Главная · Зубной камень · Структуры проводящей системы сердца. Схематическое строение проводящей системы сердца. Работа сердца и проводящей системы

Структуры проводящей системы сердца. Схематическое строение проводящей системы сердца. Работа сердца и проводящей системы


Когда-то были описаны удивительные клетки, их обнаружил крупнейший чешский физиолог и естествоиспытатель Ян Пуркинье (рис. 1), впоследствии они получили его имя. Клетки Пуркинье при изучении под микроскопом имеют в своем составе актиновые и миозиновые нити, что делает их сходными с миоцитами, но нити эти не лежат одна над другой и неспособны к упорядоченному взаимодействию, как в кардиомиоцитах. К тому же их мало, и куда больше цитоплазмы, перенасыщенной ионами кальция. Высокая концентрация кальция и некоторые другие электролитные характеристики наделяют эти необычные клетки способностью самостоятельно создавать электрические сигналы, что роднит их с нейронами. Благодаря чему, в сердце существует весьма представительная группа клеток, способных к периодическому самопроизвольному возбуждению.

Рис.1. Ян Пуркинье


Клетки Пуркинье структурно расположены по всему миокарду. Существует три скопления этих клеток (рис. 2). Первое - синоатриальный узел (1), связано с мышечной системой левого и правого предсердий , это скопление клеток Пуркинье находится под эпикардом. Второе скопление - атриовентрикулярный узел (2) находится в стенке правого предсердия, в той части, где проходит граница между правым предсердием и правым желудочком. Третье - пучок Гиса , оно имеет вытянутую форму (3), и находится в межжелудочковой перегородке, начинается пучок от второго скопления - атриовентрикулярного узла, затем оно расходится на две части (ножки пучка Гиса ), которые (4) образуют ветвящуюся сеть в левом и правом желудочке , это ветвление носит название волокон Пуркинье (5).


Рис.2. Строение проводящей системы сердца


Наибольшим значением обладает синоатриальный узел, его также называют «водителем ритма». Но все чаще можно услышать другое его обозначение, пришедшее из английского языка: пейсмекер, то есть «тот, кто задает темп». Так вот, клетки пейсмекера создают импульсы частота которых колеблется в пределах 60-80 в минуту, за счёт этого они и «задают темп» всему сердцу, подобная частота соответствует пульсу здорового человека. Импульс создает возбуждение, которое охватывает предсердия, данные полости синхронно сокращаются. Дальше возбуждение доходит до второго скопления клеток Пуркинье - атриовентрикулярного узла, передается на пучок Гиса, затем на его ножки, и разбегается за счет волокон Пуркинье по миокарду желудочков. В ответ на импульс, желудочки синхронно сокращаются. Как выяснилось, в случае выпадения в силу каких-либо причин синоатриального узла из работы, роль пейсмекера берет на себя следующее звено проводящей системы - атриовентрикулярный узел, правда, он способен к созданию импульсов с частотой 40-50 в мин. Если поражается и он, то пучок Гиса берет в свои руки «командование парадом», хотя его возможности ограничиваются в среднем 30 импульсами в минуту. Наконец, последним звеном, способным, задыхаясь, управлять слабеющим сердцем, оказываются сами волокна Пуркинье, возбуждающиеся около 20 раз в минуту.

Сокращения сердечной мышцы вызываются электрическими импульсами, которые зарождаются и проводятся в специализированную и видоизмененную ткань сердца, названную проводниковой системой. В нормальном сердце импульсы возбуждения возникают в синусовом узле, проходят через предсердия и достигают атриовентрикулярного узла. Затем они проводятся в желудочки через пучок Гиса, его правую и левую ножку и сеть волокон Пуркинье, и достигают сократительных клеток миокарда желудочков.

ПРОВОДНИКОВАЯ СИСТЕМА

1. Синусовый узел (синоатриальный, S-A-узел Keith и Flack)

2. Передний межузловой путь с двумя разветвлениями:

2а - пучок к левому предсердию (пучок Bachmann)

2б - нисходящий пучок к межпредсердной перегородке и атриовентрикулярному узлу

3. Средний межузловой путь

4. Задний межузловой путь

5. Атриовентрикулярный (А-V) узел Ашоффа-Тавара

6. Пучок Гиса

7. Правая ножка пучка Гиса

8. Левая ножка пучка Гиса

9. Задняя ветвь левой ножки

10. Передняя ветвь левой ножки

11. Сеть волокон Пуркинье в желудочковой мускулатуре

12. Сеть волокон Пуркинье в предсердной мускулатуре

СИНУСОВЫЙ УЗЕЛ

Синусовый узел представляет собой пучок специфической сердечно-мышечной ткани, длина которого достигает 10-20 мм и ширина - 3-5 мм. Он расположен субэпикардиально в стенке правого предсердия, непосредственно сбоку от устья верхней полой вены. Клетки синусового узла расположены в нежной сети, состоящей из коллагеновой и эластической соединительной ткани. Существует два вида клеток синусового узла - водителя гритма или пейсмекерные (Р-клетки) и проводниковые (Т-клетки). Р-клетки генерируют электрические импульсы возбуждения, а Т-клетки выполняют преимущественно функцию проводников. Клетки Р связываются как между собой, так и с клетками Т. Последние, в свою очередь, анастомозируют друг с другом и связываются с клетками Пуркинье, расположенными около синусового узла.

В самом синусовом узле и рядом с ним находится множество нервных волокон симпатического и блуждающего нервов, а в субэпикардиальной жировой клетчатке над синусовым узлом расположены ганглии блуждающего нерва. Волокна к ним исходят в основном из правого блуждающего нерва.
Питание синусового узла осуществляется синоатриальной артерией. Это сравнительно крупный сосуд, который проходит через центр синусового узла и от него отходят мелкие ветви к ткани узла. В 60% случаев синоатриальная артерия отходит от правой венечной артерии, а в 40% - от левой.

Синусовый узел является нормальным электрическим водителем сердечного ритма. Через равные промежутки времени в нем возникают электрические потенциалы, возбуждающие миокард и вызывающие сокращение всего сердца. Клетки Р синусового узла генерируют электрические импульсы, которые проводятся клетками Т в близкорасположенные клетки Пуркинье. Последние, в свою очередь, активируют рабочий миокард правого предсердия. Кроме того, по специфическим путям электрический импульс проводится в левое предсердие и атриовентрикулярный узел.

МЕЖУЗЛОВЫЕ ПУТИ

Электрофизиологическими и анатомическими исследованиями в последнее десятилетие было доказано наличие трех специализированных проводниковых путей в предсердиях, связывающих синусовый с атриовентрикулярным узлом: передний, средний и задний межузловые пути (James, Takayasu, Merideth и Titus). Эти пути образованы клетками Пуркинье и клетками, очень похожими на клетки сократительного предсердного миокарда, нервными клетками и ганглиями блуждающего нерва (James).

