Главная · Зубная боль · Сущность и биологическое значение мейоза. Мейоз, его фазы, биологическое значение. В каких случаях происходит мейоз

Сущность и биологическое значение мейоза. Мейоз, его фазы, биологическое значение. В каких случаях происходит мейоз

В чем заключается биологический смысл мейоза?

Ответ

1) Рекомбинация (перекомбинация наследственной информации) для получения комбинативной изменчивости.
2) Редукция (уменьшение количества хромосом в 2 раза) чтобы после оплодотворения в зиготе восстановился нормальный набор хромосом.

Какова роль кроссинговера в эволюционном процессе?

Ответ

Происходит перекомбинация наследственной информации, возникает комбинативная изменчивость – материал для естественного отбора.

Назовите тип и фазу деления клеток, изображенных на рисунках. Какие процессы они иллюстрируют? К чему приводят эти процессы?

Ответ

На левом рисунке изображен кроссинговер (гомологичные хромосомы обмениваются участками). На правом рисунке кроссинговер закончен, происходит разрушение ядерной оболочки. Все эти процессы происходят в профазе I мейоза. Кроссинговер приводит к рекомбинации (перемешиванию наследственной информации).

Объясните, какой процесс лежит в воснове образования половых клеток у животных. В чем состоит биологическое значение этого процесса?

Ответ

Половые клетки у животных образуются путем мейоза. Биологическое значение мейоза состоит в рекомбинации и редукции. Рекомбинация: происходит перемешивание наследственной информации, все гаметы, а следовательно, и все дети, получаются разные. Редукция: количество хромосом в гаметах уменьшается в два раза по сравнению с соматическими клетками. После слияния гамет количество хромосом восстанавливается до нормального.

Известно, что при дигибридном скрещивании во втором поколении происходит независимое наследование двух пар признаков. Объясните это явление поведением хромосом в мейозе при образовании гамет и при оплодотворении.
=Известно, что при дигибридном скрещивании во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1. Объясните это явление поведением хромосом в мейозе при образовании гамет и при оплодотворении.

Ответ

При дигибридном скрещивании во втором поколении скрещивают дигетерозигот AaBb. При мейозе у дигетерозиготы получается 4 типа гамет: AB, Ab, aB, ab. Это происходит за счет независимого расхождения хромосом при мейозе: в половине случаев гены AaBb расходятся на AB и ab, во второй половине случаев они расходятся на Ab и aB. При оплодотворении четыре типа гамет одного родителя случайно комбинируются с четырьмя типами гамет другого родителя:


AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Получается 9 A_B_, 3A_bb, 3aaB_, 1aabb.

Какое деление мейоза сходно с митозом? Объясните, в чем оно выражается и к какому набору хромосом в клетке приводит.

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки — зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.

Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).

Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).


Рис. 2. Схема гаметогенеза: à — сперматогенез; á — овогенез


Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. .С помощью мейоза образуются споры и половые клетки - гаметы. В результате редукции хромосомного набора в каждую гаплоидную спору и гамету попадает по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т.е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.

В профазе мейоза I растворяются ядрышки, распадается ядерная оболочка и начинается формирование веретена деления. Хроматин спи-рализуется с образованием двухроматидных хромосом (в диплоидной клетке - набор 2п4с). Гомологичные хромосомы попарно сближаются, этот процесс называется конъюгацией хромосом. При конъюгации хроматиды гомологичных хромосом в некоторых местах перекрещиваются. Между некоторыми хроматида-ми гомологичных хромосом может происходить обмен соответствующими участками - кроссинговер.

В метафазе I пары гомологичных хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация хромосом достигает максимума.

В анафазе I гомологичные хромосомы (а не сестринские хроматиды, как при митозе) отходят друг от друга и растягиваются нитями веретена деления к противоположным полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадет только одна. Таким образом, в конце анафазы I набор хромосом и хроматид у каждого полюса делящейся клетки составляет \ti2c - он уже уменьшился вдвое, но хромосомы все еще остаются двухро матидными.

