, 3D проектирования, программирования, изучения сопротивления материалов и усталостных нагрузок, а также в области CAD/CAM технологий. CAD/CAM — это аббревиатура, которая расшифровывается как computer-aided design/drafting и computer-aided manufacturing , что дословно переводится как компьютерная помощь в дизайне, разработке и компьютерная помощь в производстве, а по смыслу — это автоматизация производства и системы автоматизированного проектирования / разработки.

С развитием технологий, ортопедическая стоматология также прошла эволюция от времён бронзового человека, когда привязывались искусственные зубы золотой проволокой к соседним зубам, до современного человека, который использует технологию CAD/CAM. В момент появления CAD/CAM, основными технологиями изготовления коронок и мостовидных протезов были старая и имеющая много недостатков технология штамповки и пайки, более перспективная и передовая технология литья и менее распространённые технологии, также лишённые недостатков штамповки и пайки, сверхпластичная формовка и спекание. С другой стороны, две последние технологии можно применять для очень ограниченного количества материалов, например, сверхпластичную формовку только для титана. CAD/CAM технология лишена всех недостатков, присущих технологиям литья, например, усадки, деформации, в том числе и при извлечении отлитых коронок, мостовидных протезов или их каркасов. Отсутствует опасность нарушения технологии, например, перегрева металла при литье или повторное использование литников, что приводит к изменению состава сплава. Отсутствует усадка каркаса после нанесения керамической облицовки, возможная деформация при снятии восковых колпачков с гипсовой модели, поры и раковины при литье, непролитые участки и т.д.. Основным недостатком технологии CAD/CAM является высокая себестоимость, что не позволяет широко внедриться этой технологии в ортопедическую стоматологию. Первоначальная технология CAD/CAM представляла из себя компьютер с необходимым программным обеспечением на котором производилось трёхмерное моделирование несъёмного протеза с последующим компьютерным фрезерованием с точностью до 0.8 микрон из цельного металлического или керамического блока.


Соответственно, расходными материалами для данной процедуры становились дорогостоящие блоки и фрезы, в основном твёрдосплавные. Благодаря дальнейшей эволюции CAD/CAM технологии, на смену компьютерному фрезерованию пришла технология 3D печати, которая позволила уменьшить себестоимость и дала возможность изготавливать объекты любой формы и сложности, которые невозможно было произвести до этого ни одной из существующих технологий. Например, благодаря 3D печати можно изготовить цельный полый объект с любой формой внутренней поверхности. Применительно к ортопедической стоматологии, можно изготовить полое тело протеза, что позволит не уменьшая прочности конструкции уменьшить его вес. Уникальность технологии 3D печати можно увидеть на видео.


В стоматологии способ 3D печати зависит от печатаемого материала и поэтому саму технологию условно можно разделить на несколько ветвей:

  1. Печать воском
  2. Печать пластмассой
  3. Печать металлом
  4. Печать гипсом/керамикой

Первая ветвь — это 3D печать воском. Она относится к технологии термопечати, т.е. воск нагреваясь переходит в жидкое состояния, и соответственно в таком состоянии покапельно наносится. После нанесения остывает и переходит в твёрдое состояние. Фактически этот способ является более совершенной технологией моделирования конструкций протезов с присущими ей всеми недостатками литья. Т.е. можно смоделировать на компьютере и напечатать из воска идеальный каркас, но при литье опять столкнуться со всеми проблемами присущими литью. Таким образом данная технология устраняет все недостатки моделирования каркаса из воска, но не устраняет недостатки технологии литья.

Вторая ветвь — это 3D печать пластмассой. Данная технология позволяет получить как разборные модели челюстей, каркасы из беззольной пластмассы для литья, так и готовые протезы, например, коронки или мостовидные протезы из композита, а также напечатать съёмные протезы.

В свою очередь существует два метода 3D печати пластмассой:

  1. Терпомечать
  2. Светополимеризационная печать

Термопечать можно использовать для 3D печати термопластами, например, съёмных протезов или же для печати беззольной пластмассой. Светополимеризационную печать можно использовать для печати как коронок из композитов, так и каркасов из беззольной пластмассы, съёмных протезов из акрилатов и полиуретана.