Передний межузловой путь делится на две ветви - первая из них идет к левому предсердию и называется пучком Бахманна, а вторая спускается вниз и кпереди по межпредсердной перегородке и достигает верхней части атриовентрикулярного узла.

Средний межузловой путь , известный под названием пучок Венкебаха, начинается от синусового узла, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и, анастомозируя с волокнами переднего межузлового пути, достигает атриовентрикулярного узла.

Задний межузловой путь , названный пучком Тореля, отходит от синусового узла, идет вниз и кзади, проходит непосредственно над коронарным синусом и достигает задней части атриовентрикулярного узла. Пучок Тореля самый длинный из всех трех межузловых путей.

Все три межузловые пути анастомозируют между собой недалеко от верхней части атриовентрикулярного узла и связываются с ним. В некоторых случаях от анастомоза межузловых путей отходят волокна, которые обходят атриовентрикулярный узел и сразу достигают его нижней части, или же доходят до того места, где он переходит в начальную часть пучка Гиса.

АТРИОВЕНТРИКУЛЯРНЫЙ УЗЕЛ

Атриовентрикулярный узел находится справа от межпредсердной перегородки над местом прикрепления створки трехстворчатого клапана, непосредственно рядом с устьем коронарного синуса. Форма и размеры его разные: в среднем длина его достигает 5-6 мм, а ширина - 2-3 мм.

Подобно синусовому узлу, атриовентрикулярный узел содержит также два вида клеток - Р и Т. Однако имеются значительные анатомические различия между синоаурикулярным и атриовентрикулярным узлами. В атриовентрикулярном узле гораздо меньше Р-клеток и незначительное количество сети коллагеновой соединительной ткани. У него нет постоянной, центрально проходящей артерии. В жировой клетчатке за атриовентрикулярным узлом, вблизи устья коронарного синуса, находится большое число волокон и ганглиев блуждающего нерва. Кровоснабжение атриовентрикулярного узла происходит посредством ramus septi fibrosi, называемой еще артерией атриовентрикулярного узла. В 90% случаев она отходит от правой венечной артерии, а в 10% - от ramus circumflexus левой венечной артерии.

Клетки атриовентрикулярного узла связываются анастомозами и образуют сетчатую структуру. В нижней части узла, перед переходом в пучок Гиса, клетки его располагаются параллельно друг другу.

ПУЧОК ГИСА

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом. Эта часть известна под названием начальной проксимальной или пенетрирующей части пучка Гиса. Затем пучок Гиса переходит в задне-нижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Это так называемая мембранозная часть пучка Гиса. Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см. Питание пучка Гиса осуществляется артерией атриовентрикулярного узла.

Иногда от дистальной части пучка Гиса и начальной части левой ножки его отходят короткие волокна, идущие в мышечную часть межжелудочковой перегородки. Эти волокна называются параспецифическими фибрами Махайма.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

ПРАВАЯ И ЛЕВАЯ НОЖКИ ПУЧКА ГИСА

Пучок Гиса в нижней части, названной бифуркацией, разделяется на две ножки - правую и левую, которые идут субэндокардиально или интракардиально по соответствующей стороне межжелудочковой перегородки. Правая ножка представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные проксимальные разветвления или без таковых. В дистальной части правая ножка пучка Гиса выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается анастомозами с волокнами сети Пуркинье.

Несмотря на усиленные морфологические изучения, проводимые в последние годы, структура левой ножки пучка Гиса остается невыясненной. Существуют две основные схемы строения левой ножки пучка Гиса. Согласно первой схеме (Rosenbaum и сотр.), левая ножка еще с самого начала делится на две ветви - переднюю и заднюю. Передняя ветвь - относительно более длинная и тонкая - достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка. Задняя ветвь - относительно короткая и толстая - достигает основания задней сосочковой мышцы левого желудочка. Таким образом внутрижелудочковая проводниковая система представлена тремя проводящими путями, названными Rosenbaum и сотр. фасцикулами, - правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса. Множество электрофизиологических исследований поддерживают мнение о трехпучковой (трифасцикулярной) внутрижелудочковой проводниковой системе.

По второй схеме (James и сотр.) считается, что в отличие от правой ножки, левая не представляет собой обособленного пучка. Левая ножка еще в самом начале, отходя от пучка Гиса, разделяется на множество варьирующих по числу и толщине волокон, которые веерообразно разветвляются субэндокардиально по левой стороне межжелудочковой перегородки. Два из множества разветвлений образуют более обособленные пучки - один, расположенный спереди, - в направлении передней, а другой сзади - в направлении задней сосочковой мышцы.

Как левая, так и правая ножка пучка Гиса, подобно межузловым путям предсердий, составлены из двух видов клеток - клеток Пуркинье и клеток, очень похожих на клетки сократительного миокарда.
Большая часть правой и передние две трети левой ножки кровоснабжаются септальными веточками левой передней нисходящей артерии. Задняя треть левой ножки питается септальными веточками задней нисходящей артерии. Существует множество транссептальных анастомозов между септальными веточками передней нисходящей венечной артерии и веточками задней нисходящей венечной артерии (James).
Волокна блуждающего нерва доходят до обеих ножек пучка Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

ВОЛОКНА СЕТИ ПУРКИНЬЕ

Конечные разветвления правой и левой ножек пучка Гиса связываются анастомозами с обширной сетью клеток Пуркинье, расположенных субэндокардиально в обоих желудочках. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков. Электрический импульс, поступающий по внутрижелудочковым проводящим путям, достигает клеток сети Пуркинье и отсюда переходит непосредственно к сократительным клеткам желудочков, вызывая сокращение миокарда.

Нервные волокна блуждающего нерва не доходят до сети волокон Пуркинье в желудочках.
Клетки сети волокон Пуркинье питаются кровью из капиллярной сети артерий соответствующего района миокарда.

Миокард предсердий и желудочков , разделенный фиброзными кольцами, синхронизируется в своей работе проводящей системой сердца, единой для всех его отделов (рис. 1.30).

Рис. 1.30. Схематическое изображение проводящей системы сердца: 1 — верхняя полая вена; 2 — синусно-предсердный узел; 3 — передний межузловой и межпредсердный тракт Бахмана; 4 — средний межузловой тракт Венкебаха; 5 — задний межузловой тракт Горела; 6 — предсердно-желудочковый узел; 7 — предсердно-желудочковый пучок; 8 — левая ножка предсердно-желудочкового пучка; 9 — правая ножка пучка Гиса; 10 — субэндокардиальная сеть волокон Пуркинье; 11 — нижняя полая вена; 12 — венечный синус; 13 — передняя ветвь левой ножки пучка Гиса; 14 — аорта; 15 — задний легочный ствол.

