Главная · Стоматит · Биохимия эритроцитов. Строение мембран эритроцитов. Особенности метаболизма эритроцитов. Цели изучения Уметь. Задания для аудиторной работы

Биохимия эритроцитов. Строение мембран эритроцитов. Особенности метаболизма эритроцитов. Цели изучения Уметь. Задания для аудиторной работы

1

1 ГБОУ ВПО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»

1. Нормальная физиология: учебник / Под ред. А.В. Завьялова, В.М. Смирнова. – 2011. – 368 с.

2. Нормальная физиология: учебник [Н.А. Агаджанян, Н.А. Барабаш, А.Ф. Белов и др.] / Под ред. проф. В.М. Смирнова. – 3-е изд. – М.: Издательский центр «Академия», 2010. – 480 с.

3. Физиология человека / В.Ф. Киричук, О.Н. Антипова, Н.Е. Бабиченко, В.М. Головченко, Е.В. Понукалина, И.В. Смышлеева, Л.К. Токаева / Под ред В.Ф. Киричука. – 2-е изд.– Саратов: Изд-во Саратовского медицинского университета, 2009. – 343 с.

4. Физиология и патофизиология красной крови: учеб. пособие / Н.П. Чеснокова, В.В. Моррисон, Е.В. Понукалина, Т.А. Невважай; под общ. ред. проф. Н.П. Чесноковой. – Саратов: Изд-во Сарат. мед. ун-та., 2013. – 80 с.

5 Патофизиология крови. Пер. с англ. – М. – СПб.: «Издательство БИНОМ» – «невский Диалект», 2000. – 448 с., ил.

6 Ленинджер А. Биохимия. Молекулярные основы структуры и функции клеток. – М.: Мир, 1999. – С. 390 – 422.

Источники энергетического обеспечения эритроцитов

Эритроцит является метаболически активной клеткой и содержит более 40 различных ферментов. Энергетическое обеспечение эритроцита осуществляется за счет утилизации глюкозы в реакциях анаэробного гликолиза. Эффективность гликолиза характеризуется образованием двух молекул АТФ на одну молекулу глюкозы, однако это небольшое количество энергии обеспечивает эритроциту выполнение всех его функций.

Основная доля энергии АТФ расходуется в эритроцитах на транспорт ионов, функционирование АТФ-азных систем и поддержание электролитного баланса клетки. Макроэргические фосфатные связи АТФ необходимы также и для инициации реакций гликолиза и пентозофосфатного цикла.

Наиболее важные реакции гликолиза протекают с участием следующих ферментов: гексокиназы, фосфофруктокиназы и пируваткиназы. Отличительной особенностью гликолиза в эритроцитах по сравнению с другими клетками является выработка значительного количества 2,3-дифосфоглицериновой кислоты, регулирующей кислородосвязывающую функцию гемоглобина.

Кроме гликолиза в эритроцитах происходит прямое окисление глюкозы в пентозофосфатном цикле, на долю которого приходится 10 - 11 % всего энергетического метаболизма клетки. Ключевыми ферментами пентозофосфатного цикла являются глюкозо-6-фосфат-дегидротеназа, 6-фосфоглюконатдегидрогеназа. В процессе пентозофосфатного окисления глюкозы образуется восстановленная форма кофермента НАДФ, использующаяся для восстановления глутатиона - основного компонента антиоксидантной системы эритроцита.

Главной функциональной группой глутатиона является сульфгидрильная группа, водород которой обеспечивает нейтрализацию органических и неорганических окислителей, действующих на мембрану эритроцита, и защищает липиды мембраны от свободнорадикального окисления.

Вышеизложенное делает очевидным большую значимость для поддержания стабильности эритроцитарной мембраны, интенсивности гликолитических реакций, обеспечивающих образование АТФ и соответственно полноценное функционирование АТФ-азных систем и трансмембранный перенос ионов, а также состояние пентозного цикла окисления глюкозы и образование достаточного количества НАДФН2.

В условиях врожденной или приобретенной недостаточности энергообеспечения эритроцитов при нарушении активности гликолитических ферментов, а также ферментов пентозофосфатного окисления глюкозы возникает дестабилизация эритроцитарной мембраны, изменение формы эритроцита и гемолиз.

Как известно, отличительными особенностями структуры и, соответственно, метаболизма эритроцитов являются отсутствие ядра, рибосомального аппарата, в связи с чем эритроциты не обладают белок-синтетической функцией. В эритроцитах отсутствуют митохондрии, система цитохром и соответственно отсутствует цикл трикарбоновых кислот. Эритроцит не воспроизводит De novo нуклеиноыве кислотиы и липиды. Основным источником энергии для эритроцитов является глюкоза, метаболизирующаяся по двум основным путям: путь Эмбдена-Мейергофа и в гексозомонофосфатный путь.

Лишенный глюкозы эритроцит деградирует, переходит в эхиноцит, сфероцит и затем подвергается осмотическому лизису, поскольку теряет способность поддерживать градиент натрия и калия, в то же время накапливает окисленный глутатион и метгемоглобин в условиях окислительного стресса.

Метаболизм глюкозы в пути Эмбдена-Мейергофа заканчивается образованием пирувата или лактата. Проникновение глюзозы в эритроцит происходит довольно быстро с помощью неиндентифицированного переносчика мембраны клеток. Концентрация глюкозы в эритроцитах такая же, как и в плазме крови. Основные стадии пути Эмбдена-Мейергофа включают: фосфорилирование глюкозы при участии АТФ и гексокиназы.

Дефицит гексокиназы может быть одной из причин наследственной гемолитической анемии. Продукт гексокиназной реакции (глюкозо-6-фосфат) трасформирется в глюкозо-1-фосфат при участии фосфоглюкомутазы, а также находится в рановесии с фруктозо-6-фосфат вследствие глюкозофосфатизомеразной реакции (ГФИ), имеющей большое метаболическое значение. Дефицит ГФИ является причиной достаточно часто возникающей наследственной несфероцитарной гемолитической анемии. Третья стадия в пути Эмбдена-Мейергофа включает фосфорилирование фруктозо-6-фосфата до фруктозо-1,6-дифосфата при участии фосфофруктокиназы.

Дефицит фермента ФФК является одной из причин нарушения накопления гликогена и развития наследственной гемолитической анемии.

Глицеральдегидтрифосфат непрерывно превращается в 1,3ДФГ, который затем трансформируется в 2,3ДФГ и 3ФГ. Последний дефосфорилируется в 2ФГ, который находится в равновесии с фосфоенолпируватом (ФЕП). В свою очередь ФЕП служит донором фосфата для АДФ на второй стадии синтеза АТФ в реакциях гликолиза в эритроцитах.

Гексозомонофосфатный путь. Образующийся в гексокиназной реакции глюкозо-6-фосфат далее участвует в 3-х направлениях метаболизма в эритроцитах с участием ферментов фосфоглюкокиназы, глюкозофосфоизомеразы(ГФИ) и глюкозо-6-фосфатдегидрогеназы(Г-6-ФДГ). В глюкозо-6-фосфатдегидрогеназных реакциях НАДФ+ восстанавливается до НАДФ*Н. В 6-фосфоглюконатдегидрогеназной реакции в эритроцитах образуется рибулозо-5-фосфат, который находится в равновесии с рибозо-5-фосфатом и ксилулозо-5-фосфатом.

В физиологических условиях энергетические потребности эритроцитов покрываются в результате утилизации глюкозы в пути Эмбдена-Мейергофа и гексозомонофостном пути. Однако эритроциты обладают способностью метаболизировать фруктозу, лактозу, галактозу, нуклеотиды, в частности инозин.

В эритроцитах происходят реакции восстановления метгемоглобина. Как известно, в процессе диссоциации оксигемоглобина железо гемоглобина приобретает 2-х валентное ферросостояние. В ряде случаев О2 отрывается в виде супероксиданионрадикала, забирает один электрон у железа и превращает гемоглобин в метгемоглобин. В присутствии восстановленного глютатиона и аскорбиновой кислоты метгемоглобин восстанавливается до гемоглобина.

Гемоглобин эритроцитов. Основным белком эритроцитов, на долю которого приходится около 98 % всей массы белков цитоплазмы, является гемоглобин. Последний является гетеродимерным тетрамером, состоящим из четырех полипептидных цепей, соединенных с четырьмя молекулами гема. В свою очередь гем - это молекула протопорфина IX, связанная с анионом железа. Каждый тетрамер гемоглобина может обратимо связывать и транспортировать не более 4-х молекул кислорода. К числу основных гемоглобинов (Hb) взрослого человека относится гемоглобин А (от слова adultus - взрослый), на долю которого приходится 96-98 % и в составе которого имеются две α- и две β-цепи (α2β2).

К числу нормальных гемоглобинов относится гемоглобин А2 , который содержится в крови взрослого человека в количестве 1,5-3,5 % (символ HbA2 - α2 δ2). На долю фетального гемоглобина (HbF - α2γ2) приходится 0,5-1 % Смена гемоглобина F на гемоглобин А происходит во время рождения ребенка, а к 4-6 месяцам жизни уровень фетального гемоглобина составляет 1 %.

Главным регулятором сродства Hb к О2 является промежуточный продукт гликолиза - 2-3дифосфоглицериновая кислота (2-3ДФГ). Увеличение образования 2-3ДФГ снижает сродство Hb к О2, что приводит к сдвигу кривой диссоциации оксигемоглобина вправо и к усиленному поступлению О2 в ткани. Сдвиг кривой вправо возникает также при увеличении температуры тела, возрастании уровня СО2 или на фоне развития метаболического ацидоза.

