Главная · Молочные зубы · Основные мишени молекулярной структуры при воздействиях. Локализация и механизмы действия лекарственных веществ. "мишени" для лекарственных веществ. Практическая работа студентов

Основные мишени молекулярной структуры при воздействиях. Локализация и механизмы действия лекарственных веществ. "мишени" для лекарственных веществ. Практическая работа студентов

Статья дает базовое представление о том, как в современном мире создаются лекарства. Рассмотрены история драг-дизайна, основные понятия, термины и технологии, применяющиеся в этой сфере. Особое внимание уделено роли вычислительной техники в этом наукоемком процессе. Описаны методы поиска и валидации биологических мишеней для лекарственных препаратов, высокопроизводительный скрининг, процессы клинических и доклинических испытаний лекарств а также применение компьютерных алгоритмов.

Драг-дизайн: история

Индустрия направленного конструирования новых лекарственных препаратов, или, как этот процесс называют, калькируя с английского за неимением такого же короткого и удобного русского термина, драг-дизайн (drug - лекарственный препарат, design - проектирование, конструирование) - сравнительно молодая дисциплина, но все же не настолько молодая, как это принято считать .

Рисунок 1. Пауль Эрлих, впервые выдвинувший гипотезу о существовании хеморецепторов и их возможного использования в медицине.

Национальная библиотека медицины США

К концу девятнадцатого века химия достигла значительной степени зрелости. Была открыта таблица Менделеева, разработана теория химической валентности, теория кислот и оснований, теория ароматических соединений. Этот несомненный прогресс дал толчок и медицине. Новые химические продукты - синтетические краски, производные смол, начали использоваться в медицине для дифференциального окрашивания биологических тканей. В 1872–1874 годах в Страсбурге, в лаборатории известного анатома Вильгельма Валдеера, студент-медик Пауль Эрлих (рис. 1), изучавший селективную окраску тканей, впервые выдвинул гипотезу о существовании хеморецепторов - специальных тканевых структур, специфически взаимодействующих с химическими веществами, и постулировал возможность использования этого феномена в терапии различных заболеваний. Позже, в 1905 году, эта концепция была расширена Дж. Лэнгли, предложившим модель рецептора как генератора внутриклеточных биологических импульсов, который активируется агонистами и инактивируется антагонистами.

Этот момент можно считать рождением хемотерапии и новым витком в фармакологии, и в 20-м веке это привело к беспрецедентному успеху в клинической медицине. Одним из самых громких достижений фармакологической промышленности 20-го века можно по праву назвать пенициллин, антибиотик, открытый в 1929 году Александром Флемингом и исследованный впоследствии Чейном и Флори. Пенициллин, обладающий антибактериальным действием, сослужил человечеству незаменимую службу в годы Второй мировой войны, сохранив жизни миллионам раненых.

Пораженные успехом пенициллина, многие фармацевтические компании открыли собственные микробиологические подразделения, возлагая на них надежды по открытию новых антибиотиков и других лекарств. Последовавшие успехи биохимии привели к тому, что стало возможным теоретически предсказывать удачные мишени для терапевтического воздействия, а также модификации химических структур лекарств, дающих новые соединения с новыми свойствами. Так, антибиотик сульфаниламид в результате ряда исследований дал начало целым семействам гипогликемических, диуретических и антигипертензивных препаратов. Драг-дизайн поднялся на качественно новый уровень, когда разработка новых лекарственных соединений стала не просто плодом работы воображения химиков, а результатом научного диалога между биологами и химиками.

Новый прорыв был связан с развитием молекулярной биологии, позволившей привлечь к разработкам информацию о геноме, клонировать гены, кодирующие терапевтически важные биологические мишени и экспрессировать их белковые продукты.

Завершение ознаменовавшего начало нового тысячелетия проекта «геном человека», в результате которого была прочитана полная информация, содержащаяся в ДНК человека, явилось настоящим триумфом раздела биологической науки, получившей название «геномика». Геномика дает совершенно новый подход к поиску новых терапевтически важных мишеней, позволяя искать их непосредственно в нуклеотидном тексте генома.

Геном человека содержит 12000–14000 генов, кодирующих секретируемые белки. На данный момент в фармацевтической промышленности используется не более 500 мишеней. Существуют исследования, говорящие, что многие заболевания являются «мультифакторными», то есть обуславливаются дисфункцией не одного белка или гена, а 5–10 связанных между собой белков и кодирующих их генов. Исходя из этих соображений можно заключить, что количество исследуемых мишеней должно увеличиться минимум в 5 раз.

Биохимическая классификация исследуемых в настоящее время биологических мишеней и их численное соотношение представлены на рисунке 2. Особо следует отметить, что бóльшую (>60%) долю рецепторов составляют мембранные G-белок сопряженные рецепторы (GPCR , G-protein coupled receptors ), а суммарный объем продаж лекарств, направленных на взаимодействие с ними, равняется 65 млрд. долл. ежегодно, и продолжает расти.