В телофазе I веретено деления разрушается, происходит формирование двух ядер и деление цитоплазмы. Образуются две дочерние клетки, содержащие гаплоидный набор хромосом, каждая хромосома состоит из двух хроматид (\п2с).

Промежуток между мейозом I и мейозом II очень короткий. И н т е р ф а з а II практически отсутствует. В это время не происходит репликация ДНК и две дочерние клетки быстро вступают во второе деление мейоза, протекающее по типу митоза.

В профазе II происходят те же процессы, что и в профазе митоза: формируются хромосомы, они беспорядочно располагаются в цитоплазме клетки. Начинает формироваться веретено деления.



В метафазе II хромосомы располагаются в экваториальной плоскости.

В анафазе II сестринские хроматиды каждой хромосомы разделяются и отходят к противоположным полюсам клетки. В конце анафазы II набор хромосом и хроматид у каждого полюса - \ti\c.

В телофазе II образуются четыре гаплоидные клетки, каждая хромосома состоит из одной хроматиды (lnlc).

Таким образом, мейоз представляет собой два последовательных деления ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время и н тер фазы I.

В профазе мейоза I происходит кроссинговер, что ведет к перекомбинации наследственного материала. В анафазе I гомологичные хромосомы случайным образом расходятся к разным полюсам клетки, в анафазе II то же самое происходит с сестринскими хроматидами. Все эти процессы обусловливают комби-нативную изменчивость живых организмов, о которой будет говориться позже.

Биологическое значение мейоза. У животных и человека мейоз приводит к образованию гаплоидных половых клеток - гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов.

Благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.



Сущность мейоза состоит в том, что каждая половая клетка получает одинарный - гаплоидный набор хромосом. Вместе с тем, мейоз - это стадия, во время которой созда­ются новые комбинации генов путем сочетания разных ма­теринских и отцовских хромосом. Перекомбинирование на­следственных задатков возникает, кроме того, и в результа­те обмена участками между гомологичными хромосомами, происходящего в мейозе. Мейоз включает два последовательных, следующих друг за другом практически без перерыва, деления. Как и при митозе, в каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу. Второе мейотическое деление – сущность периода созревания состоит в том, что в половых клетках путем двукратного мейотиче-ского деления количество хромосом уменьшается вдвое, а количество ДНК - вчетверо. Биологический смысл второго мейотического деления заключается в том, что количество ДНК приводится в соот­ветствие хромосомному набору. У особей мужского пола все четыре гаплоидные клетки, образовавшиеся в результате мейоза, в дальнейшем преоб­разуются в гаметы - сперматозоиды. У особей женского пола вследствие неравномерного мейоза лишь из одной клет­ки получается жизнеспособное яйцо. Три другие дочерние клетки гораздо мельче, они превращаются в так называемые направительные, или редукционные, тельца, вскоре поги­бающие. Биологический смысл образования только одной яйце­клетки и гибели трех полноценных (с генетической точки зрения) направительных телец обусловлен необходимостью сохранения в одной клетке всех запасных питательных веществ, для развития, будущего зародыша.

Клеточная теория.

Клетка - элементарная единица строения, функционирования и развития живых организмов. Существуют неклеточные формы жизни - вирусы, однако они проявляют свои свойства только в клетках живых организмов. Клеточные формы делятся на прокариот и эукариот.

Открытие клетки принадлежит английскому ученому Р. Гуку, который, просматривая под микроскопом тонкий срез пробки, увидел структуры, похожие на пчелиные соты, и назвал их клетками. Позже одноклеточные организмы исследовал голландский ученый Антони ван Левенгук. Клеточную теорию сформулировали немецкие ученые М. Шлейден и Т. Шванн в 1839 г. Современная клеточная теория существенно дополнена Р. Биржевым и др.

Основные положения современной клеточной теории:

клетка - основная единица строения, функционирования и развития всех живых организмов, наименьшая единица живого, способная к самовоспроизведению, саморегуляции и самообновлению;

клетки всех одноклеточных и многоклеточных организмов сходны (гомологиины) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;

в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.