Фетальный гемоглобин слабо связывается с 2-3ДФГ и поэтому характеризуется более высокой кислородсвязывающей способностью по сравнению с HbA.

Гены гемоглобина: 2 гена α-цепей глобина расположены в 16-й паре хромосом, а 11 пара хромосом содержит пару генов γ-цепей и по одной копии δ- и β-цепей. Глобин синтезируется только в эритрокариоцитах и лишь в период созревания ретикулоцита из нормоцитов. На каждой стадии развития гены α-глобина и других глобинов координировано экспрессируются.

Избыточное образование одной цепи гемоглобина, происходящее при талассемии, приводит к преципитации белка в эритроците, повреждению клетки и её преждевременной элиминации клетками моноцитарно-макрофагальной системы.

Библиографическая ссылка

Чеснокова Н.П., Понукалина Е.В., Бизенкова М.Н. ЛЕКЦИЯ 3. МЕТАБОЛИЧЕСКИЕ ОСОБЕННОСТИ ЭРИТРОЦИТОВ // Успехи современного естествознания. – 2015. – № 1-2. – С. 331-332;
URL: http://natural-sciences.ru/ru/article/view?id=34843 (дата обращения: 20.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Эти форменные элементы занимают около половины объема крови.

Строение мембран эритроцитов

Зрелые красные кровяные тельца обладают двояковогнутой формой и большой способностью к деформации, благодаря чему эффективно обеспечивают процессы диффузии газов и могут проходить через капилляры, диаметр которых в 3-4 раза меньше самих эритроцитов. Подобное свойство обусловлено особенностями в структуре мембран этих форменных элементов. Принципы строения цитолеммы эритроцитов классические: основу составляет билипидный слой, в который включены различные протеины. Наружная часть липидов представлена фосфатидилхолином, сфингомиелином, внутренняя поверхность обогащена фосфатидилсерином, фосфатидилэтаноламином, более четверти объёма приходится на ХС, снижающий деформируемость красных кровяных телец. К цитозолю обращена плотная анастомозирующая белковая сеть, состоящая из спектринов, анкиринов, актинов, тропомиозинов, белков 3,4-й полос, аддуцинов, которые связываясь с интегральными гликопротеидами (гликофоринами) создают определённую жёсткость мембраны, определяют форму эритроцита. От степени фосфорилирования спектринов зависит эластичность сети, способность к упругой деформации. Гликофорины, пронизывая липидный слой, с помощью гидрофобных взаимодействий с ФЛ прочно фиксируются; сиаловые кислоты, располагаясь на поверхности цитолеммы форменного элемента, служат групповыми веществами крови: для О(Н) антигена детерминанта фукоза, для А-антигена - N-ацетилгалактозамин, для В – галактоза.

Особенности метаболизма эритроцитов

Энергетика эритроцита основана на анаэробном гликолизе. Около 10% всей глюкозы, содержащейся в крови, потребляется этими структурами и ее поступление не зависит от присутствия инсулина, осуществляется с помощью облегченной диффузии.

В процессе Эмбдена-Мейергофа глюкоза распадается до лактата с образованием АТФ путём субстратного фосфорилирования. Метаболиты гликолиза используются в следующих целях. Его восстановительные потенциалы НАДН при необходимости используются метгемоглобин-редуктазой для восстановления железа в метгемоглобине. В отличие от других тканей в эритроцитах в качестве метаболита образуется много 2,3-дифосфоглицерата (2,3-ДФГК), который служит важным модулятором сродства Hb к О2.

Некоторые морфобиохимические особенности красных кровяных телец предопределяют необходимость в высокой антиоксидантной активности. Во-первых, это необычные концентрации О2, что увеличивает вероятность образования его активных форм. Во-вторых, большое содержание ионов переходного металла – железа, что может способствовать его использованию в качестве донора электронов (Рис. 4.1). И, наконец, для обеспечения упругой деформации липидный бислой мембран обогащен ПНЖК – субстратами ПОЛ.

Для контроля интенсивности СРО в цитоплазме эритроцитов активно работает антирадикальная защита. Если нарушаются условия диссоциации оксигемоглобина, то происходит отрыв электрона от двухвалентного железа гема с образованием метгемоглобина и супероксидного анион-радикала. Первое соединение восстанавливается с помощью метгемоглобинредуктазы, а радикал кислорода преобразуется под влиянием супероксиддисмутазы (СОД) в пероксид водорода, токсичный для клеток.

Поэтому он восстанавливается первоначально с помощью каталазы, позднее глутатионпероксидазы (ГПО) (ее активный центр включает Sе-цистеин, что немаловажно для жителей селенодефицитных местностей) и восстановленного глутатиона (G-SН). Глутатионредуктаза (ГР), восстанавливающая окисленную форму пептида с помощью НАДФН, поддерживает его пул. Необходимую концентрацию кофермента получают путем окисления глюкозо-6-фосфата соответствующей дегидрогеназой (Г-6-Ф-ДГ). Если же резервный пул восстановленных АО снижается, укорачивается жизнь красных кровяных телец, подверженных аутоокислению.

alexmed.info

Государственное образовательное учреждение

высшего профессионального обучения

Читинская государственная медицинская академия

Л.П. Никитина, З.Ц. Ринчинов

БИОХИМИЯ ЭРИТРОЦИТОВ

Учебное пособие для студентов медицинского вуза

Чита – 2006

Список сокращений……………………………………………………………..3

ГЛАВА 1. Биохимия плазмы крови…………………………………………....5

ГЛАВА 2. Биохимия эритроцитов….………………………………………......7

2.1. Строение мембран эритроцитов; особенности метаболизма………7

2.2. Обмен порфиринов……………………………………………………9

2.2.1. Синтез гема…………………………………………………….10

2.3. Строение гемоглобина………………………………………………12

2.4. Формы гемоглобина………………………………………………....14

2.5. Свойства гемоглобина……………………………………………….15

2.6. Метаболизм железа…………………………………………………..17

ГЛАВА 3. Патология анаболизма гемоглобина……………………………….18

3.1. Болезни синтеза гемоглобина……………………………………….18

3.2. Дисгемоглобинемии………………………………………………….23

3.3. Нарушения транспорта гемоглобина в плазме крови……………...24

ГЛАВА 4. Распад эритроцитов………………………………………………….25

4.1. Метаболизм билирубина у здорового человека…………………….27

4.2. Патология обмена жёлчных пигментов……………………………..31

4.2.1. Виды желтух……………………………………………………..31

4.2.1.1. Гемолитическая желтуха……………………………………31

4.2.1.2. Паренхиматозная желтуха………………………………….36

4.2.1.3. Механическая желтуха……………………………………...38

Вопросы для самопроверки……………………………………………………...41

Список литературы…………………………………………………………….....44

Список сокращений

АлАТ – аланин-аминотрансфераза

АО – антиоксидант

АОЗ – антиоксидантная защита

АРЗ – антирадикальная защита

АсАТ – аспартат-аминотрансфераза

АТФ – аденозинтрифосфат

ГАГ – глюкозаминогликан

ГАМК – гамма-аминомасляная кислота

ГА-3-ф – глицероальдегид 3 фосфат

ГГТП – гамма-глутаминилтранспептидаза

ГПО – глутатионпероксидаза

ГР – глутатионредуктаза

Г-6-ФДГ – глюкозо-6-фосфатдегидрогеназа

ДГАФ – дигидроксиацетонфосфат

ДГ – дегидрогеназа

Ко А – коэнзим ацилирования

КОС – кислотно-основное состояние

НАД+ - никотинамидадениндинуклеотид (окисленный)

НАДН – никотинамидадениндинуклеотид (восстановленный)

НАД+Ф – никотинамидадениндинуклеотид фосфат (окисленный)

НАДФН – никотинамидадениндинуклеотид фосфат (восстановленный)

ПНЖК – полиненасыщенные жирные кислоты

ПОЛ – перекисное окисление липидов

РЭС – ретикуло-эндотелиальная система

СОД – супероксиддисмутаза

УДФГК – уридиндифосфоглюкуроновая кислота

Ф – фосфат

ЩФ – щелочная фосфатаза

ЭТЦ – электронно-транспортная цепь

G-SH – глутатион восстановленный

G-S-S-G - глутатион окисленный

Hb – гемоглобин

Глава 1. Биохимия плазмы крови

Кровь (по мнению древних, река жизни) – жидкая соединительная ткань, состоящая из суспензии клеток в концентрированном растворе белков, образующая волокнистую структуру при свертывании.

Среди основных функций этой ткани можно выделить:

дыхательную, которую выполняют клетки эритроидного ряда, захватывая в легких кислород и перенося его к тканям, а в обратном направленииуглекислый газ;

питательную - с помощью плазмы осуществляется доставка к клеткам многочисленных необходимых соединений: витаминов, различных ионов, углеводов, аминокислот, высших жирных кислот и их производных;

терморегуляторную – плазма крови обладает высокой удельной теплоемкостью и одновременно хорошей теплопроводностью, что увеличивает потери тепла при испарении воды с поверхности кожи;

защитную – а) элементы свёртывающей системы крови защищают от неадекватных кровопотерь; б) групповая специфика крови; в) обеспечивает иммунитет: неспецифический - c помощью фагоцитоза (нейтрофилов, моноцитов), специфический - за счёт гамма-глобулинов и других иммунных белков (гуморальный) и Т-лимфоцитов (клеточный);

регуляторную – плазмой крови к клеткам-мишеням транспортируются различные биологически активные вещества – гормоны, витамины;

выделительную – продукты метаболизма клеток током крови доставляются к соответствующим системам;

поддержание критериев гомеостаза – онкотического давления за счет белков, кислотно-основного состояния (КОС) с помощью буферных систем (бикарбонатов, фосфатов, протеинов).