Структуры, генерирующие и передающие импульсы к предсердным и вентрикулярным кардиомиоцитам, регулирующие и координирующие сократительную функцию сердца, специализированы и сложны. Проводящая система сердца по своей гистоструктуре и цитологическим характеристикам существенно отличается от других отделов сердца. Анатомически проводящая система включает синусно-предсердный и предсердно-желудочковый узлы, межузловые и межпредсердные проводящие пути, предсердно-желудочковый пучок (пучок Гиса) специализированных мышечных клеток, отдающий левую и правую ножки, субэндокардиальную сеть волокон Пуркинье.

Синусно-предсердный узел

Синусно-предсердный узел расположен с латерильной стороны над основанием правого ушка у места впадения верхней полой вены в правое предсердие, от эндокарда которого его отделяет тонкая прослойка соединительной и мышечной ткани. Имеет форму уплощенного эллипса или полумесяца, горизонтально расположенного под эпикардом правого предсердия. Длина узла 10-15 мм, высота — до 5 мм, толщина — около 1,5 мм. Визуально узел слабо отличим от окружающего его миокарда, несмотря на капсулоподобное скопление соединительной ткани по периферии.

Ткань синусно-предсердного узла почти на 30% состоит из переплетающихся в различных направлениях пучков коллагеновых фибрилл различной толщины с небольшим количеством эластических волокон и клеток соединительной ткани. Тонкие мышечные волокна из специализированных клеток диаметром 3-4,5 мк расположены беспорядочно с неравномерными промежутками, выполненными интерстицием, микрососудами, нервными элементами, ориентированы по окружности сосуда, лишь вблизи центральной артерии, питающей узел. По периферии узел окружен значительным количеством фиброэластической ткани с обширной сетью капилляров, здесь же расположены нервные ганглии, единичные ганглиозные клетки и нервные волокна, в большом количестве проникающие в ткань узла.

Синусно-предсердный узел дает начало множественным путям, которые проводят импульсы, генерируемые специализироваными клетками. От него отходят латеральные пучки к правому ушку, нередко — горизонтальный пучок к левому ушку, задний горизонтальный пучок к левому предсердию и устьям легочных вен, пучки к верхней и нижней полым венам, медиальные пучки к межвенозному мышечному пучку миокарда. Данные мышечные пучки проводящей системы являются факультативными анатомическими образованиями, отсутствие того или иного из них может не оказывать заметного влияния на работу сердечной мышцы.

Межузловые пути проведения импульсов

Наиболее функционально значимыми являются нисходящие пути. Передний межузловой тракт, пучок Бахмана, берет начало от переднего края синусно-предсердного узла, проходит спереди и влево от верхней полой вены по направлению к левому предсердию, продолжаясь до уровня левого ушка. От пучка Бахмана ответвляется передний межузловой пучок, далее самостоятельно следующий в межпредсердной перегородке до предсердно-желудочкового узла. Средний меж узловой тракт, пучок Венкебаха, отходит от верхнего и заднего краев синусно- предсердного узла. Проходит единым пучком позади верхней полой вены, разделяясь затем на две неравные части, меньшая из которых следует до левого предсердия, а основная продолжается по межпредсердной перегородке до предсердно-желудочкового узла. Задний межузловой тракт, пучок Тореля, выходит из заднего края синусно-предсердного узла. Он рассматривается как основной путь межузлового проведения импульсов, его волокна следуют по пограничному гребешку, образуют основную долю волокон евстахиева гребня, следуя далее до предсердно-желудочкового узла по межпредсердной перегородке. Часть волокон перегородочной части всех трех трактов переплетается в непосредственной близости от предсердно-желудочкового узла, проникая в него на разных уровнях. Отдельные волокна межпредсердных и межузловых трактов по структуре сходны с волокнами Пуркинье желудочков, другие состоят из обычных предсердных кардиомиоцитов.

Предсердно-желудочковый узел

Предсердно-желудочковый узел обычно локализован под эндокардом правого предсердия на правом фиброзном треугольнике в нижней части межпредсердечной перегородки, над прикреплением септальной створки правого AV-клапана и несколько спереди от устья венечного синуса. Чаще всего овоидной, веретенообразной, дисковидной или треугольной формы, его размеры колеблятся в пределах от 6х4х05 до 11х6х1 мм.

В структуре предсердно-желудочкового узла, как и в рабочем миокарде, мышечный компонентпреобладает над соединительной тканью. В отличие от синусно-предсердного узла, он является мышечным образованием с менее развитым соединительнотканным остовом. Ткань узла как бы разграничена на две части крово снабжающей его артерией и пластинкой соединительной ткани, соединяющей стенку этого сосуда и фиброзное кольцо. От остальной ткани правого предсердия узел отделяет прослойка жировой клетчатки. Между предсердно-желудочковым узлом и устьем венечного синуса компактно размещены многочисленные парасимпатические ганглии. У мышечных волокон толщиной до 5 мкм продольное, косое и поперечное направление. Тесно переплетаясь, они образуют лабиринты, влияющие на электрофизиологические свойства ткани.

Пучок Гиса

От предсердно-желудочкового узла отходят верхний, задний и предсердно-желудочковый пучки Гиса, причем только последний выявляют в 100% наблюдений. Границей между пучком Гиса, отходящим от передней части предсердно-желудочкового узла, является его суженный участок, перфорирующий правый фиброзный треугольник в месте соединения с верхней перепончатой частью межжелудочковой перегородки. Длина пучка колеблется в пределах 8-20 мм при ширине 2-3 мм, толщине 1,5-2 мм и коррелирует с формой сердца.

По длиннику пучок Гиса слагается из двух частей: короткой интрафиброзной, проходящей сквозь ткань правого фиброзного треугольника, и более протяженной перегородочной, залегающей в межжелудочковой перегородке в виде серовато-бледного тяжа, который с возрастом приобретает желтоватый оттенок из-за накопления жировой ткани. На поперечных разрезах составляющие его мышечные волокна разделены соединительнотканными прослойками на группы, консолидированы в виде неправильного треугольника или фигуры овоидной формы. Предсердно-желудочковый пучок Гиса по всему периметру окружен плотной фиброзной тканью, размер его клеток возрастает по мере удаления от узла.

Под перепончатой частью, на уровне правого синуса аорты, пучок Гиса раздваивается на две ножки, как бы "седлая" гребень мышечного участка межжелудочковой перегородки. Более мощная правая ножка, сохраняющая вид пучка, проходит по правожелудочковой стороне межжелудочковой перегородки, отдавая ветви всем стенкам ПЖ. В большинстве случаев ее удается проследить до основания передней сосочковой мышцы, и лишь в отдельных наблюдениях она теряется уже на уровне середины межжелудочковой перегородки.

Топографически правая ножка пучка Гиса подразделяется на верхнюю, составляющую треть длины до основания перегородочных сосочковых мышц, среднюю — до перегородочно-краевой трабекулы, и нижнюю, расположенную в ней и в основании передней сосочковой мышцы. Верхняя часть этой ножки проходит субэндокардиально, следующая — интрамурально, а нижняя вновь возвращается под эндокард. Нижний участок ножки дает начало дистальным ветвям: передним, идущим к передней стенке желудочка, задним — к трабекулам задней стенки желудочка, и латеральным, следующим к правому краю сердца.