Технология термопечати воска и пластмассы схожи и чем-то похожи на принцип печати обычного цветного струйного принтера. Материал разогревается до температуры плавления и микрокаплями наносится, но в отличии от цветного струйного принтера, который печатает только в одной плоскости, 3D принтер печатает в трёх плоскостях и соответственно не краской, а твёрдыми материалами. Благодаря нанесению материала микрокаплями достигается полная компенсация усадки материала. Кроме этого существует ещё один способ термопечати пластмассой, при котором пластмассовая проволока нагревается и непрерывно подаётся на поверхность печатаемого объекта (FDM 3D печать). Такая технология самая дешёвая и распространённая в мире, но в стоматологии не нашла широкого распространения, так как не обладает высокой точностью.

Более совершенным методом термопечати является технология выборочного термического спекания «SHS » (Selective Heat Sintering). Подробное описание метода представлено в разделе «3D печать металлом».

Фотополимерная печать

Существует 2 способа фотополимерной 3D печати пластмассой в стоматологии:

  1. Стереолитографическая 3D печать (SLA)
Струйная фотополимерная 3D печать (MJM)

Светополимеризационная (фотополимерная) печать похожа на термопечать и отличается только тем, что материал не нужно разогревать, так как он уже жидкий, а затвердевание т.е. полимеризация происходит под действием света синего спектра 455-470 нм.

Стереолитографическая печать (SLA)

Кардинально другой принцип используется в технологии стереолитографической печати. Суть метода заключается в печати в ванне наполненной фотополимерной пластмассой или композитом. В отличие от остальных методов печати при этом методе печать производится сверху вниз и печатаемый объект находится в перевёрнутом состоянии. У многих читателей возникнет вопрос, а как же можно печатать в ванне наполненной фотополимерным материалом, так как должно произойти отверждение всего материала, находящегося в ванне. Всё до гениальности просто. Дело в том, что платформа на которой начинается выращивание печатаемого объекта погружается в толщу фотополимерного композита, не доходя 6-20 мкм до дна (зависит от принтера), т.е. остаётся прослойка фотополимерного материала толщиной 6-20 мкм и соответственно в нужных местах отверждается только эта прослойка. После отверждения платформа поднимается вверх, отрывая отвердевший полимер от дна ванны, затем повторно погружается не доходя 6-20 мкм полимеризованной частью до дна. Таким образом опять создаётся прослойка неотверждённого фотополирмерного материала между дном ванны и уже напечатанным слоем. Процесс повторяется столько раз, сколько слоёв необходимо напечатать для полной готовности объекта.

Преимуществами технологии стереолитографической печати являются:

  1. Высокая точность;
  2. Высокая разрешающая способность;
  3. Гладкая поверхность.

Недостатками стереолитографической печати являются:

  1. Возможность печати только одним цветом;
  2. Фоновая засветка фотополимера, так как небольшая мощность светового излучения рассеивается в общей массе фотополимера. Таким образом часть фотополимерного материала портится, что приводит к увеличению себестоимости печати;
  3. Ограниченный ресурс ванной. Из-за того, что полимер должен постоянно отрываться от дна ванны, её изготавливают из силикона или аналогичного материала, и со временем она выходит из строя, соответственно требует замены;
  4. Ограниченный ресурс дорогостоящего лазера.

Третья ветвь – 3D печать металлом. Суть метода заключается в точечном оплавление металлического порошка лучом до получения однородной структуры. Существует несколько способов 3D печати металлом:

  1. DMD «прямое осаждение металла » (Direct Metal Deposition);
  2. LDT «технология лазерного напыления » (Laser Deposition Technology);
  3. LCT «технология лазерного наплавления » (Laser Cladding Technology);
  4. LFMT «технология лазерного свободноформенного производства » (Laser Freeform Manufacturing Technology);
  5. LMD «лазерное осаждение металла » (Laser Metal Deposition);
  6. LMF «лазерное сплавление металла » (Laser Metal Fusion);
  7. SLS «выборочное лазерное спекание » (Selective Laser Sintering);
  8. DMLS «прямое лазерное спекание металлов » (Direct Metal Laser Sintering);
  9. SLM «выборочное лазерное плавление » (Selective Laser Melting);
  10. LC «лазерная фокусировка » (LaserCusing);
  11. EBM «электронно-лучевое плавление » (Electron Beam Melting);
  12. SHS «выборочное термическое спекание » (Selective Heat Sintering).