Особая роль в плазме крови принадлежит белкам (табл. 1), среди которых выделяют альбумины, глобулины, фибриноген.

Около половины объёма крови занимают форменные элементы, основными из которых являются эритроциты (99%). В их общем пуле на долю молодых приходится 5%, зрелых – 85%, стареющих – 10%.

Эритроцит совсем смешон –

Всех органоидов лишён.

Навеки быть ему судьбина

Контейнером гемоглобина.

Однако назначение красных кровяных телец совсем не сводится к этой шутливой формулировке. За счет их карбоангидразы осуществляется взаимодействие диоксида углерода с водой – и транспорт углекислоты. Очень велика роль ионообмена между эритроцитами и плазмой (обмена протонов на катионы натрия) в регуляции КОС и электролитного баланса организма. Огромна ёмкость гемоглобина как буферной системы. Красные кровяные тельца служат адсорбентами для иммунных комплексов, физиологически предохраняют сосудистую стенку от развития иммунных васкулитов.

Таблица 1

studfiles.net

Особенности метаболизма в эритроцитах

Биохимия эритроцитов.

Эритроциты состоят на 60-70% из воды, 30-40% сухой остаток, который представлен белками, азотсодержащими небелковыми веществами, углеводами, липидами, минеральными веществами.

Белки эритроцитов.

Основным белком является гемоглобин. На который приходится 90% всех белков эритроцитов. У взрослого 120-140 г/л, новорожденного 190 г/л. Гемоглобин – гемопротеид.

Обмен гемопротеидов.

Состоит из простатической группы гемма и белка глобина.

Гемм: это тетрапирольное железосодержащие органическое вещество. Гемм соединяется с гемоглобином одной координационной связью и одной гидрофобной связь. Гемоглобин это олигомерный белок – включает 4 гема и 4 полипептидной цепи. В зависимости от вида полипептидных цепей различают физиологические и аномальные формы гемоглобина:

Физиологические формы

a) Hb А1 включает 2α-цепи и 2βцепи – 98% всего гемоглобина; HbА1с – гликозилированный гемоглобин не более 6,5%, увеличивается при сахарном диабете.

b) HbА2 – 2α и 2 дельта цепи – 2-3%, у новорожденного до 30-40% - минорная форма гемоглобина

c) HbF – 2α и 2γ цепи. У взрослых отсутствует у новорожденных до 60-70%

Аномальные формы гемоглобина – гемоглобинозы. Делятся на гемоглобинопатии и талассемии.

При гемаглобинопатиях – нарушается первичная структура α или β цепей. Например HbS – в 6 положении β цепи ГЛЮ заменяется на ВАЛ → нарушается структура и функция гемоглобина, эритроциты становятся серповидными → серповидноклеточная анемия. HbC – в 6 положении β цепей ГЛЮ→ЛИЗ.

При таласэмиях происходит замедление синтеза либо α либо β цепей гемоглобмна. Увеличивается доля минорного гемоглобина А2.

Помимо гемоглобина к гемопротеидам относят миоглобин, цитохрома, каталазы, монооксигеназы.

Синтез гемоглобина.

Происходит в ретикулоцитах, эритробластах, печени, костном мозге, селезенке, тимусе. Исходными веществами для синтез гемма является активная форма янтарной кислоты – сукцинил КоА (из цикла Кребса) и ГЛИ.

Нарушения синтеза гемма – порфирии. При них либо искажается синтез, либо блокируется на каком то этапе синтез гемма. Выделяют печеночные порфирии и эритропоэтические.Анемия Гюнтера – блокируется синтез уропорфиринагена → анемия, фотодерматиты, оранжевая моча (из-за большого количества порфиринов), коричневый оттенок эмали зуба.

Распад гемоглобина.

Переваривание: Под действием пепсина глобин отщепляется к гемму присоединяется HCl и образуется соляно-кислый-гематин коричневого цвета поэтому при желудочных кровотечениях содержимое желудка приобретает шоколадный оттенок.

В кишечнике отщепляется соляная кислота и постепенно формируются пигменты дегтярно-черного цвета. Поэтому при кишечник кровотечениях стул имеет черный цвет.

Распад в тканях: происходит при распаде эритроцитов у взрослых через 120 дней у детей около 80 дней. Происходит в лимфоидных клетках, костном мозге, селезенке, печени. Освободившийся гемоглобин при распаде эритроцитов соединяется с белком гаптоглобином и транспортируется в клетки РЭС (ретикуло-эндотелиальная-систма).

На первом этапе под действием гемоксигеназа происходит разрыв 1 метинового мостика и пирольная структура разворачивается → образуется вердоглобин.

Вердоглобин расщепляется на глобин, железо и биливердин (пигмент зеленого цвета). Затем биливердин восстанавливается в билирубин (оранжево-желтый цвет) он плохо растворим в воде и очень токсичен. Поэтому билирубин адсорбируется с белками плазмы крови → становится более гидрофильным и в таком виде транспортируется в печень для обезвреживания. Эта форма имеет название: свободный билирубин (неконъюгированный) так как химически он с белками не связан или непрямой так как дает цветную реакцию не сразу, а после осаждения белков. Этот билирубин поступает в печень→захватывается гепатоцитами и в печени обезвреживается путем присоединения к нему глюкуроновой кислоты, сначала 1 потом 2. Этот билирубин тоже имеет 2 названия. Связанный так как он химически связан с глюкуроновой кислотой или прямой так как сразу дает качественную реакцию. Далее он экскретируется в желчь с затратой энергии и в составе желст поступает в тонкий кишечник.

Там (под действием микрофлоры) отщепляется глюкуроновая кислота и образуется новый пигмент мезобилиноген (уробилиноген). Часть его по vena porta идет в печень где разрушается до ди- и три-пиролов и выводится желчью. Другая часть в кишечнике переходит в стекобилиноген.

Основная его часть выводится через кишечник в виде стертобилиноген (коричневый) – 300 мг. Другая часть по системе геморроидальных вен в кровь→почки→моча.

Нарушения распада гемма.

Концентрация гемоглобина не высока 2(8)-20 мкмоль/л повышение называется гипер-билирубин-эмия клинически прояляется как желтуха. Непрямой билирубин нейротоксичен. Прямой водорастворим и может выводится с мочой.

По месту нарушения пигментного обмена различают гемолитические желтухи (надпеченочные), паренхиматозные (печеночные), механические (под печеночные).

По характеру фракициям: конъюгированные, неконъюгированные смешанные

Неконъюгированные при усиленном гемолизе эритроцито в крови повышен непрямой билирубин, в печени повышена концентрация стертобилина и содержимое кишечника пигментировано, в моче то же много стертобилина и выявляется уробилин. В кишечнике стертобилин. Разновидностью таких желтух. Болезнь Жильберта при которой снижена поступление и захват билирубина гепатацитами.

Паренхиматозные желтухи: в крови повышен непрямой билирубин так как печень не может его обезвредить. Повышен и прямой билирубин так как затруднено его выведение желчью. Моча пигментирована и в ней присутствует билирубин, и уробилин. Содержимое кишечника более светлое так как меньше стертобилина. Разновидностью такой желтухи является желтуха Клиглера-Найяра при которой снижена активность глюк-уранл-трансферазы.

Механическая (конъюгированная): развивается при нарушениях оттока желчи (опухоль, камень) в этом случае. В крови повышен прямой билирубин, в моче будет билирубин (пигментирована), в содержимое кишечника светло - белое. Разновидностью такой желтухи является Желтуха Дубина – Джонсона. При ней затруднено выведение прямого билирубина в желчь.

Желтуха новорожденных: при ней концентрация билирубина можт повышаться до 40 ммоль/литр. Причина усиленный гемолиз эритроцитов, сниженный захват билирубина гепатитами, снижение активности глюк-уранил-трансферазы, снижение экскреции прямого билирубина в желчь, стерильность кишечника.

Кроме гемоглобина в эритроцитах присутствуют другие белки, к ним относят:

  • Факторы групповой специфичности
  • Резус фактор (гликопротеиды)
  • Мембранные белки (гликофорин, спектрин)
  • Ферменты (гликолиза, пентозофосфатного пути, карбоангидраза, мет-гемоглобин-редуктаза, К, Na-АТФаза.
  • Антиоксидантные феременты: супероксид Д, каталазы, глютатион-пероксидаза, они связывают активные формы О2

Небелковые азотсодержащие вещества.

АТФ, нуклеатиды, трипептид-глютадион.

Безазотистые органические вещества.

Углеводы (глюкоза, продукты ее обмена, липиды), минеральные компоненты: К 120-130 ммоль/л; Na 30-35 ммоль/л; Fe – 19 ммоль/л.

Особенности метаболизма в эритроцитах.

Основным энергитическим процессом в эритроцитах является гликолиз, активен в эритроцитах пентозофосфатный путь, который обеспечивает эритроциты НАДФН2, который сосстанавливает глютатион, а это резистентность эритроцитов.

megaobuchalka.ru

Особенность обмена веществ в эритроците

Эритроцит высокоспециализированная клетка, хорошо приспособленная для транспорта газов. Для эритроцита не характерны анаболические процессы. Необходимые структурные молекулы и ферменты синтезируются заранее в процессе дифференцировки и созревания эритроцитов.