Левая ножка предсердно-желудочкового пучка появляется под эндокардом левой стороны межжелудочковой перегородки из-под задненижнего края перепончатой части перегородки между желудочками на уровне синусов аорты. В левой ножке различают стволовую и разветвленную части. Стволовая разделяется на переднюю ветвь, идущую к передней стенке ЛЖ и расположенной на ней сосочковой мышце, задняя — к его задней стенке и сосочковой мышце. При делении ножки на большее количество ветвей дополнительные ответвления следуют к верхушке сердца.

На периферии вторичные ветви левой ножки рассыпаются на более мелкие пучки, которые входят в трабекулы и образуют сетевидные связи между собой. Пучковые строения менее компактной левой ножки и обеих ее ветвей, направляющихся к передней и задней сосочковым мышцам, как и их граница с тканью рабочего миокарда, выражены значительно слабее, чем правой. Соединительнотканный и сосудистый компонент в них представлены хуже, чем в других участках проводящей системы. Клетки проводящей системы образуют под эндокардом сильно ветвящуюся сеть, элементы которой разграничиваются соединительнотканными прослойками, включающими сосудистые и нервные структуры.

Структура клеточных элементов

Строение клеток проводящей системы сердца определяется их функциональной специализацией. В ее неоднородном клеточном составе по морфофункциональным признакам выделяюттри типа специализированных кардиомиоцитов. Клетки I типа — П-клетки, типичные нодальные или ведущие пейсмейкерные — неправильной удлиненной формы. Эти небольшие миоциты диаметром 5-10 нм, со светлой саркоплазмой и довольно крупным центрально расположенным ядром отдают многочисленные цитоплазматические отростки, сужающиеся к концам и плотно переплетающиеся между собой. П-клетки образуют небольшие группы — кластеры, разграниченные элементами рыхлой соединительной ткани. Кластеры П-клеток окружены общей базальной мембраной толщиной 100 нм, глубоко проникающей в межклеточные щели. Их сарколемма образует многочисленные кавеолы, а вместо Т-системы — нерегулярно определяющиеся глубокие туннельные инвагинации диаметром 1-2 мкм, в которые проникает интерстиций и иногда — нервные элементы.

Контрактильный аппарат П-клеток представлен редкими, хаотично перекрещивающимися миофибриллами либо произвольно ориентированными свободно лежащими тонкими и толстыми протофибриллами и их пучками, нередко в комплексе с полирибосомами. Тонкие миофибриллы состоят из рыхло упакованных филаментов с небольшим количеством саркомеров, диски которых выражены нечетко, Z-линии неодинаковой толщины, иногда прерывисты, а электронно-оптически плотное вещество часто выходит за пределы миофибрилл. Объем, занимаемый миофибриллами в П-клетках, составляет не более 25% такового в вентрикулярных кардиомиоцитах. Редкие митохондрии неодинакового размера и формы с внутренней структурой, значительно упрощенной в сравнении с клетками рабочего миокарда, беспорядочно разбросаны в обильной светлой саркоплазме, окружающей относительно крупное ядро, которое расположено в центральной зоне. Гранулы гликогена немногочисленны.

Слабо развитый саркоплазматический ретикулум распределен преимущественно по периферии клетки, причем его терминальные цистерны иногда формируют типичные функциональные контакты с плазмолеммой. В цитоплазме содержатся свободные гранулы рибонуклеопротеидов, элементы гранулярного ретикулума, комплекса Гольджи, лизосомы. Стабильность формы этих довольно бедных органеллами клеток поддерживают многочисленные хаотично расположенные элементы цитоскелета — так называемые промежуточные филаменты диаметром около 10 нм, часто оканчивающиеся в плотном веществе десмосом.

Клетки II типа — переходные или латентные пейсмейкеры — неправильной удлиненной отростчатой формы. Они короче, но толще рабочих кардиомиоцитов предсердий, нередко содержат два ядра. Сарколемма переходных клеток часто образует глубокие инвагинации диаметром 0,12-0,16 мкм, выстланные гликокаликсом, как и в Т-тубулах. Эти клетки богаты органеллами и имеют меньше недифференцированной саркоплазмы, чем П- клетки, их миофибриллы ориентированы вдоль длинной оси, толще и состоят из большего количества саркомеров, в которых слабо выражены Н- и М-полоски. Митохондрии, расположенные между миофибриллами, по своей внутренней организации приближаются к таковым клеток рабочего миокарда, количество гликогена непостоянно.

Клетки III типа подобны клеткам Пуркинье — проводящие миоциты, на поперечных срезах выглядят объемнее других кардиомиоцитов. Их длина составляет 20-40 мкм, диаметр — 20- 50 мкм, образуемые ими волокна имеют большее поперечное сечение, чем в рабочем миокарде, но неодинаковую толщину.

Клетки Пуркинье отличают также обширная свободная от миофибрилл перинуклеарная зона, выполненная светлой вакуолизированной саркоплазмой, крупное округлое либо напоминающее прямоугольник ядро с умеренной концентрацией хроматина. Их контрактильный аппарат развит слабее, а система пластического обеспечения — лучше, чем в вентрикулярных кардиомиоцитах. Сарколемма образует многочисленные кавеолы, единичные, нерегулярно расположенные Т-тубулы и глубокие, достигающие аксиальной зоны клетки-туннели диаметром до 1 мкм, выстланные базальной мембраной.

Миофибриллы , расположенные в субсарколеммной зоне, иногда ветвятся и анастомозируют. Несмотря на нечеткую ориентировку по длиннику клетки, они, как правило, закреплены в обоих вставочных дисках. Упаковка миофиламентов в миофибриллах довольно рыхлая, гексагональное расположение толстых и тонких протофибрилл не всегда выдерживается, в саркомерах слабо выражены Н- полоска и мезофрагма, отмечается полиморфизм в структуре Z-линий.

В саркоплазме видны свободно взвешенные разрозненные и собранные в комплексы толстые и тонкие филаменты цитоскелета, связанные с полисомами, микротрубочки, лептофибриллы с периодом 140-170 нм, рибосомы и гранулыгликогена, нередко заполняющие всю свободную саркоплазму. Немногочисленные элементы саркоплазматического ретикулума располагаются вокруг миофибрилл и под сарколеммой, иногда образуют субсарколеммные цистерны. Митохондрии заметно меньше, чем в рабочих кардиомиоцитах, расположены как вдоль миофибрилл, так и перинуклеарно в виде небольших скоплений. Здесь же отмечаются профили гранулярного ретикулума, пластинчатого комплекса, лизосомы, окаймленные везикулы.