Основные понятия

Рисунок 3. Три типа влияния лигандов на клеточный ответ: увеличение ответа (положительный агонгист ), постоянство ответа, но конкурирование за связывании с другими лигандами (нейтральный агонист ) и уменьшение ответа (антагонист ).

Основные понятия, используемые в драг-дизайне - это мишень и лекарство . Мишень - это макромолекулярная биологическая структура, предположительно связанная с определенной функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определенное воздействие. Наиболее часто встречающиеся мишени - это рецепторы и ферменты. Лекарство - это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью.

Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. В отсутствие лиганда рецептор характеризуется собственным уровнем клеточного ответа - так называемой базальной активностью.

По типу модификации клеточного ответа лиганды делят на три группы (рис. 3):

  1. Агонисты увеличивают клеточный ответ.
  2. Нейтральные агонисты связываются с рецептором, но не изменяют клеточный ответ по сравнению с базальным уровнем.
  3. Обратные агонисты, или антагонисты понижают клеточный ответ.

Степень взаимодействия лиганда с мишенью измеряют аффинностью, или сродством. Аффинность равна концентрации лиганда, при которой половина мишеней связана с лигандом. Биологической же характеристикой лиганда является его активность, то есть та концентрация лиганда, при которой клеточный ответ равен половине максимального.

Определение и валидация мишени

Один из самых ранних и самых важных этапов драг-дизайна - выбрать правильную мишень, воздействуя на которую можно специфическим образом регулировать одни биохимические процессы, по возможности не затрагивая при этом другие. Однако, как уже было сказано, такое не всегда возможно: далеко не все заболевания являются следствием дисфункции только одного белка или гена.

С наступлением постгеномной эры, определение мишеней происходит с использованием методов сравнительной и функциональной геномики. На основании филогенетического анализа в геноме человека выявляются гены, родственные генам, функции чьих белковых продуктов уже известны, и эти гены могут быть клонированы для дальнейшего исследования.

Однако мишени, чьи функции определены лишь гипотетически, не могут служить отправной точкой для дальнейших исследований. Необходима многоступенчатая экспериментальная валидация, в результате которой может быть понята конкретная биологическая функция мишени применительно к фенотипическим проявлениям исследуемой болезни.

Существует несколько методов экспериментальной валидации мишеней:

  • геномные методы заключаются в подавлении синтеза мишени в тестовой системе путем получения мутантов с генным нокаутом (в которых ген мишени попросту отсутствует) или использования РНК-антисмысловых последовательностей, «выключающих» тот или иной ген;
  • мишени можно инактивировать с помощью моноклональных антител или облучая мишень, модифицированную хромофором, лазерным излучением;
  • мишени можно инактивировать с помощью низкомолекулярных лигандов-ингибиторов;
  • также можно непосредственно производить валидацию мишени, устанавливая ее взаимодействие с тем или иным соединением методом плазмонного резонанса.

Уровень валидации мишени повышается с числом модельных животных (специальных генетических линий лабораторных животных), в которых модификация мишени приводит к желаемому фенотипическому проявлению. Высшим уровнем валидации является, несомненно, демонстрация того, что модификация мишени (например, блокирование или нокаут рецептора или ингибирование фермента) приводит к клинически идентифицируемым и воспроизводимым симптомам у человека, однако, понятно, такое можно наблюдать достаточно редко.

Кроме того, при выборе мишени не следует забывать о таком явлении, как полиморфизм - то есть о том, что ген может существовать в разных изоформах у разных популяций или рас людей, что приведет к разному эффекту лекарства на разных больных.

Когда мишень уже найдена и проверена на валидность, начинаются непосредственные исследования, результатом которых являются многочисленные структуры химических соединений, лишь немногим из которых суждено стать лекарствами.

Исследование всех возможных с химической точки зрения лигандов («химическое пространство») невозможно: простая прикидка показывает, что возможно не менее 10 40 различных лигандов, в то время как с момента возникновения вселенной прошло лишь ~10 17 секунд. Поэтому на возможную структуру лигандов накладывается ряд ограничений, который существенно сужает химическое пространство (оставляя его, тем не менее, совершенно необъятным). В частности, для сужения химического пространства накладываются условия подобия лекарству (drug-likeness ), которые в простом случае можно выразить правилом пяти Липинского, согласно которому соединение, чтобы «быть похожим» на лекарство, должно:

  • иметь менее пяти атомов-доноров водородной связи;
  • обладать молекулярным весом менее 500;
  • иметь липофильность (log P - коэффициент распределения вещества на границе раздела вода-октанол) менее 5;
  • иметь суммарно не более 10 атомов азота и кислорода (грубая оценка количества акцепторов водородной связи).