Эти положения доказывают единство происхождения всех живых организмов, единство всего органического мира. Благодаря клеточной теории стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов.

Клетка - самая мелкая единица организма, граница его делимости, наделенная жизнью и всеми основными признаками организма. Как элементарная живая система, она лежит в основе строения и развития всех живых организмов. На уровне клетки проявляются такие свойства жизни, как способность к обмену веществ и энергии, авторегуляция, размножение, рост и развитие, раздражимость.

50. Закономерности наследования, установленные Г. Менделем .

Закономерности наследования были сформулированы в 1865г Грегори Менделем. В своих экспериментах он проводил скрещивание различных сортов гороха.

Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:

Анализ начинается со скрещивания чистых линий: гомозиготных особей.

Анализируются отдельные альтернативные взаимоисключающие признаки.

Точный количественный учет потомков с различной комбинацией признаков

Наследование анализированных признаков прослеживается в ряду поколений.

1 ый закон Менделя: "Закон единообразия гибридов 1ого поколения"

При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.

В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).

2 ой закон Менделя: "Закон расщепления"

При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1

В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.

3 ий закон Менделя: "Закон независимого комбинирования признаков"

При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

Для изучения закономерности наследования растений, отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание. Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание, где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами. Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.

При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки - таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями. Анализирующее скрещивание

Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой.

Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Сграсбургером в 1888 г. у растений. С помощью мейоза образуются споры и половые клетки - гаметы. В результате редукции хромосомного набора в каждую гаплоидную спору и гамету попадает по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т.е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.

Мейоз включает два быстро следующих одно за другим деления. Перед началом мейоза каждая хромосома реплицируется (удваивается в S-периоде интерфазы). В течение некоторого времени две ее образовавшиеся копии остаются связанными друг с другом центромерой. Следовательно, в каждом ядре, в котором начинается мейоз, содержится эквивалент четырех наборов гомологичных хромосом (4с).

Второе деление мейоза следует практически сразу за первым, и синтез ДНК в промежутке между ними не происходит (т. е., по сути дела, между первым и вторым делением отсутствует интерфаза).

Первое мейотическое (редукционное) деление приводит к образованию из диплоидных клеток (2n) гаплоидных клеток (n). Оно начинается с профазы I , в которой осуществляется, так же как и в митозе, упаковка наследственного материала (спирализация хромосом). Одновременно происходит сближение гомологичных (парных) хромосом своими одинаковыми участками - конъюгация (событие, которое в митозе не наблюдается). В результате конъюгации образуются хромосомные пары - биваленты . Каждая хромосома, вступая в мейоз, как отмечалось выше, имеет удвоенное содержание наследственного материала и состоит из двух хроматид, поэтому бивалент состоит из 4 нитей. Когда хромосомы находятся в конъюгированном состоянии, продолжается их дальнейшая спирализация. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой. В последующем гомологичные хромосомы несколько отталкиваются одна от другой. В результате этого в местах переплетения хроматид может происходить их разрыв, и как следствие в процессе воссоединения разрывов хроматид гомологичные хромосомы обмениваются соответствующими участками. В результате хромосома, пришедшая к данному организму от отца, включает участок материнской хромосомы, и наоборот. Перекрест гомологичных хромосом, сопровождающийся обменом соответствующими участками между их хроматидами, называется кроссинговером . После кроссинговера в дальнейшем расходятся уже измененные хромосомы, т. е с другим сочетанием генов. Являясь процессом закономерным, кроссинговер приводит каждый раз к обмену разными по величине участками и обеспечивает таким образом эффективную рекомбинацию материала хромосом в гаметах.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и повышает выживаемость организмов в процессе эволюции.

В метафазе I завершается формирование веретена деления. Его нити прикрепляются к кинетохорам хромосом, объединенных в биваленты. В результате нити, связанные с кинетохорами гомологичных хромосом, устанавливают биваленты в плоскости экватора веретена деления.