В целом, П-клетки проводящей системы, генерирующие импульсы, отличаются наиболее низким уровнем морфологической дифференцировки, который постепенно повышается по мере приближения к рабочим кардиомиоцитам желудочков, достигая здесь максимального значения. Объединение различных типов клеток в единую систему генерации и проведения импульса определяется необходимостью синхронизации этого процесса во всех отделах сердца.

Миоциты проводящей системы сердца имеют не только цитоморфологические, но иммуно- и гистохимические отличия от клеток рабочего миокарда. Все миоциты проводящей системы, за исключением П-клеток предсердно-синусного узла, богаче гликогеном, который присутствует в них не только в легко метаболизируемой β-форме, но и в виде более устойчивого комплекса с белками — десмогликогена, выполняющего пластические функции. Активность гликолитических ферментов и гликогенсинтетазы в проводящих кардиомиоцитах относительно выше, чем энзимов цикла Кребса и дыхательной цепи, тогда как в рабочих кардиомиоцитах это соотношение имеет обратный характер соответственно содержанию митохондрий. В результате миоциты предсердно-желудочкового узла, пучка Гиса и других отделов проводящей системы устойчивее к гипоксии, чем остальной миокард, несмотря на более высокую активность АТФазы. В ткани проводящей системы отмечается интенсивная реакция на холин эстеразу, отсутствующая в миокарде желудочков, и значительно большая активность лизосо мальных гидролаз.

Распределение миоцитов различных типов, характер и строение контактов клеток в различных отделах проводящей системы определяется их функциональной специализацией. В срединной зоне синусно-предсердного узла расположены наиболее рано активирующиеся П-клетки — пейсмейкеры, генерирующие импульс. Его периферию занимают переходные клетки II типа, П-клетки контактируют только с ними. Переходные клетки опосредуют прохождение импульса к миоцитам предсердий, замедляют его распространение. Контакты П-клеток немногочисленны, имеют упрощенное строение и весьма произвольную локализацию. В большинстве случаев представлены простым сближением плазмолеммы смежных клеток, фиксируемым единичными десмосомами. Цитологический состав предсердно-желудочкового узла более разнообразен. В нем присутствуют клетки, по структуре очень близкие к пейсмейкерным, краниодорсальную часть занимают миоциты II типа, а дистальные отделы состоят из быстрее проводящих импульс Пуркинье-подобных проводящих миоцитов III типа.

Некоторые исследователи выделяют в составе узла три зоны, отличающиеся по морфологическим и электрофизиологическим характеристикам: АN, переходную от предсердного миокарда к узловой ткани, состоящую в основном из переходных клеток, и NН-зону, пограничную с пучком Гиса, преимущественно формируемую полиморфными переходными Пуркинье-подобными клетками.

Контакты переходных миоцитов с типичными нодальными П-клетками имеют более простое строение, чем их соединения между собой, с предсердными рабочими миоцитами или клетками III типа. Межклеточные стыки образуют лишь непротяженные и бедные осмиофильным материалом промежуточные зоны, а десмосомы и миниатюрные нексусы отмечают довольно редко.

Межклеточные контакты миоцитов III типа между собой и с окружающими сократительными кардиомиоцитами организованы сложнее и по своей структуре ближе к характерным для рабочего миокарда. Вследствие более упорядоченного расположения миофибрилл они ориентированы поперек длинной оси клеток и замет- но реже образуются боковыми поверхностями их апикальных зон. Поперечно расположенные вставочные диски отличает большая протяженность хорошо выраженных промежуточных зон. Наличие протяженных нексусов при боковых контактах значительно повышает проводимость этих мышечных волокон и облегчает передачу импульсов на рабочий миокард. Вставочные диски между клетками Пуркинье иногда имеют косое расположение или V-образную форму. Подобная ориентация и слабая извитость промежуточных зон соответствуют более примитивному строению их вставочных дисков по сравнению с рабочими клетками.

В.В. Братусь, А.С. Гавриш "Структура и функции сердечено-сосудистой системы"

Для того чтобы синхронизировать сокращения отделов сердца, в них проходят проводящие пути. Они представлены особым видом клеток-пейсмекеров, отличающихся от остальных кардиомиоцитов. Их функция заключается в образовании и передаче нервных импульсов по миокарду для осуществления сокращения сердца. Если в какой-нибудь части происходит сбой, то у человека возникают различные нарушения ритма.

Читайте в этой статье

Строение проводящей системы сердца

Структуры, входящие в проводящую систему сердца (ПСС), имеют высокую специализацию и сложный механизм взаимодействия. Научные дискуссии по поводу работы путей прохождения импульсов до сих пор не окончены.

Элементы и отделы

Компонентами ПСС являются два узла – синусово-предсердный, синоатриальный (САУ) и предсердно-желудочковый, или атриовентрикулярный (АВУ). Первый узел, вместе с путями, проходящими по предсердиям и к АВУ, объединен в синоатриальный отдел, а АВУ и ножки пучка Гиса с мелкими волокнами Пуркинье включены во вторую, атриовентрикулярную часть.

Синусовый узел

В здоровом сердце он считается единственным генератором ритма. Его месторасположение находится в правом предсердии, вблизи полой вены. Между САУ и внутренним слоем сердца есть тонкая оболочка из мышечных волокон. По форме узел похож на полумесяц. От него отходят волокна к обоим предсердиям и полым венам. Соединение САУ и АВУ осуществляется при помощи межузловых путей:

  • передний – один пучок к левому предсердию, частично волокна по перегородке переходят к АВУ;
  • средний – в основном пролегает по перегородке;
  • задний – проходит полностью между предсердиями.

Атриовентрикулярный узел

Находится в правом предсердии внизу перегородки. Имеет вид диска или овала. В нем гораздо меньше соединительных клеток, чем в САУ, от остальной ткани предсердий отделен жировыми клетками. От него отходят пути Гиса в трех ветвях – передней, задней и атриовентрикулярной.

На уровне аортального синуса пучок Гиса располагается в позиции всадника над перегородкой между желудочками. В дальнейшем происходит его деление на правую и левую ножку.

Правая ножка более крупная, идет по перегородочной части миокарда, разветвляясь в мышце правого желудочка. У нее есть три ветки:

  • верхняя занимает треть расстояния до сосочковых мышц;
  • средняя идет до края перегородки;
  • нижняя направляется к основанию сосочковой мышцы.

Левая ножка Гиса анатомически выглядит как продолжение основной части пучка, она делится на:

  • переднюю – проходит по передней и боковой области левого желудочка;
  • заднюю – направляется к верхушке, задненижней части.

В дальнейшем ножки Гиса ветвятся по мышечному слою желудочков, образуя сеть волокон Пуркинье. Эти конечные части проводящей системы напрямую взаимодействуют с клетками миокарда.

Функции проводящей системы

Кардиомиоциты обладают способностью к образованию сигнала, его передаче по миокарду и сокращению стенок в ответ на возбуждение. Все основные свойства возможны только благодаря работе проводящей системы. Генерация электрического сигнала происходит в атипичных Р-клетках, которые названы от английского слова pacemaker, что означает водитель.