Особенность белкового обмена в эритроцитах

В зрелом эритроците белки не синтезируются, т.к. у него нет рибосом, ЭПР, аппарата Гольджи и ядра. Однако в цитоплазме синтезируется пептид глутатион.

Биосинтез глутатиона осуществляется в 2 стадии:

1). АТФ + глутаминовая кислота + цистеин γглутамилцистеин + АДФ + Фн

2). АТФ + γглутамилцистеин + глицинглутатион + АДФ + Фн

Первая стадия катализируется γглутамилцистеинсинтетазой, вторая стадия – глутатионсинтетазой.

Катаболизм белков в эритроците неферментативный. Белки разрушаются и инактивируются в эритроците под действием неблагоприятных факторов: СРО, гликозилирования, взаимодействия с тяжелыми металлами и токсинами.

Особенность обмена нуклеотидов в эритроцитах

В зрелом эритроците:

    из ФРПФ (из рибозо-5ф) и аденина может синтезироваться АМФ.

    АМФ с участием АТФ превращается в АДФ.

    В реакциях субстратного фосфорилирования (гликолиз) АДФ превращается в АТФ.

    В гликолизе НАД+восстанавливается в НАДН2, который используется для регенерации гемоглобина из метгемоглобина.

    В ПФШ НАДФ+восстанавливается в НАДФН2, который используется для функционирования антиоксидантной системы.

Особенность липидного обмена в эритроцитах

В зрелом эритроците липиды не синтезируются, однако эритроцит может обмениваться липидами с липопротеинами крови. Катаболизм липидов неферментативный, повреждение и разрушение липидов происходит в реакция ПОЛ.

Особенность углеводного обмена в эритроцитах

В зрелых эритроцитах углеводы не синтезируются. Катаболизм углеводов происходит на 90% в анаэробном гликолизе и на 10% в ПФШ, основной субстрат – глюкоза. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Наряду с глюкозой эритроцит может использовать фруктозу, маннозу, галактозу, а также инозин, ксилит и сорбит.

В процессе гликолиза с участием фосфоглицераткиназыипируваткиназыобразуется АТФ, а с участием3-ФГА дегидрогеназывосстанавливается НАДН2. В окислительной стадии ПФШ с участиемглюкозо-6-фосфат дегидрогеназыи6-фосфоглюконат дегидрогеназы восстанавливается НАДФН2.

Конечный продукт анаэробного гликолиза лактат выходит в плазму крови и направляется преимущественно в печень для глюконеогенеза.

Энергетический обмен в эритроцитах

Образующаяся в анаэробном гликолизе АТФ используется для функционирования транспортных АТФаз, для работы цитоскелета и синтеза некоторых веществ. За 1 час все эритроциты крови потребляют 0,7г глюкозы.

Генетический дефект любого фермента гли­колиза приводит к уменьшению образования АТФ, в результате падает актив­ность Na+,К+-АТФ-азы, повышается осмоти­ческое давление и возникает осмотический шок.

Для оценки эффективности работы транспортных систем определяют осмотическую резистентность эритроцитов. Осмотическая резистентность эритроцитов в свежей крови в норме составляет 0,20-0,40% NaCl.

Эритроцит высокоспециализированная клетка, хорошо приспособленная для транспорта газов. Для эритроцита не характерны анаболические процессы. Необходимые структурные молекулы и ферменты синтезируются заранее в процессе дифференцировки и созревания эритроцитов.

Особенность белкового обмена в эритроцитах

В зрелом эритроците белки не синтезируются, т.к. у него нет рибосом, ЭПР, аппарата Гольджи и ядра. Однако в цитоплазме синтезируется пептид глутатион.

Биосинтез глутатиона осуществляется в 2 стадии:

1). АТФ + глутаминовая кислота + цистеин γглутамилцистеин + АДФ + Фн

2). АТФ + γглутамилцистеин + глицинглутатион + АДФ + Фн

Первая стадия катализируется γглутамилцистеинсинтетазой, вторая стадия – глутатионсинтетазой.

Катаболизм белков в эритроците неферментативный. Белки разрушаются и инактивируются в эритроците под действием неблагоприятных факторов: СРО, гликозилирования, взаимодействия с тяжелыми металлами и токсинами.

Особенность обмена нуклеотидов в эритроцитах

В зрелом эритроците :

    из ФРПФ (из рибозо-5ф) и аденина может синтезироваться АМФ.

    АМФ с участием АТФ превращается в АДФ.

    В реакциях субстратного фосфорилирования (гликолиз) АДФ превращается в АТФ.

    В гликолизе НАД + восстанавливается в НАДН 2 , который используется для регенерации гемоглобина из метгемоглобина.

    В ПФШ НАДФ + восстанавливается в НАДФН 2 , который используется для функционирования антиоксидантной системы.

Особенность липидного обмена в эритроцитах

В зрелом эритроците липиды не синтезируются, однако эритроцит может обмениваться липидами с липопротеинами крови. Катаболизм липидов неферментативный, повреждение и разрушение липидов происходит в реакция ПОЛ.

Особенность углеводного обмена в эритроцитах

В зрелых эритроцитах углеводы не синтезируются. Катаболизм углеводов происходит на 90% в анаэробном гликолизе и на 10% в ПФШ, основной субстрат – глюкоза. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Наряду с глюкозой эритроцит может использовать фруктозу, маннозу, галактозу, а также инозин, ксилит и сорбит.

В процессе гликолиза с участием фосфоглицераткиназы ипируваткиназы образуется АТФ, а с участием3-ФГА дегидрогеназы восстанавливается НАДН 2 . В окислительной стадии ПФШ с участиемглюкозо-6-фосфат дегидрогеназы и6-фосфоглюконат дегидрогеназы восстанавливается НАДФН 2 .

Конечный продукт анаэробного гликолиза лактат выходит в плазму крови и направляется преимущественно в печень для глюконеогенеза.

Энергетический обмен в эритроцитах

Образующаяся в анаэробном гликолизе АТФ используется для функционирования транспортных АТФаз, для работы цитоскелета и синтеза некоторых веществ. За 1 час все эритроциты крови потребляют 0,7г глюкозы.

Генетический дефект любого фермента гли­колиза приводит к уменьшению образования АТФ, в результате падает актив­ность Na + + -АТФ-азы , повышается осмоти­ческое давление и возникает осмотический шок.

Для оценки эффективности работы транспортных систем определяют осмотическую резистентность эритроцитов. Осмотическая резистентность эритроцитов в свежей крови в норме составляет 0,20-0,40% NaCl.

Энергетический обмен в эритроцитах. Для поддержания функциональной активности клеток организма необходима затрата энергии.

Зрелые эритроциты, циркулирующие в кровяном русле, являются метаболически активными клетками, несмотря на отсутствие способности к синтезу белков, аэробному расщеплению глюкозы в лимоннокислом цикле Кребса Владимиров Г.Е. по Рапопорту, 1970. Основным процессом обмена энергии в них является гликолиз. Процесс, протекающий в эритроцитах, близок к процессам в других клетках и тканях, и подробно описан Фдоров Н.А. по Райкеру, 1976. К особенностям гликолиза в эритроцитах можно отнести использование, помимо глюкозы, других моносахаридов фруктозы, маннозы, галактозы, а также инозина, сорбита при наличии соответствующих ферментов Йошикава, 1968. В процессе гликолиза происходит образование АТР и NADH. Энергия гликолиза используется для активного транспорта катионов через клеточную мембрану и поддержания соотношения между ионами калия и натрия в эритроцитах и плазме, для сохранения целостности мембраны и двояковогнутой формы клетки.

Образующийся NADH используется для восстановления пировиноградной кислоты в молочную и для восстановления метгемоглобина при участии метгемоглобинредуктазы.

В составе метгемоглобина содержится трхвалентное железо, вследствие чего он не способен к транспорту кислорода.

Характерной особенностью гликолиза в эритроцитах является превращение 1,3- дифосфоглицерата не только в 3-фосфоглицерат, но и в 2,3-дифосфоглицериновую кислоту под действием дифосфоглицеромутазы. 2,3-дифосфоглицерат имеет, наряду с АТР, важное значение в регуляции сродства гемоглобина к кислороду. По мере старения эритроцита происходит уменьшение способности к восстановлению метгемоглобина в гемоглобин, т.е. нарушение функциональной активности эритроцита. Это связанно именно с уменьшением интенсивности гликолиза, в результате которого образуется NADH, необходимый для действия метгемоглобинредуктазы.

Уменьшение содержания 2,3-дифосфоглицерата приводит к сдвигу диссоциационной кривой влево, ухудшению отдачи кислорода тканям. Итогом всех реакций гликолиза является превращение 1 молекулы глюкозы в 2 молекулы молочной кислоты с одновременным превращением 2 молекул ADP в 2 молекулы АТР. Наряду с гликолизом анаэробным расщеплением глюкозы до молочной кислоты в эритроцитах существует дополнительный путь утилизации глюкозы прямое окисление до углекислого газа и воды в ходе пентозофосфатного цикла.

Этот путь неотличим от подобных процессов, протекающих в других клетках и тканях суммарным результатом цикла является окисление одной из 6 молекул глюкозо-6-фосфата до 6 молекул СО2 и восстановление 12 молекул NADPH. Роль пентозного цикла в зрелых эритроцитах заключается, с одной стороны, в образовании пентозофосфатов.

В реакции цикла образуется 3-глицероальдегидфосфат, подвергающийся превращениям в цепи гликолитических реакций и, таким образом, является дополнительным источником энергии. Основное значение пентозофосфатного цикла заключено в образовании молекул NADPH. Значение NADPH определяется его участием в ряде реакций, необходимых для поддержания функциональной активности и целостности эритроцитов.