Технология выборочного лазерного спекания (SLS ) была изобретена Карлом Декардом и Джозефом Биманом из Университета Техаса (Остин, США) в середине 1980-х.
Технология выборочного лазерного плавления (SLM ) была изобретена Вильгельмом Майнерсом и Конрадом Виссенбахом из Института лазерной техники (ILT) Общества Фраунгофера (Ахене, Германия) совместно с Дитером Шварце и Маттиасом Фокеле из компании F&S Stereolithographietechnik GmbH (Падерборн, Германия) в 1995 году.

Все эти методы можно использовать в стоматологии. Условно их можно разделить на две группы, отличающиеся только методом нанесения порошка металла. К первой группе относятся методы подачи порошка с одновременной микросваркой. Ко второй группе относятся методы нанесения слоя порошка с последующей микросваркой порошка.

I группа методов 3D печати металлом.

Метод 3D печати методом прямого осаждения металла (DMD ) очень похож на методику лазерной сварки с применением порошка. Суть метода представлена на схеме.

Лазерный луч точечно нагревает участок и туда же подаётся аэрозоль порошка металла в среде инертного газа. Под действием лазера происходит оплавление порошка и переход в жидкую фазу, которая после охлаждения затвердевает. Затем процесс повторяется и таким образом покапельно наслаивается металл. В случае лазерной сварки всё делает зубной техник в ручном режиме. При 3D печати процесс контролируется компьютером, поэтому он производится максимально быстро и точно.

DMD , LFMT , LMD , LDT и LCT методы ничем не отличаются, единственное отличие в том, что LDT и LCT методы применяются для реставрации повреждённых объектов, например, при истирании.

II группа методов 3D печати металлом.

При послойном методе производится нанесении слоя металлического порошка, имеющего микроскопическую толщину (10-50 мкм), на подложку и спекание или точнее микросварка лазером в среде инертного газа микроскопических зёрен металла в необходимых участках слоя. После этого наносится сверху ещё один слой порошка металла, и производится микросварка лазером микрозёрен металла уже не только между собой, но и с нижним слоем.


Микросварка металлического порошка

Таким образом, послойно печатается трёхмерный объект из металла. После завершения печати готовый металлический объект извлекается из порошка. Оставшийся порошок можно использовать повторно. Данная технология представляет из себя безотходное производство, которое в конечном счёте приводит к уменьшению себестоимости конструкции. А благодаря применению компьютерных технологий достигается высокие качество и точность порядка 1-10 микрон. Точность метода ограниченна только диаметром лазерного луча и размером микрозёрен печатаемого материала. Но необходимо помнить, что чем выше точность печати, тем медленнее производиться печать. Предлагаем вашему вниманию видеоролик о 3D печати металлом в стоматологии.

Отличием SLS (выборочное лазерное спекание) от DMLS (прямое лазерное спекание металлов) заключается в том, что второй метод можно применяется только для печати металлом. А методом SLS можно применять для печати любым термопластом. SLS от SLM отличается только тем, что в первом случае производится спекание, а во втором — плавление порошка. Данное отличие является условным, так как при спекании также происходит плавление металла, а отличие названия и описания метода связано с коммерческими моментами. Тоже касается и метода LC и LMF . Поэтому разделение всех этих методов является надуманным, хотя по данным создателей технологий SLS и DMLS плотность печатаемого объекта может регулироваться при использовании этих методов печати.
Электронно-лучевое плавление (EBM ) отличается от остальных методов тем, что вместо лазерного луча применяется электронный луч (пучок) высокой мощности, а сама печать производится в условиях вакуума.
Выборочное термическое спекание (SHS ) отличается от остальных методов тем, что вместо лазерного или электронного луча используется термоголовка. Благодаря этой технологии возможно создание 3D принтеров маленького размера. Но недостатком технологии является низкая температура печати и поэтому она может быть применена только для печати легкоплавкими металлами и термопластами.

Четвёртая ветвь – 3D печать гипсом/керамикой. Принцип печати гипсом похож на технологию SLS , только вместо лазера используется связующий агент, так называемый клей, соединяющий частички гипса или керамики. Однако печать гипсом не нашла применения в стоматологии, так как модели начали печатать из пластмассы. Печать керамикой является перспективной и позволит печатать каркасы или готовые конструкции коронок и мостовидных протезов.

Использование статьи в библиографическом списке «Ервандян, А.Г. CAD/CAM технологии в ортопедической стоматологии [Электронный ресурс] / Арутюн Гегамович Ервандян, 4.10.2015.