Среди них есть рабочие и резервные, включающиеся в деятельность сердца при разрушении истинных пейсмекеров.

Образованный в синусовом узле, биоимпульс проводится по миокарду с разной скоростью. Предсердия получают сигналы 1 м/с, передают их в АВУ, который задерживает их до 0,2 м/с. Это нужно для того, чтобы вначале могли сократиться предсердия, передать кровь в желудочки. Последующая скорость распространения по клеткам Гиса и Пуркинье доходит до 5 м/с.

Это придает миокарду желудочков синхронность при сокращении, потому что все клетки реагируют практически одновременно.

Целью такого слаженного ответа является мощность сердечной мышцы и эффективный выброс крови в артериальную сеть.

Если бы не было проводящих путей, то возбуждение мышечных клеток было бы последовательным и замедленным, что привело бы к потере половины давления потока крови, исходящего из желудочков.

Поэтому к основным функциям ПСС относятся:

  • самостоятельное изменение потенциала мембраны (автоматизм);
  • образование импульса с ритмичными промежутками;
  • последовательное возбуждение частей сердца;
  • одновременное сокращение желудочков для повышения эффективности систолического выброса крови.

Смотрите на видео о строении сердца и его проводящей системы:

Работа сердца и проводящей системы

Принципом, по которому работает ППС, является иерархия. Это означает, что главным считается самый вышележащий источник импульсов, он обладает возможностью вырабатывать наиболее частые сигналы и «заставлять» усваивать их ритм. Поэтому все остальные части, несмотря на то, что могут сами генерировать волны возбуждения, подчиняются главному пейсмекеру.

В здоровом сердце основной водитель ритма – САУ. Его считают узлом первого порядка. Частота образуемых импульсов у синусового узла соответствует 60 — 80 за одну минуту.

По мере удаления от САУ способность к автоматизму слабеет. Поэтому, если пострадает синусовый узел, то его функцию возьмет на себя АВУ. При этом ритм сердца замедляется до 50 ударов. Если роль водителя ритма будет у ножек Гиса, то больше 40 импульсов в минуту они не смогут образовать. Спонтанное возбуждение волокон Пуркинье генерирует очень редкие удары – до 20 за минуту.

Поддержание скорости движения сигналов возможно благодаря контактам между клетками. Они называются нексусами, за счет низкого сопротивления электрическому току задают правильное направление и быстрое проведение сердечных импульсов.

Все главные функции миокарда (автоматизм, возбудимость, проводимость и сократимость) осуществляются благодаря работе проводящей системы. Процесс возбуждения начинается в синусовом узле. Он работает с частотой 60 — 80 импульсов за минуту.

Сигналы по нисходящим волокнам достигают предсердно-желудочкового узла, немного задерживаются, чтобы сократились предсердия, и по пучку Гиса достигают желудочков. Мышечные волокна в этой зоне сокращаются синхронно, так как скорость импульсов максимальная. Такое взаимодействие обеспечивает эффективный сердечный выброс и ритмичную работу отделов сердца.

Читайте также

Довольно существенные проблемы могут причинить человеку дополнительные проводящие пути. Такая аномалия в сердце может приводить к одышке, обморокам и другим неприятностям. Лечение проводится несколькими методами, в т.ч. выполняется эндоваскулярная деструкция.

  • При экстрасистолии, мерцательной аритмии, тахикардии применяют препараты как новые, современные, так и старого поколения. Актуальная классификация антиаритмических препаратов позволяет быстрее сделать выбор из групп, основываясь на показаниях и противопоказаниях
  • Знать особенности строения сердца человека, схему движения крови, анатомические особенности внутреннего строения у взрослых и ребенка, а также круги кровообращения полезно каждому. Это поможет лучше понять свое состояние при проблемах с клапанами, предсердиями, желудочками. Какой цикл работы сердца, с какой стороны оно находится, как выглядит, где его границы? Почему стенки предсердий тоньше желудочков? Что такое проекция сердца.
  • Для тех, кто подозревает у себя проблемы с ритмом сердца, полезно знать причины и симптомы мерцательной аритмии. Почему она возникает и развивается у мужчин и женщин? В чем отличия пароксизмальной и идиопатической мерцательной аритмии?
  • Такой неприятный диагноз, как синдром слабости синусового узла, иногда можно встретить даже у детей. Как он проявляется на ЭКГ? Какие признаки патологии? Какое лечение назначит врач? Можно ли в армию при СССУ?


  • Главный водитель ритма сердца, синусовый узел, обладает интересной историей открытия и рядом удивительных особенностей в строении и функционировании. От слаженности работы этой части сердца зависит общая деятельность целого органа, поэтому при дисфункции синусового узла обязательно проводится лечение, иначе грозит смертельный исход.


    Синоатриальный узел (часто сокращенно САУ, также называется синусовым узлом, водителем первого порядка) является нормальным естественным водителем ритма сердца и отвечает за запуск сердечного цикла (сердцебиение). Он спонтанно генерирует электрический импульс, который после прохождения по всему сердцу заставляет его сокращаться. Хотя электрические импульсы генерируются спонтанно, скорость поступления импульсов (и, следовательно, частота сердечных сокращений) находится под контролем нервной системы, иннервирующей синоатриальный узел.

    Синоатриальный узел расположен в стенке миокарда вблизи места, где устье полых вен (sinus venarum) соединяется с правым предсердием (верхняя камера); следовательно, название образованию дано соответствующее - синусоидальный узел.

    Значение синусового узла в работе сердца первостепенно, поскольку при слабости САУ возникают различные заболевания, иногда способствующие развитию внезапной остановки сердца и смерти. В некоторых случаях болезнь никак не проявляется, а в других необходима специфическая диагностика и соответствующее лечение.

    Видео: SA NODE

    Открытие

    В жаркий летний день в 1906 году Мартин Флэк, студент-медик, изучал микроскопические срезы сердца крота, тогда как его наставник Артур Кейт и его жена катались на велосипеде по красивым вишневым садам возле своего коттеджа в Кенте, Англия. По возвращении Флэк взволнованно показала Кейту “чудесную структуру, которую он обнаружил в ушке правого предсердия крота, именно там, где в эту камеру входит верхняя полая вена”. Кейт быстро понял, что эта структура очень напоминает атриовентрикулярный узел, описанный Сунао Таварой в начале этого года. Дальнейшие анатомические исследования подтвердили ту же структуру в сердцах других млекопитающих, которую они назвали “синусоидальным узлом” (sino‐auricular node). Наконец, был обнаружен долгожданный генератор сердечного ритма.

    Начиная с 1909 года, используя гальванометр с двумя струнами, Томас Льюис одновременно записывал данные с двух участков с поверхности сердца собаки, делая точные сравнения прихода волны возбуждения в разные точки. Льюис идентифицировал синусоидальный узел как кардиостимулятор сердца двумя инновационными подходами.