В анафазе I гомологичные хромосомы отделяются друг от друга и расходятся к полюсам клетки. При этом к каждому полюсу отходит гаплоидный набор хромосом (каждая хромосома состоит из двух хроматид).

В телофазе I у полюсов веретена собирается одиночный, гаплоидный набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочерние.

Таким образом, образование бивалентов при конъюгации гомологичных хромосом в профазе I мейоза создает условия для последующей редукции числа хромосом. Формирование гаплоидного набора в гаметах обеспечивается расхождением в анафазе I не хроматид, как в митозе, а гомологичных хромосом, которые ранее были объединены в биваленты.

Вслед за телофазой I деления следует короткая интерфаза, в которой ДНК не синтезируется, и клетки приступают к следующему делению, которое сходно с обычным митозом. Профаза II непродолжительная. Ядрышки и ядерная оболочка разрушаются, а хромосомы укорачиваются и утолщаются. Центриоли, если они присутствуют, перемещаются к противоположным полюсам клетки, появляются нити веретена деления. В метафазе II хромосомы выстраиваются в экваториальной плоскости. В анафазе II в результате движения нитей веретена деления осуществляется разделение хромосом на хроматиды, так как происходит разрушение их связей в области центромер. Каждая хроматида становится самостоятельной хромосомой. С помощью нитей веретена деления хромосомы растягиваются к полюсам клетки. Телофаза II характеризуется исчезновением нитей веретена деления, обособлением ядер и цитокинезом, завершающимся образованием из двух гаплоидных клеток четырех гаплоидных клеток. В целом, после мейоза (I и II) из одной диплоидной клетки образуются 4 клетки с гаплоидным набором хромосом.

Редукционное деление является, по сути, механизмом, препятствующим непрерывному увеличению числа хромосом при слиянии гамет, без него при половом размножении число хромосом удваивалось бы в каждом новом поколении. Иными словами, благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Биологическое значение мейоза заключается в поддержании остоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

45.Отличия мейоза и митоза .

Главное отличие мейоза от митоза - конъюгация гомологичных хромосом с последующим расхождением их в разные гаметы. Точность расхождения обусловлена точностью конъюгации, а последняя - идентичностью молекулярной структуры ДНК гомологов.
В заключение отметим, что цитологами доказано независимое расхождение негомологичных хромосом в профазе I деления мейоза. Это означает, что любая отцовская хромосома может попасть в гамету с любой, в крайнем варианте - со всеми материнскими негомологичными хромосомами. Однако если речь идет о дочерних хромосомах (во II делении мейоза), образовавшихся из перекрещенных, т. е. претерпевших кроссинговер, или кроссоверных хроматид, то их, строго говоря, нельзя рассматривать ни как чисто отцовские, ни как чисто материнские.

46. Оплодотворение, его биологическая роль .

Оплодотворение - соединение двух гамет, в результате чего образуется оплодотворенное яйцо - зигота - начальная стадия развития нового организма.Зигота содержит материнскую и отцовскую гаметы.В зиготе возрастает ядерно-плазменное соотношение.Резко усиливаются обменные процессы.Зигота способна к дальнейшему развитию. Сущность оплодотворения состоит во внесении сперматозоидом отцовских хромосом.Сперматозоид оказывает стимулирующее влияние, вызывающее начало развития яйцеклетки.

47. Виды оплодотворения .

Существует два типа оплодотворения: наружное и внутреннее. При наружном типе оплодотворение происходит в воде, и развитие зародыша также происходит в водной среде (ланцетник, рыбы, земноводные). При внутреннем типе оплодотворение происходит в половых путях самки, а развитие зародыша может происходить или во внешней среде (рептилии, птицы), или внутри организма матери в особом органе – матке (плацентарные млекопитающие, человек).