CAD/CAM - это сокращение слов Computer-Aided Design (проектирование с использованием компьютерной технологии) и Computer-Aided Manufacture (изготовление с использованием компьютерной технологии). В течение многих лет системы CAD/CAM находили себе применение в различных отраслях промышленности, особенно в автомобильной. Компьютеры облегчают все стадии автомобильного производства, начиная с исходной концепции проекта и вплоть до конечного производства составляющих машину деталей. Ныне такие технологии находят себе множество разнообразных применений в медицине и стоматологии.

CAD (Проектирование с использованием компьютерной технологии)

Проектирование с использованием компьютерной технологии - это использование компьютерных систем для проектирования и разработки продукта. Компьютер применяется в качестве высокоусовершенствованного заменителя чертежной доски, позволяющего выполнить трехмерное моделирование и проектирование, не прибегая к ручке и туши. Модель, созданная в такой системе, может быть показана под любым углом, а также может быть смоделирована так, чтобы рассмотреть ее проекцию в определенном освещении. Отдельные элементы чертежа могут быть пересмотрены, заменены, а вся модель в целом - перестроена заново. После того, как проект доведен до окончательного уточнения, детализированные и снабженные размерами чертежи, могут быть распечатаны с целью использования в процессе производства. Или же, с другой стороны, они могут быть переданы далее, и информация относительно формы детали может быть превращена в производственные инструкции, которые будут переданы непосредственно машинам, изготовляющим данную деталь.

В особенно прогрессивных системах, возможно, принимать в расчет также и структурные свойства материалов. Математическое моделирование конструкции с использованием этих величин дает возможность получить оценку определенных моментов ее поведения еще до того, как она покинет кульман. Эта технология известна под названием «анализ конечного элемента». Можно оценить последствия тех или иных изменений в проекте в отношении поведения детали, еще прежде чем она будет изготовлена хотя бы в виде физической модели.

САМ (Изготовление с использованием компьютерной технологии)

Изготовление с использованием компьютерной технологии - это использование компьютерных систем для управления механизированными инструментами. Это позволяет придавать материалам определенную форму с тем, чтобы создавать из них конструкции и приспособления. Компьютеры, контролирующие механизированные инструменты, могут действовать в соответствии с инструкциями, полученными от системы проектирования с использованием компьютерной технологии. Таким образом, возникает полная интегрированная система. Объект, который необходимо изготовить, конструируется на экране компьютера, после чего проект воплощается в жизнь компьютером же, передающим свои инструкции непосредственно механизированным инструментам.

В отношении постановки пломб стоматология была всегда ограничена определенным ассортиментом доступных технологий изготовления. Пломбирование зубов в одно посещение всегда было ограничено использованием амальгамы для зубной пломбы, кислотно-основными смесями или же полимеризацией смол. Пломбы, изготовляемые в лабораторных условиях, ограничивались выплавляемым модельным литьем, агломерированием фарфоровых пломб и полимеризацией смол. Это очень жестко ограничивало диапазон материалов, которые могли быть использованы. Давая нам новую методику контроля формы объекта, CAD/CAM системы в стоматологии открывают доступ к целым системам новых материалов.

Технология CAD/CAM в стоматологии делает возможным использование керамических материалов с очень хорошими характеристиками и композитных материалов на основе стеклянного вяжущего вещества, которые были произведены в оптимальных фабричных условиях, при соблюдении необходимых технологических характеристик. Такие материалы имеют огромные преимущества перед теми, что используются здесь традиционно.

В сравнении с другими материалами для пломбирования керамические материалы отличаются целым рядом преимуществ. Они могут быть смешаны в такой пропорции, чтобы очень близко соответствовать цвету зуба. Они обладают очень высокой биосовместимостью и очень износостойки. Очень важно также и то, что посредством соответствующей обработки как самой керамики, так и поверхностей зуба, возможно, добиться создания прочной связи, так что пломба и сам зуб станут единым функциональным элементом. Данное преимущество означает то, что поврежденный зуб может быть укреплен, будучи связан с керамической пломбой. Хотя то же самое возможно осуществить также и с композитными материалами на полимерной основе, все-таки эти пломбы по их прочности не могут быть поставлены рядом с изготовленными механическим способом керамическими пломбами.

Диапазон структурных полимеров, которые могут быть использованы для создания основного тела композитных пломб, сравнительно невелик. Большинство этих композитных материалов основаны на BIS-GMA.

Улыбнитесь - всё будет хорошо!