    • Во-первых, он стимулировал вышестоящую полую вену (SVC), коронарный синус и левое ушко и показал, что только кривые вблизи синусового узла были идентичны нормальному ритму.
    • Во-вторых, было известно, что точка, в которой начинается сжатие, становится электрически отрицательной относительно неактивных точек мышц. В результате электрод возле САУ неизменно имел первичную отрицательность, указывающую: “Узловая область SA - это то место, в котором зарождается волна возбуждения”.

    Охлаждение и нагревание синусового узла для изучения реакции сердечного ритма осуществлял G Ganter и другие, которые также указывали на местоположение и первичную функцию синусоидального узла. Когда Эйнтховен был удостоен Нобелевской премии в 1924 году, он щедро упомянул Томаса Льюиса, говоря: “Я сомневаюсь, что без его ценного вклада у меня была бы привилегия стоять перед вами сегодня».

    Место нахождения и структура

    Синоатриальный узел состоит из группы специализированных клеток, расположенных в стенке правого предсердия, только поперечно к устью полых вен на стыке, где верхняя полая вена входит в правое предсердие. Узел SA располагается в миокарде. Это глубокое образование упирается в сердечные миоциты, принадлежащие правому предсердию, а его поверхностная часть покрыта жировой тканью.

    Эта удлиненная структура, которая простирается от 1 до 2 см справа от края ушка, представляет собой гребень правого предсердного придатка, и проходит по вертикали в верхнюю часть концевой канавки. Волокна узла SA являются специализированными кардиомиоцитами, которые смутно напоминают нормальные, сократительные сердечные миоциты. У них есть некоторые сократительные нити, но при этом они не сжимаются так же крепко. Кроме того, волокна СА-узла заметно более тонкие, извилистые и окрашиваются менее интенсивно, чем сердечные миоциты.

    Иннервация

    Синусовый узел богато иннервирован парасимпатической нервной системой (десятым черепным нервом (блуждающим нервом)) и волокнами симпатической нервной системы (спинномозговые нервы грудного отдела на уровне хребцов 1-4). Это уникальное анатомическое расположение делает узел СА восприимчивым к явно спаренным и противостоящим вегетативным воздействиям. В состоянии покоя работа узла в основном зависит от блуждающего нерва или его “тонуса”.

    • Стимуляция через блуждающие нервы (парасимпатические волокна) вызывает снижение скорости работы узла СА (что в свою очередь уменьшает частоту сердечных сокращений). Таким образом, парасимпатическая нервная система через действие блуждающего нерва оказывает отрицательное инотропное воздействие на сердце.
    • Стимуляция через симпатические волокна вызывает увеличение скорости работы узла СА (при этом увеличивается частота сердечных сокращений и сила сокращений). Симпатические волокна могут увеличивать силу сокращения, потому что помимо иннервации синусового и атриовентрикулярного узлов они непосредственно воздействуют на предсердия и желудочки.

    Таким образом, нарушение иннервации может приводить к развитию различных расстройств сердечной деятельности. В частности, может повышаться или понижаться ЧСС и возникать клинические признаки.

    Кровоснабжение

    Узел СА получает кровоснабжение от артерии узла СА. Исследования анатомической диссекции показали, что это питание может быть ветвью правой коронарной артерии в большинстве (около 60-70%) случаев, а ветвь левой коронарной артерии кровоснабжает СА узел примерно в 20-30% случаев.

    В более редких случаях может отмечаться кровоснабжение как правой, так и левой коронарными артериями или двумя ветвями правой коронарной артерии.

    Функциональные возможности

    • Главный водитель ритма

    Хотя некоторые из сердечных клеток обладают способностью генерировать электрические импульсы (или потенциалы действия), которые вызывают сердечное сокращение, синоатриальный узел обычно инициирует сердечный ритм просто потому, что он генерирует импульсы быстрее и сильнее, чем другие области с потенциалом генерации импульсов. Кардиомиоциты, как и все мышечные клетки, имеют рефрактерные периоды после сокращения, в течение которых дополнительные сокращения не могут быть вызваны. В такие моменты их потенциал действия переопределяется синоатриальным или атриовентрикулярным узлами.

    В отсутствие внешнего нейронного и гормонального контроля клетки в синоатриальном узле, расположенные в правом верхнем углу сердца, будут естественным образом разряжаться (создавать потенциалы действия) более 100 ударов в минуту. Поскольку синоатриальный узел отвечает за остальную часть электрической активности сердца, его иногда называют основным кардиостимулятором.

    Клиническое значение

    Дисфункция синусового узла выражается в нерегулярном сердцебиении, вызваннои неправильными электрическими сигналами сердца. Когда синусовый узел сердца неисправен, сердечный ритм становится ненормальным - как правило, слишком медленным. Иногда появляются паузы в его воздействии или комбинации, и очень редко ритм бывает быстрее, чем обычно.

    Окклюзия артериального кровоснабжения синусового узла (чаще всего из-за инфаркта миокарда или прогрессирующей болезни коронарной артерии) может вызвать ишемию и гибель клеток в СА узле. Это нередко нарушает пейсмекерную активность САУ и приводит к синдрому слабости синусового узла.

    Если узел СА не работает или сгенерированный в нем импульс блокируется до того, как он проходит вниз по электропроводящей системе, группа клеток, расположенных дальше по сердцу, выполняют роль водителей ритма второго порядка. Этот центр обычно представлен клетками внутри атриовентрикулярного узла (AV-узла), который является областью между предсердиями и желудочками, внутри предсердной перегородки.

    Если узел AV также терпит неудачу, волокна Пуркинье иногда могут действовать как кардиостимулятор по умолчанию. Если же клетки волокон Пуркинье не контролируют сердечный ритм, то чаще всего по той причине, что они генерируют потенциалы действия с более низкой частотой, чем узлы AV или SA.

    Дисфункция синусового узла

    Дисфункция узла СА относится к ряду состояний, вызывающих физиологическое несоответствие показателей предсердий. Симптомы могут быть минимальными или включать слабость, непереносимость усилий, учащенное сердцебиение и обморочное состояние. Диагноз ставится на основании ЭКГ. Симптоматическим пациентам требуется кардиостимулятор.

    Дисфункция синусового узла включает

    • Жизнеопасную синусовую брадикардию
    • Чередующуюся брадикардию и предсердные тахиаритмиями (синдром брадикардии и тахикардии)
    • Синоатриальную блокаду или временную остановку работы САУ
    • Выходную блокаду САУ

    Дисфункция синусового узла возникает преимущественно у пожилых людей, особенно при наличии других сердечных расстройств или сахарного диабета.

    Остановка синусового узла - это временное прекращение активности синусового узла, наблюдаемое на ЭКГ в виде исчезновения P-волн в течение нескольких секунд.