К ним относятся восстановление метгемоглобина в гемоглобин при участии NADPH и метгемоглобинредуктазы и восстановление окисленного глутатиона с помощь. NADPH- глутатионредуктазы. Восстановленный глутатион GSH, форма со свободно реагирующей тиоловой группой составляет в эритроцитах до 96 общего количества. Сохранение глутатиона в восстановленном состоянии необходимо для предохранения ряда ферментов, содержащих SH- группы, от инактивации, ограждение мембраны клетки от действия перекисей и необратимого окислительного денатурирования гемоглобина. 1.1.3.

Конец работы -

Эта тема принадлежит разделу:

Содержание аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот в эритроцитах здоровых детей и страдающих инсулинзависимым сахарным диабетом

Высокие концентрации кислорода и процессы оксигенации деоксигенации гемоглобина обуславливают образование высокореакционных интермедиатов.. Существует антиоксидантная система защиты клетки от свободнорадикального.. В е состав входит ряд ферментов и небелковых веществ.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метаболизм эритроцитов

Введение

1. Особенности дифференцировки и строения эритроцитов

1.1 Общая характеристика эритроцитов

1.3 Особенности дифференцировки эритроцитов

1.4 Особенности строения эритроцитов

2. Метаболизм эритроцитов

2.1 Особенности обмена веществ в эритроцитах

2.2 Гликолиз в эритроцитах

2.3 Пентозофосфатный цикл в эритроцитах

2.4 Образование и обезвреживание активных форм кислорода в эритроцитах

3. Роль эритроцитов в газообмене

3.1 Гемоглобин

3.2 Синтез гемоглобина

3.3 Механизм участия гемоглобина в транспорте кислорода

3.4 Механизмы транспорта диоксида углерода от тканей в легкие

3.5 Карбоксигемоглабин

4.Нарушение метаболизма в эритроцитах

4.1 Энзимопатии

4.2 Гемоглобинопатии

4.3 Талассемии

4.4 Наследственный сфероцитоз

4.5 Мегалобластная (макроцитарная) анемия

Список литературы

Введение

Кровообращение

Кровообращение - это движение крови в кровеносной системе, обеспечивающей обмен веществ между всеми тканями организма и внешней средой и поддерживающую постоянство внутренней среды - гомеостаз. Система кровообращения доставляет тканям кислород, воду, белки, углеводы, жиры, минеральные вещества, витамины и удаляет из тканей углекислый газ и другие вредные продукты обмена, образующиеся в процессе жизнедеятельности; обеспечивает теплорегуляцию и гуморальную регуляции в организме, является важным фактором иммунитета.

Кровь - жидкая соединительная ткань, участвует в обеспечении непрерывной связи между органами и системами организма, обмене продуктами жизнедеятельности организма с окружающей средой. Кровь содержит жидкое вещество - плазму и форменные элементы - клетки крови (эритроциты, лейкоциты и тромбоциты). Количество крови в организме человека составляет 4,5-5 л (1 / 13масы тела). В норме относительная плотность крови 1,050-1,064, плазмы -1,024-1,030, клеток - 1,080-1,097. Кровь имеет значительную вязкостью благодаря высокому содержанию белка и эритроцитов. Вязкость крови в 4-5 раз выше вязкости води.Важный физико-химический показатель - осмотическое давление плазмы крови. Оно определяется осмотического концентрацией, то есть суммой всех частиц, находящихся в единице объема.

Кровь поступает во все части организма и выполняет следующие важные функции:

1) транспортную - перенос различных веществ между органами и тканями (кислорода, оксида углерода, питательных веществ, медиаторов, ферментов, электролитов, конечных продуктов обмена, гормонов и др.). Эти вещества транспортируются в свободном состоянии или в комплексе с белками;

2) питательную - кровь обеспечивает транспорт питательных веществ (углеводов, липидов, аминокислот и др.) к тканям;

3) экскреторную - эта функция тесно связана с транспортной функцией; кровь обеспечивает выведение из тканей и органов конечных продуктов метаболизма (мочевины, мочевой кислоты, аммиака и т.п.);

4) дыхательную - эта функция тоже связана с транспортной функцией; кровь обеспечивает транспорт О2 и СО2 между тканями и легкими;

5) регуляторную - кровь участвует в регуляции кислотно-основного состояния организма, содержит гормоны и белки, которые участвуют в процессах координации биохимических и физиологических процессов в организме;

6) защитную - кровь содержит компоненты (лейкоциты, имуноглобулин), которые защищают организм от чужеродных агентов; система коагуляции защищает организм от потери крови;

7) терморегуляторную - кровь участвует в перераспределении тепла во всем организме.

Формленние элементы крови

Кровь состоит из плазмы и взвешенных в ней форменных элементов.К последним относятся эритроциты, лейкоциты и тромбоцити. На долю плазмы приходится около 55% от объема крови. Эритроциты составляют основную массу форменных элементов - 44% от общего объема крови, в то время как на долю других клеток приходится лишь около 1%.

Лейкоциты - белые кровяные тельца, которые не имеют постоянной формы, они содержат ядро??и способны к амебоидному движению, их размеры от 8 до 20 мкм. Они могут проникать через стенки сосудов и передвигаться между клетками. Существуют несколько видов лейкоцитов, которые отличаются размерами, наличием или отсутствием зернистости, формой ядра. Нейтрофилы, базофилы, эозинофилы относятся к зернистых лейкоцитов лимфоциты и моноциты - к незернистых. Лейкоциты образуются в красном костном мозге, селезенке, лимфатических узлах, разрушаются в селезенке, очагах воспаления. Продолжительность их жизни 2-4 дня. Основная функция лейкоцитов - защита организма от микроорганизмов, чужеродных белков, инородных тел - осуществляется благодаря их способности к фагоцитозу. Разновидность белых клеток крови - лимфоциты способны образовывать антитела в ответ на проникновение в организм возбудителей заболеваний. Лейкоциты также способны уничтожать отмершие клетки организма.

Тромбоцити- безъядерные кровяные пластинки округлой или овальной формы диаметром 2-5 мкм. Образуются в красном костном мозге, разрушаются в селезинци.Продолжительность их жизни 8-11 дней. В кровяных пластинках выявляются специфические гранулы, содержащие серотонин и вещества, участвующие в свертывании крови, а также митохондрии, микротрубочки (которые обуславливают, как полагают, подвижность пластинок), гранулы гликогена, иногда рибосомы. Функция тромбоцитов - участие в свертывании крови.

Эритроциты- красные кровяные тельца.Об особенностях строения и метаболизма этих клеток крови подробнее будет рассказано далее.

1 . Особенности дифференцировки и строения эритроцитов

1 .1 О бщая характеристика эритроцитов

Эритроциты- это красные кровяные тельца. Они определяют цвет крови; - это высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка. Организм взрослого человека содержит около 25Ч1012 эритроцитов, при этом каждые сутки обновляется примерно 1% этого количества клеток, т.е. в течение одной секунды в кровоток поступает около 2 млн эритроцитов. Эритроциты образуются в красном костном мозге. Средняя продолжительность жизни эритроцитов - 120 дней, затем они разрушаются в печени и селезенке, где гемоглобин после отщепления железа образует желчные пигменты. В эритроцитах содержится специфический пигмент крови - гемоглобин, который является белком, связанным с атомом железа. В норме в крови содержится 13,0-16,0 г% гемоглобина. Концентрация гемоглобина в крови зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина.

1 .2 Особенности дифференцировки эритроцитов

Дифференцировка стволовых клеток в специализированные происходит в клетках костного мозга и заканчивается в кровотоке (Рис.1). Эритроциты, так же как и другие клетки крови, образуются из плюрипотентных стволовых клеток костного мозга. Размножение и превращение начальной клетки эритроидного ряда в унипотентную стимулирует ростовой фактор интерлейкин-3. Интерлейкин-3 синтезируется Т-лимфоцитами, а также клетками костного мозга. Это низкомолекулярный белок группы цитокинов - регуляторов роста и дифференцировки клеток.Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует синтезирующийся в почках гормон эритропоэтин. Скорость образования эритропоэтина в почках зависит от парциального давления кислорода. В процессе дифференцировки на стадии эритробласта происходят интенсивный синтез гемоглобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркулирующие в крови ретикулоциты лишаются рибосом, эндоплазматической сети, митохондрий и в течение двух суток превращаются в эритроциты. Стволовая клетка превращается в эритроцит за две недели. Эритроциты не содержат ядра и поэтому не способны к самовоспроизведению и репарации возникающих в них повреждений. Эти клетки циркулируют в крови около 120 дней и потом разрушаются макрофагами в печени, селезёнке и костном мозге.

Рис.1 . Схема дифференцировки стволовых клеток костного мозга в зрелые эритроциты.

1 .3 Особенности строения эритроцитов

Эритроциты - единственные клетки, которые имеют только клеточную мембрану и цитоплазму. Особенности строения эритроцитов соответствуют их функциям: большая площадь поверхности обеспечивает эффективность газообмена, эластичная клеточная мембрана облегчает движение по узким капиллярам, специальная ферментативная система защищает эти клетки от активных форм кислорода.В отличие от большинства клеток организма, у эритроцита отсутствуют клеточное ядро, рибосомы и митохондрии. Эритроциты имеют вид двояковгнутого диска диаметром 7-8 мкм и толщиной 1-мкм. Двояковогнутая форма эритроцитов имеет большую площадь поверхности по сравнению с клетками сферической формы такого же размера. Это облегчает газообмен между клеткой и внеклеточной средой. Кроме того, такая форма, а также особенности строения мембраны и цитоскелета обеспечивают большую пластичность эритроцитов при прохождении ими мелких капилляров.