При оплодотворении в яйцеклетку может проникать один или несколько сперматозоидов. Если в яйцеклетку проникает один сперматозоид, то такое явление называют моноспермией. Если проникает несколько сперматозоидов, то это полиспермия. Как правило, моноспермия характерна для яйцеклеток, не имеющих плотных оболочек, полиспермия – для яйцеклеток с плотными оболочками. В случае полиспермии оплодотворение яйцеклетки также происходит только одним сперматозоидом, остальные растворяются и принимают участие в разжижении желтка.



Успех оплодотворения зависит и от внешних условий. Основным условием является наличие жидкой среды с определенной концентрацией. Среда должна обладать нейтральной или слегка щелочной реакцией, в кислой среде оплодотворение не происходит.

48. Этапы оплодотворения .

Важнейшие этапы процесса оплодотворения включают:1) Проникновение сперматозоида в яйцеклетку;2) Активацию в ядре метаболических процессов;3) Слияние ядер яйцеклетки и сперматозоида и восстановление диплоидного набора хромосом.

49. Механизмы оплодотворения .

Оплодотворение может произойти лишь при определенной концентрации сперматозоидов в семенной жидкости(1 мл семенной жидкости ~350 млн. сперматозоидов). Яйцеклетки животных и растений выделяют в окружающую среду вещества, активирующие сперматозоиды. Сперматозоиды двигаются по направлению к яйцеклетке. Вещества, выделяемые яйцеклеткой, вызывают склеивание сперматозоидов, что способствует удержанию их вблизи яйцеклетки. К яйцеклетке подходит множество сперматозоидов, но проникает один. Проникновению сперматозоида в яйцеклетку способствуют ферменты - гиалуронидаза и др. Ферменты выделяются акросомой. Оболочка яйцеклетки растворяется, и через отверстие в ней сперматозоид проникает в яйцеклетку. На поверхности яйца образуется оболочка оплодотворения, которая защищает яйцо от проникновения других сперматозоидов. Между этой оболочкой и поверхностью яйца есть свободное пространство, заполненное жидкостью. Проникновение сперматозоида способствует завершению второго деления мейоза, и овоцит 2-го порядка становится зрелым яйцом. В яйце усиливается метаболическая активность, увеличивается потребление кислорода и происходит интенсивный синтез белка.



Ядра сперматозоида и яйцеклетки сближаются, их мембраны растворяются. Ядра сливаются и восстанавливается диплоидный набор хромосом. Это самое основное в процессе оплодотворения. Оплодотворенное яйцо называют зиготой. Зигота способна к дальнейшему развитию. При оплодотворении сперматозоид вносит свой хромосомный материал в яйцеклетку и оказывает стимулирующее влияние, вызывая развитие организма.

50. Партеногенез, его разновидности и характеристика .

Партеногенез - развитие из неоплодотворенных яиц, позволяющее особи производитьпотомков без настоящего оплодотворения. Известен естественный и искусственный партеногенез. Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных. У пчел, муравьев встречается факультативный партеногенез. Из неоплодотворенных яиц развиваются самцы, а из оплодотворенных - самки.При облигатном партеногенезе яйца развиваются без оплодотворения. Например, у кавказской скальной ящерицы. Этот вид сохранился благодаря партеногенезу, т.к. встреча особей затруднена. Партеногенез может быть у птиц. У одной из пород индеек некоторые яйца развиваются партеногенетически, из них появляются только самцы. У многих видов партеногенез происходит циклически. У тлей, дафний в летнее время существуют только самки, размножающиеся партеногенетически, а осенью имеет место размножение с оплодотворением. Такое чередование форм размножения связано с большой гибелью особей. Искусственный партеногенез обнаружен в 1886 г. А.А. Тихомировым. Благодаря опытам с искусственным партеногенезом выяснили, что для развития яйца необходима активация. В естественных условиях эту функцию выполняют сперматозоиды после проникновения в яйцеклетку. В эксперименте активация может быть вызвана различными воздействиями: химическим, механическим, электрическим, термическим и др. Эти факторы изменяют метаболизм яйцеклетки и активируют ее.