    Пауза обычно вызывает активность эвакуации в более низких кардиостимуляторах (например, предсердный или соединительный), сохраняя частоту сердечных сокращений и функцию, но длительные паузы становятся причиной головокружения и обмороков.

    При выходной блокаде СА узла его клетки деполяризуются, но при этом нарушается передача импульсов в миокард предсердий.

    • При блокаде САУ 1-й степени импульс немного замедляется, но при этом ЭКГ остается нормальным.
    • При блокаде САУ 2-й степени I типа импульсная проводимость замедляется вплоть до полной блокады. На ЭКГ нарушения видны как интервалы P-P, которые постепенно уменьшаются до тех пор, пока P-волна вообще не исчезает. Вместо нее появляется пауза и сгруппированные удары. Продолжительность задержки импульсов составляет менее 2 циклов P-P.
    • При блокаде САУ 2-й степени II типа проводимость импульсов блокируется без предшествующего замедления, в результате создается пауза, которая является кратной интервалу P-P и проявляется на ЭКГ сгруппированными сердцебиениями.
    • При блокаде САУ 3-й степени проводимость импульсов полностью блокируется; Р-волны отсутствуют, что приводит к полному отказу синусового узла.

    Этиология

    Дисфункция синусового узла может развиваться, когда электрическая система сердца повреждена из-за органических или функциональных нарушений. Причины дисфункции синусового узла включают:

    • Старение . Со временем связанный с возрастом износ сердца может ослабить работу синусового узла и заставить его неправильно функционировать. Возрастное повреждение сердечной мышцы является наиболее распространенной причиной дисфункции синусового узла.
    • Лекарственные препараты . Некоторые медикаменты для лечения высокого артериального давления, болезни коронарных артерий, аритмий и других сердечных заболеваний могут вызывать или ухудшать функцию синусового узла. К таким препаратам относятся бета-блокаторы, блокаторы кальциевых каналов и антиаритмические средства. Все же принимать сердечные лекарства чрезвычайно важно и при выполнении врачебных рекомендаций они в большинстве случаев не вызывают проблем.
    • Операция на сердц е. Хирургические вмешательства с участием верхних камер сердца могут привести к образованию рубцовой ткани, которая блокирует электрические сигналы от синусового узла. Послеоперационные рубцы на сердце обычно являются причиной дисфункции синусового узла у детей с врожденным пороком сердца.
    • Идиопатический фиброз узла СА , который может сопровождаться дегенерацией ниже расположенных элементов проводящей системы.

    Другими причинами являются наркотики, чрезмерный вагусный тонус и различные ишемические, воспалительные и инфильтративные расстройства.

    Симптомы и признаки

    Часто дисфункция синусового узла не вызывает симптомов. Только когда состояние становится серьезным, возникают проблемы. Даже признаки болезни могут быть расплывчатыми или вызванными другими патологиями.

    Симптомы дисфункции синусового узла включают:

    • Обморок или предобморочное состояние, вызванное тем, что мозг не получает достаточное количество крови от сердца. Также может возникнуть головокружение.
    • Боль в груди (по типу стенокардической), возникает тогда, когда сердцу не хватает кислорода и питательных веществ.
    • Усталость , вызванная нарушением работы сердца, которое не прокачивает кровь достаточно эффективно. Когда кровоток уменьшается, жизненно важные органы недополучают кровь. Это может оставить мышцы без достаточного количества питания и кислорода, вызывая слабость или недостаток энергии.
    • Одышка , возникает в основном при присоединении к дисфункции СА узла сердечной недостаточности или отека легких.
    • Плохой сон , вызванный ненормальным сердечным ритмом. Апноэ сна, при котором человек испытывает паузы во время дыхания, может способствовать дисфункции синусового узла из-за уменьшения подачи кислорода к сердцу.
    • Нарушенное сердцебиение , изменяется чаще всего в сторону его учащения (тахикардии). Иногда ощущается, что ритм неправильный или наоборот чувствуется стук в груди.

    Диагностика

    После врачебного сбора медицинской истории и проведения физического обследования, назначаются тесты, используемые для диагностики дисфункции синусового узла. Чаще всего к ним относится:

    • Стандартная электрокардиограмма (ЭКГ). Широко используется для выявления нерегулярного сердечного ритма. Перед исследованием на грудь, руки и ноги помещаются электроды, чтобы обеспечить разностороннее измерение сердца. Посредством проводов электроды прикрепляются к аппаратуре, которая измеряет электрическую активность сердца и преобразует импульсы в линии, выглядающие как ряд зубцов. Эти линии, называемые волнами, показывают определенную часть сердечного ритма. Во время анализа ЭКГ врач исследует размер и форму волн и количество времени между ними.
    • Холтеровский мониторинг . Прибор постоянно регистрирует сердцебиение в течение 24-48 часов. Три электрода, прикрепленные к грудной клетке, подключены к устройству, которое больной носит в кармане или надевает на пояс / плечевой ремень. Дополнительно больной ведет дневник своих действий и симптомов во время ношения монитора. Это позволяет врачам определить, что именно происходило в момент нарушения ритма.
    • Монитор событий . Этим методом регистрируется сердцебиение только тогда, когда испытываются симптомы болезни. Монитор событий может использоваться вместо монитора Холтера, если симптомы у больного встречаются реже, чем один раз в день. Некоторые мониторы событий имеют провода, которые соединяют их с электродами, прикрепленными к грудной клетке. Прибор автоматически начинает запись, когда обнаруживает нерегулярное сердцебиение, или больной начинает запись при возникновении симптомов.
    • Нагрузочный тест на беговой дорожк е. Это тестирование может быть выполнено для определения соответствующего ответа на тренировку, представляемого в виде изменения частоты сердечных сокращений.

    Прогноз

    Прогноз при дисфункции синусового узла неоднозначен.

    При отсутствии лечения, смертность составляет около 2% / год, в основном в результате прогрессирования основного заболевания, нередко представляющего собой структурное поражение сердца.

    Каждый год примерно у 5% пациентов развивается фибрилляция предсердий с возникновением таких осложнений, как сердечная недостаточность и инсульт.

    Лечение

    Выраженная дисфункция синусового узла чаще всего устраняется посредством имплантации электрокардиостимулятора. Риск фибрилляции предсердий значительно снижается, когда используется физиологический (предсердный или предсердный и желудочковый) кардиостимулятор, а не только желудочковый кардиостимулятор.

    Новые двухкамерные кардиостимуляторы, которые минимизируют стимуляцию желудочков, могут дополнительно снизить риск возникновения фибрилляции предсердий.

    Антиаритмические препараты используются для предотвращения пароксизмальных тахиаритмий, особенно после установки кардиостимулятора.

    Теофиллин и гидралазин - это препараты, способствующие увеличению частоты сердечных сокращений у здоровых молодых пациентов с брадикардией без обморока в анамнезе.

    Видео: Жить Здорово! Слабость синусового узла