Важную роль в сохранении формы и способности к обратимой деформации эритроцитов играют липиды и белки плазматической мембраны.Липиды бислоя плазматической мембраны эритроцитов, как и плазматические мембраны других клеток, содержат глицерофосфолипиды, сфингофосфолипиды, гликолипиды и холестерол. Около 60% массы мембранных белков приходится на спектрин, гликофорин и белок полосы 3 .Интегральный гликопротеин гликофорин присутствует только в плазматической мембране эритроцитов.

· Спектрин - периферический мембранный белок, нековалентно связанный с цитоплазматической поверхностью липидного бислоя мембраны. Он представляет собой длинную, тонкую, гибкую фибриллу и является основным белком цитоскелета эритроцитов. Спектрин состоит из б- и в-полипептидных цепей, имеющих доменное строение; б- и в-цепи димера расположены антипараллельно, перекручены друг с другом и нековалентно взаимодействуют во многих точках. (рис.2(А))

· Анкарин.Спектрин может прикрепляться к мембране и с помощью белка анкирина. Этот крупный белок соединяется с в-цепью спектрина и цитоплазматическим доменом интегрального белка мембраны - белка полосы 3.Анкирин не только фиксирует спектрин на мембране, но и уменьшает скорость диффузии белка полосы 3 в липидном слое. Таким образом, на цитоплазматической поверхности эритроцитов образуется гибкая сетевидная структура, которая обеспечивает сохранение их формы при прохождении через узкие капилляры сосудов.

· Интегральный белок полосы 3 - белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта.

· Мембранный фермент Nа+, К+-АТФ-аза обеспечивает поддержание градиента концентраций Na+ и К+ по обе стороны мембраны. При снижении активности Na+, К+-АТФ-азы концентрация Na+ в клетке повышается, так как небольшие ионы могут проходить через мембрану простой диффузией. Это приводит к увеличению осмотического давления, увеличению поступления воды в эритроцит и к его гибели в результате разрушения клеточной мембраны - гемолизу.

· Са2+-АТФ-аза - ещё один мембранный фермент, осуществляющий выведение из эритроцитов ионов кальция и поддерживающий градиент концентрации этого иона по обе стороны мембраны.

Как мы можем наблюдать на рис.2 каждый димер спектрина состоит из двух антипараллельных, нековалентносвязанных между собой б- и в-полипептидных цепей (А). Белок полосы 4.1 образует со спетрином и актином "узловой комплекс", который посредством белка полосы 4.1 связывается с цитоплазматическим доменом гликофорина. Анкирин соединяет спектрин с основным интегральным белком плазматической мембраны - белком полосы 3 (Б). На цитоплазматической поверхности мембраны эритроцита имеется гибкая сетеобразная структура, состоящая из белков и обеспечивающая пластичность эритроцита при прохождении им через мелкие капилляры (В).

Рис.2. Строение спектрина (А), околомембранного белкового комплекса (Б) и цитоскелета эритроцитов (В).

2 . Метаболизм эритроцитов

2 .1 Особенности обмена веществ в эритроцитах

Особенностью химического состава эритроцитов является значительное содержание глутатиона, 2,3-дифосфоглицерата (2,3-ДФГ) и калия.Обмен веществ в зрелых безъядерных эритроцитах направлен на выполнением этими клетками функций переносчиков кислорода и посредников при транспорте СО2. Поэтому метаболизм в эритроцитах отличается от обмена веществ в других клетках. (Рис.4) В зрелых эритроцитах нет ядра, в связи с чем отсутствуют синтез ДНК, РНК, белка, гема, липидов, ферменты ЦТК. Эритроциты используют лишь такие метаболические пути углеводного обмена, как гликолиз и пентозофосфатный путь (ПФП). В связи с этим в эритроцитах отмечается большой расход глюкозы.Биологический смысл такого ограничения метаболических путей заключается в том, чтобы транспортируемый к тканям кислород не утилизировался эритроцитами, а доставался бы тканям. Установлено, что в эритроцитах утилизируется лишь 0,05% кислорода. В эритроцитах по пути гликолиза расходуется 90% глюкозы, по пентозофосфатному пути - 10%.

2 .2 Гликолиз в эритроцитах

Основным энергетическим субстратом эритроцита является глюкоза, которая поступает из плазмы крови путём облегчённой диффузии. Около 90% используемой эритроцитом глюкозы подвергается гликолизу(анаэробному окислению) с образованием конечного продукта - молочной кислоты (лактата). Функции, которые выполняет гликолиз в зрелых эритроцитах: эритроцит гемоглобин кислород метаболизм

1) в реакциях гликолиза образуется АТФпутём субстратного фосфорилирования. Основное направление использования АТФ в эритроцитах - обеспечение работы Na+,K+-АТФазы. Этот фермент осуществляет транспорт ионов Nа+ из эритроцитов в плазму крови, препятствует накоплению Na+ в эритроцитах и способствует сохранению геометрической формы этих клеток крови (двояковогнутый диск).

2) в реакции дегидрирования глицеральдегид-3-фосфата в гликолизе образуется НАДН, который является:

Кофактором метгемоглобинредуктазы - фермента, катализирующего переход метгемоглобина в гемоглобин по следующей схеме:

Эта реакция препятствует накоплению метгемоглобина в эритроцитах.

Кофактором ЛДГ (лактатдегидрогеназы); -поставщиком протонов для супероксиддисмутазной реакции.

3) метаболит гликолиза 1,3-дифосфоглицерат способен при участии фермента дифосфоглицератмутазы в присутствии 3-фосфоглицерата превращаться в 2,3-дифосфоглицерат.(Рис.3.)На этот процесс расходуется 20-25% глюкозы.

Это соединение выполняет ряд важных биохимических и физиологических функций, а именно:

Является основным фосфорсодержащим соединением и служит важным анионом, который действует как буферный агент;

Является резервом энергии при состояниях, когда запасы креатинфосфата и гликогена отсутствуют; - 2,3-ДФГ - активная отрицательно заряженная молекула. В эритроцитах периферической крови образует солевую связь с Hb, уменьшает его сродство к кислороду, что обеспечивает переход кислорода в клетки тканей. В капиллярах легких Hb освобождается от 2,3-ДФГ и приобретает способность акцептировать кислород.

Рис. 3. Метаболизм 2,3-бисфосфоглицерата в эритроцитах.

2 .3 Пентозофосфатный цикл в эритроцитах

Приблизительно 10% глюкозы, потребляемой эритроцитом, используется в пентозофосфатном пути окисления. Реакции этого пути служат основным источником НАДФН для эритроцита.

Генерация восстановленного кофактора НАДФН2, который используется в эритроцитах для восстановления глутатиона при участии глутати-онредуктазы, поставляет протоны для супероксидодисмутазной реакции, используется мет-Hb-редуктазой для восстановления мет-Hb в Hb.

Промежуточный продукт ПФП - 3-ФГА (3-фосфоглицериновый альдегид) используется в процессе гликолиза, в том числе и для синтеза 2,3-ДФГ.

Дефицит ключевого фермента пентозофосфатного пути - глюкозо-6-фосфатдегидрогеназы - сопровождается уменьшением в эритроцитах отношения НАДФН/НАДФ+, увеличением содержания окисленной формы глутатиона и снижением резиcтентности клеток (гемолитическая анемия).

2 .4 Образование и обезвреживание активных форм кислорода в эритроцитах

Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала O 2 - , пероксида водорода Н 2 О 2 и гидроксил-радикала ОН".Эти формы кислорода обладают высокой реакционной способностью, могут оказывать повреждающее действие на белки и липиды биологических мембран, вызывать разрушение клеток. Поэтому эритроциты, постоянно взаимодействующие с кислородом, содержат эффективные антиоксидантные системы, способные обезвреживать активные метаболиты кислорода.

1)Образование активных форм кислорода

Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление гемоглобина в метгемоглобин:

2) Обезвреживание активных форм кислорода

Глутатион - это важный антиоксидант эритроцитов, который необходим для восстановления метгемоглобина до гемоглобина. Эритроциты также содержат другие ферменты, которые обеспечивают обезвреживание свободных радикалов и ликвидируют последствия повреждений (супероксиддисмутаза, каталаза, селен-содержащий фермент глутатионпероксидаза).

· трипептид глутатион, образующийся в эритроцитах в результате взаимодействия г-глутамилцистеина и глицина:

· Восстановленная форма глутатиона (сокращённое обозначение Г-SH) участвует в реакциях обезвреживания пероксида водорода и органических пероксидов (R-O-OH). При этом образуются вода и окисленный глутатион (сокращённое обозначение Г-S-S-Г).

· Превращение окисленного глутатиона в восстановленный катализирует фермент глутатионредуктаза. Источник водорода - НАДФН (из пентозофосфатного пути):

· В эритроцитах имеются также ферменты супероксиддисмутаза и каталаза, осуществляющие следующие превращения:

3)Механизм образование и обезвреживание активных форм кислорода.

1.Спонтанное окисление Fe 2+ в теме гемоглобина - источник супероксидного аниона в эритроцитах;

2.Супероксиддисмутаза превращает супероксидный анион в пероксид водорода и воду:

О 2 - + О 2 - + 2Н + > Н 2 О 2 + О 2 ;

3.Пероксид водорода расщепляется каталазой:

2 Н 2 О 2 > 2 Н 2 О + О 2

или глутатионпероксидазой:

2 GSH + Н 2 О 2 > GSSG +2 Н 2 О;

4.Глутатионредуктаза восстанавливает окисленный глутатион:

GSSG + NADPH + Н + > 2GSH + NADP + ;

5. NADPH, необходимый для восстановления глутатиона, образуется на окислительном этапе пентозофосфатного пути превращения глюкозы;

6 .NADH, необходимый для восстановления гемоглобина метгемоглобинредуктазной системой, образуется в глицеральдегидфосфатдегидрогеназной реакции гликолиза.

Рис.4.Общая схема метаболизма в эритроците.

3 . Роль эритроцитов в газообмене

3 .1 Гемоглобин

Дыхательная функция эритроцитов осуществляется за счет гемопротеина гемоглобина - белка с четвертичной структурой, состоящий из четырех субъединиц(протомеров), каждый из которых содержит полипептидную цепь, связанную с гемом через остаток гистидина. В крови взрослого человека основным типом гемоглобина (до 96% всего гемоглобина эритроцитов) является форма, содержащая две б- и две в-цепи, состоящие, соответственно, с 141 и 146 аминокислотных остатков. Условная формула такого гемоглобина взрослых обозначается HbA1 = б2 в2. Кроме этой формы,в крови содержится до 2% гемоглобина A2, формула которого HbA2 = б2д2, и 2-3% эмбрионального или фетального гемоглобина HbF = б2 г2.

Итак,мы выяснили, что молекула гемоглобина построена из 4 субъединиц (полипептидных цепей), каждая из которых связана с гемом.

Следовательно, молекула гемоглобина имеет 4 гема, к которым может присоединяться кислород, при этом гемоглобин переходит в оксигемоглобин. Гемоглобин человека содержит 0,335% железа. Каждый грамм-атом железа (55,84 г) в составе гемоглобина при полном насыщении кислородом связывает 1 грамм-молекулу кислорода (22400 мл).

3 .2 Синтез гемоглобина

В клетках-предшественниках эритроцитов (эритробластах и ретикулоцитах) все компоненты Hb - альфа-цепи,бета-цепи и гем - синтезируются в сбалансированных количествах. Субстратами для синтеза порфиринового цикла гема является глицин и сукцинил-КоА. При их взаимодействии образуется д-аминолевулиновая кислота (Рис.5) . Активность д-аминолевулинатсинтазы, которая катализирует эту реакцию, тормозится гемом гемоглобина и другими гемопротеинами. Две молекулы аминолевулиновой кислоты конденсируются под действием д-аминолевулинатдегидротазы с образованием порфобилиногена, который содержит пирольное кольцо.Активнисть фермента также тормозится по принципу обратной связи гемом и гемопротеинами. Далее четыре молукулы порфобилиногена конденсируются с образованием линейной тетрапильного соединения,которое переходит в циклический уропорфириноген. Последний через копропорфириноген превращается в протопорфирин IX. На последней стадии фермент ферохелатаза включает железо в порфирин и образуется гем. Синтез полипептидных цепей глобина происходит только при наличии гема, который сразу же связывается с белком.

Рис.5.Общая схема синтеза гемоглобина.

3 .3 Механизм участия гемоглобина в транспорте кислорода

Благодаря способности присоединять молекулу О2 при его высоком парциальном давлению и отдавать - при низком, молекула гемоглобина выполняет свою основную физиологическую функцию транспортера кислорода, присоединяя его в капиллярах альвеол легких и отдавая тканям в венозных капиллярах. Кривая связывания гемоглобином кислорода и,соответственно, диссоциации оксигемоглобина, имеет S-образную форму, что свидетельствует о кооперативный характер процесса. Присоединение молекулы О2 к первой субъединицы гемоглобина вследствие конформационных изменений,которые происходят, повышает способность гемопротеина к взаимодействию с последующими тремя молекулами кислорода. Таким образом, сродство гемоглобина к четвертой молекулы кислорода почти в 300 раз выше, чем в первой.

Рис.6.Зависимость степени оксигенации (% от максимальной) от парциального давления О2 для гемоглобина (II) и миоглобина (I) - кислародсвязывающего белка мышц, не имеющего кооперативных свойств. Степень оксигенации гемоглобина (образование HbO2) зависит от следующих факторов:

Парциального давления кислорода; - Значение pH; - Концентрации диоксида углерода; - Концентрации 2,3-дифосфоглицерата;

S-образная кинетика зависимости степени образования HbO2 от парциального давления кислорода и (соответственно) его концентрации в крови была рассмотрена выше(Рис.6). Отметим также, что высвобождению кислорода из оксигемоглобина в периферических тканях в значительной мере способствует градиент его парциального давления в направлении альвеолы(100 мм рт. Ст.)> Артериальная кровь (90 мм рт. Ст.)> Венозная кровь(40 мм рт. Ст.)> Митохондрии клеток (0-5 мм рт. Ст.).

Связывания гемоглобином ионов H + и СО2 уменьшает способность гема к взаимодействию с кислородом, то есть активность образования HbO2. Это негативное влияние уменьшения pH и увеличение концентрации диоксида углерода на образование оксигемоглобина называется эффектом Бора. Важной биохимической функцией 2,3-дифосфоглицерата является его способность уменьшать сродство гемоглобина к кислороду.Этот метаболит связывается с молекулой гемоглобина в деоксигеновой форме (Hb), противодействуя его взаимодействия с O2, то есть образованию HbO2. Таким образом, наличие в эритроцитах значительного количества 2,3-дифосфоглицерата является важным регуляторным фактором, способствующим высвобождению кислорода с HbO2 в тканевой области кровообращения.

3 .4 Механизмы транспорта диоксида углерода от тканей в легкие

Кроме транспорта молекул О2 от легких к капиллярам периферических тканей,гемоглобин играет также существенную роль в переносе от тканей к легким СО2,который образуется в клетках в реакциях декарбоксилирования. Диоксид углерода, поступающий в кровь через стенки тканевых капилляров, частично непосредственно растворяется в плазме, но большая его часть образует бикарбонаты, которые с током крови поступают в легкие. Поскольку гемоглобин имеет свойства кислоты (HHb),к тому же его кислотные свойства растут приоксигенации (HHbO2), он способен взаимодействовать с бикарбонатами (KHCO3) с образованием угольной кислоты (H2CO3),что и происходит в легочных капиллярах; дальнейшая диссоциация угольной кислоты приводит к образованию свободного диоксида углерода, который выделяется из легких в процессе внешнего дыхания.Процессы, лежащие в основе способности гемоглобина участвовать в транспорте СО2, описываются такими уравнениями реакций:

1.В легочных капиллярах. Оксигенация гемоглобина, увеличивает его кислотные свойства (то есть степень диссоциации кислотных групп его белковой части):

Взаимодействие кислотной формы гемоглобина с бикарбонатом калия, поступающего внутрь эритроцита из плазмы крови:

HHbO2 + KHCO3>KHbO2 + H2CO3

Расщепление угольной кислоты, которая образовалась под действием фермента карбоангидразы:

H2CO3 >H2O + CO2

2. В капиллярах периферических тканей. Отщепление кислорода от калиевой соли оксигемоглобина:

Образование внутри эритроцитов угольной кислоты из диоксида углерода, генерируется за счет процессов декарбоксилирования:

Образование в эритроцитах бикарбоната при взаимодействии угольной кислоты с калиевой солью гемоглобина:

KHb + H2CO3 >HHb + KHCO3

Бикарбонат (HCO3 -), образовавшийся в этой реакции, поступает от эритроцита в плазму крови (за счет ионного обмена с анионом Cl-) и транспортируется в легкие.

Поступающий из тканей в эритроциты СО2 под действием фермента карбоангидразы превращается в слабую угольную кислоту, которая распадается на Н+ и НСО3-. Образующиеся при этом протоны присоединяются к гемоглобину, уменьшая его сродство к О2, а бикарбонаты с помощью белка полосы 3 обмениваются на Cl- и выходят в плазму крови.

Н2О + СО2 > Н2СО3 > Н+ + НСО3- > обмен на Сl- .

В лёгких увеличение парциального давления кислорода и взаимодействие его с гемоглобином приводят к вытеснению протонов из гемоглобина, обмену внутриклеточного Сl- на НСО3- через белок полосы 3, образованию угольной кислоты и её разрушению на СО2 и Н2О.

3 .5 Карбоксигемоглабин

Вместо кислорода к гемоглобину может присоединиться оксид углерода (II) с образованием карбоксигемоглобину(HbCO).Сродство гемоглобина человека с СО более чем в 200 раз превышает cродство с О2 .Токсичное действие на организм проявляют даже небольшие концентрации в воздухе оксида углерода, когда часть гемовых групп гемоглабина связана с СО, а часть - с О2.Такие молекулы гемоглабина удерживают кислород крепче, чем гемоглобин, с которым связано 4 молекулы кисларода.Таким образом, при отравлении СО гипоксия обусловлена??не только блокированием части гемов гемоглобина, но и нарушением процесса дезоксигенации гемов, с которыми связаны молекулы О2.

4 . Hарушения метаболизма эритроцитов

В процессе созревания эритроциты теряют не только митохондрии, но и ядро и рибосомы, поэтому синтез белка в этих клетках не происходит, и эритроциты не способны восстанавливать белки. Этот факт является решающим при наличии мутаций, следствием которых является энзимопатии, гемоглобинопатии,талассемии и т.д

4 .1 Энзимопатии, обус ловливающие гемолиз эритроцитов

Самой распространенной энзимопатии пентозофосфатного пути является дефицит глюкозо-6-фосфатдегидрогеназы. Во всем мире этим заболеванием страдают примерно 200 млн человек. У людей обнаружено около 3000 генетических дефектов глюкозо-6-фосфатдегидрогеназы. Этот фермент катализирует скорость-лимитирующую реакцию пентозофосфатного пути окисления глюкозы, которая обеспечивает образование NADPH + Н + . Как известно, от количества NADP + Н + зависит активность глутатионредуктазы и глутатионпероксидазы - ферментов, разрушающих пероксид водорода. Не менее 100 млн человек, у которых активность этого фермента снижена, являются носителями дефектных генов глюкозо-6-фосфатдегидрогеназы. При приёме некоторых лекарств, являющихся сильными окислителями (антималярийного препарата примахина, сульфаниламидов), у пациентов, имеющих генетические дефекты глюкозо-6-фосфатдегидрогеназы или глутатионредуктазы, глутатионовой защиты может оказаться недостаточно. Активные формы кислорода вызывают образование гидроперекисей ненасыщенных жирных кислот фосфолипидов, входящих в состав клеточных мембран, их разрушение и гемолиз эритроцитов.

Генетический дефект любого фермента гликолиза приводит к уменьшению образования АТФ и NADH + Н + в этих клетках. Вследствие снижения скорости синтеза АТФ падает активность Nа + , К + -АТФ-азы, повышается осмотическое давление и возникает осмотический шок. Дефицит NADH + H + приводит к накоплению метгемоглобина и увеличению образования активных форм кислорода, вызывающих окисление SH-групп в молекулах гемоглобина. Молекулы метгемоглобина образуют дисульфидные связи между протомерами и агрегируют с образованием телец Хайнца.

Рис.7. Схема образования тел ец Хайнца-агрегация гемоглобина

4 .2 Гемоглобинопатии

Серповидноклеточная анемия - тяжёлое наследственное заболевание, обусловленное точечной мутацией гена, кодирующего структуру в-цепи гемоглобина.В результате в эритроцитах больных присутствует HbS, в-цепи которого в шестом положении вместо гидрофильной глутаминовой кислоты содержат гидрофобную аминокислоту валин. Появление гидрофобной аминокислоты недалеко от начала молекулы способствует возникновению нового центра связывания, поэтому при низком парциальном давлении кислорода тетрамеры дезокси-HbS ассоциируют, образуя длинные микротрубчатые образования, которые полимеризуются внутри эритроцитов. Полимеризация приводит к нарушению структуры эритроцитов, они приобретают серповидную форму и легко разрушаются. При этом заболевании отмечают анемию, прогрессирующую слабость, отставание в развитии и желтуху.

4 .3 Талассемии

Это наследственные заболевания,обусловленные отсутствием или снижением скорости синтеза б-или в-цепей гемоглобина.В результате несбалансирован-ного образования глобиновых цепей образуются тетрамеры гемоглобина, состоящие из одинаковых протомеров. Это приводит к нарушению основной функции гемоглобина - транспорту кислорода к тканям. Нарушение эритропоэза и ускоренный гемолиз эритроцитов и клеток-предшественников при талассемиях приводит к анемии.

· При в-талассемии не синтезируются в-цепи гемоглобина. Это вызывает образование нестабильных тетрамеров, содержащих только б-цепи. При этом заболевании в костном мозге из-за преципитации нестабильных б-цепей усиливается разрушение эритробластов, а ускорение разрушения эритроцитов в циркулирующей крови приводит к внутрисосудистому гемолизу.

· В случае б-талассемии недостаток образования б-глобиновых цепей приводит к нарушению образования HbF у плода. Избыточные г-цепи образуют тетрамеры, называемые гемоглобином Барта. Этот гемоглобин при физиологических условиях имеет повышенное сродство к кислороду и не проявляет кооперативных взаимодействий между протомерами. В результате гемоглобин Барта не обеспечивает развивающийся плод необходимым количеством кислорода, что приводит к тяжёлой гипоксии.

4 .4 Н аследственный сфероцитоз

Причиной этой патологии чаще всего является дефект белков цитоскелета эритроцитов - спектрина или анкирина, которые обеспечивают поддержание двояковогнутой формы клетки и эластичности мембраны. Эритроциты приобретают шарообразную форму, что приводит к уменьшению площади их поверхности и снижению скорости газообмена. Потеря эластичности клеточной мембраны приводит к повышению хрупкости и травматичности клеток и, как следствие, к ускорению их разрушения в сосудистом русле и селезёнке. Заболевание сопровождается анемией и желтухой.

4 .5 Мегалобластная (макроцитарная) анемия

Развивается при дефиците фолиевой кислоты или витамина В 12 . Фолиевая кислота в виде кофермента (Н 4 -фолата) участвует в синтезе нуклеотидов. Недостаток фолиевой кислоты приводит к снижению скорости синтеза ДНК в быстроделящихся клетках, и в первую очередь в предшественниках эритроцитов. Клетки дольше пребывают в интерфазе, синтезируя гемоглобин, и становятся крупнее. Кроме того, из-за недостатка нуклеотидов они реже делятся, и количество эритроцитов снижается, а крупные мегалобласты быстрее разрушаются. Всё это в конечном итоге приводит к развитию анемии. Аналогичная симптоматика развивается при недостатке в организме витамина В 12 . Недостаточность витамина В 12 приводит к накоплению N 5 -метил Н 4 -фолата в клетках. Дефицит Н 4 -фолата приводит к нарушению деления клеток и развитию анемии.

Вывод

В этой работе мы рассмотрели особенности строения и метаболизма красных кровяных телец. Зрелые эритроциты человека и других млекопитающих лишены ядра и почти целиком заполнены гемоглобином. Концентрация гемоглобина в крови зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина.Гемоглабин эритроцитов играет очень важную роль в газообмене. Следует заметить, что в эритроцитах интенсивно протекают гликолиз и пентозофосфатный путь.Какие-либо изменения или мутации в этих процессах приводят к нарушению метаболизма в эритроцитах.

Список литературы

1. Березов Т. Т., Коровкин Б. Ф.Биологическая химия: Учебник.- 3-е изд., перераб. И доп.- М.: Медицина, 1998.- 704 с.

2. Гонский Я.И.,Максимчук Т.П.Биохимия человека.-Учебник Тернополь:Укрмедкнига.2001. - 736 с.

3. Губський Ю.І.Біологічна хімія: Підручник.- Київ-Тернопіль: Укрмедкнига, 2000. -508 с.

4. Курс лекцій з біохімії. Розділ «Біохімія крові» / укладачі: Л.І. Гребеник, І.Ю. Висоцький. - Суми: Сумський державний університет, 2011. - 80 с.

5. Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003. 779 с. 6.http://studall.org/all4-1883.html Особенности метаболизма эритроцита.

7.http://vmede.org/sait/?page=16&id=Biohimija_severin_2011&menu=Biohimija_severin_2011 БИОХИМИЯ КРОВИ

8. http://med-stud.narod.ru/med/biochemistry/erythrocyte.html© каф. биохимии №1 РГМУ.Биохимия эритроцита.

Размещено на Allbest.ru

...

Подобные документы

    Процессы энергетического метаболизма и основные энергетические параметры эритроцитов. Выяснение условий, при которых может происходить переход метаболизма эритроцитов из одной устойчивой точки в другую. Анализ строения и функций гемоглобина, эритроцитов.

    дипломная работа , добавлен 17.10.2012

    Особенности развития, строения, химического состава, обмена веществ и функций эритроцитов, лейкоцитов и тромбоцитов. Существующие типы гемоглобина. Токсичные формы кислорода в крови человека. Основные составляющие антиоксидантной системы организма.

    презентация , добавлен 18.05.2015

    Биохимические показатели эритроцитов в условиях хранения в присутствии раствора глюкозы. Строение и дифференцировка эритроцитов, биохимические процессы при их созревании и старении. Реакция оксигенации, углеводный обмен. Получение гемолизата эритроцитов.

    дипломная работа , добавлен 20.03.2011

    Функции антигенов эритроцитов, их химическая природа и факторы, влияющие на динамику действия. Современная классификация и типы, биологическая природа и значение в организме. Система антигенов эритроцитов Резус. Описание других антигенных систем крови.

    реферат , добавлен 18.02.2015

    Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация , добавлен 12.01.2014

    Общие понятия об обмене веществ и энергии. Анализ потребностей прокариот в питательных веществах. Типы метаболизма микроорганизмов. Сравнительная характеристика энергетического метаболизма фототрофов, хемотрофов, хемоорганотрофов и хемолитоавтотрофов.

    курсовая работа , добавлен 04.02.2010

    Изучение изолированного и сочетанного действия 1,1-диметилгидразина и ионов свинца и ртути на состояние мембран эритроцитов. Возможности повышения резистентности мембран с помощью биологически активных веществ (витаминов С, Е и препарата "Селевит").

    диссертация , добавлен 25.10.2013

    Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация , добавлен 21.11.2013

    Общая характеристика и функции иммунной системы. Органы и клетки иммунной системы. Основные виды иммунитета. Обеспечение оптимальной для метаболизма массы циркулирующей крови и количества форменных элементов крови (эритроцитов, лейкоцитов и тромбоцитов).

    презентация , добавлен 21.01.2015

    Классификация, свойства, строение и номенклатура ферментов. Факторы, влияющие на их активность. Характеристика представителей гликозидазы, аептидгидролазы. Изучение особенностей метаболизма, анаболизма и катаболизма. Исследование структуры кофермента.