В качестве стартового набора лигандов, исследуемых на способность связываться с мишенью, обычно используют так называемые библиотеки соединений, либо поставляемые на коммерческой основе специализирующимися на этом компаниями, либо содержащиеся в арсенале фармацевтической компании, проводящей разработку нового лекарства или заказавшей его у сторонней фирмы. Такие библиотеки содержат тысячи и миллионы соединений. Этого, конечно, совершенно недостаточно для тестирования всех возможных вариантов, но этого, как правило, и не требуется. Задачей на этом этапе исследования является выявление соединений, способных после дальнейшей модификации, оптимизации и тестирования дать «кандидат» - соединение, предназначенное для тестирования на животных (доклинические исследования) и на людях (клинические исследования).

Этот этап осуществляется с помощью высокопроизводительного скрининга (in vitro ) или его компьютерного (in silico ) анализа - высокопроизводительного докинга.

Комбинаторная химия и высокопроизводительный скрининг

Скринингом называется оптимизированная конвейеризованная процедура, в результате которой большое количество химических соединений (>10 000) проверяется на аффинность или активность по отношению к специальной тестовой (имитирующей биологическую) системе. По производительности различают разные виды скрининга:

  • низкопроизводительный (10000–50000 образцов);
  • среднепроизводительный (50000–100000 образцов);
  • высокопроизводительный (100000–5000000+ образцов).

Для скрининга как для «промышленной» процедуры очень критична эффективность, стоимость и время, потраченное на операцию. Как правило, скрининг производится на роботизированных установках, способных работать в круглосуточном и круглогодичном режиме (рис. 4).

Рисунок 4. Аппаратура, используемая для высокопроизводительного скрининга. А - Роботизированная пипетка, в автоматическом высокопроизводительном режиме наносящая образцы тестируемых соединений в плашку с системой для скрининга. Типичное количество углублений на плашке - тысячи. Объем системы в одной лунке - микролитры. Объем вносимого образца - нанолитры. Б - Установка для высокопроизводительного скрининга и считывания флуоресцентного сигнала Mark II Scarina. Работает с плашками, содержащими 2048 углублений (NanoCarrier). Полностью автоматическая (работает в круглосуточном режиме). Производительность - более 100 000 лунок (образцов) в день.

Принцип скрининга достаточно прост: в плашки, содержащие тестовую систему (например, иммобилизованная мишень или специальным образом модифицированные целые клетки), робот раскапывает из пипетки исследуемые вещества (или смесь веществ), следуя заданной программе. Причем на одной плашке могут находиться тысячи «лунок» с тестовой системой, и объем такой лунки может быть очень мал, так же как и объем вносимой пробы (микро- или даже нанолитры).

Потом происходит считывание данных с плашки, говорящее о том, в какой лунке обнаружена биологическая активность, а в какой - нет. В зависимости от используемой технологии детектор может считывать радиоактивный сигнал, флюоресценцию (если система построена с использованием флуоресцентных белков), биолюминесценцию (если используется люциферин-люциферазная система или ее аналоги), поляризацию излучения и многие другие параметры.

Обычно в результате скрининга количество тестируемых соединений сокращается на 3–4 порядка. Соединения, для которых в процессе скрининга выявлена активность выше заданного значения, называются прототипами. Однако следует понимать, что такие «удачи» еще очень и очень далеки от конечного лекарства. Лишь те из них, которые сохраняют свою активность в модельных системах и удовлетворяют целому ряду критериев, дают предшественников лекарств, которые используются для дальнейших исследований.

Как уже было сказано, даже библиотеки, содержащие более миллиона соединений, не в состоянии представить все возможное химическое пространство лигандов. Поэтому при проведении скрининга можно выбрать две различные стратегии: диверсификационный скрининг и сфокусированный скрининг . Различие между ними заключается в составе используемых библиотек соединений: в диверсификационном варианте используют как можно более непохожие друг на друга лиганды с целью охватить как можно большую область химического пространства, при сфокусированном же, наоборот, используют библиотеки родственных соединений, полученных методами комбинаторной химии, что позволяет, зная приблизительную структуру лиганда, выбрать более оптимальный его вариант. Здравый смысл подсказывает, что в масштабном проекте по созданию нового лекарственного препарата следует использовать оба этих подхода последовательно - сначала диверсификационный, с целью определения максимально различных классов удачных соединений, а потом - сфокусированный, с целью оптимизации структуры этих соединений и получения рабочих прототипов.

Если для мишени известно так называемое биологическое пространство, то есть какие-либо характеристики лигандов (размер, гидрофобность и т.д.), которые могут с ней связываться, то при составлении библиотеки тестируемых соединений выбирают лиганды, попадающие в «пересечение» биологического и химического пространств, так как это заведомо повышает эффективность процедуры.

Структуры прототипов, полученные в результате скрининга, далее подвергаются разнообразным оптимизациям, проводимым в современных исследованиях, как правило, в тесном сотрудничестве между различными группами исследователей: молекулярными биологами, фармакологами, моделистами и медицинскими химиками (рис. 5).

Рисунок 5. Фармакологический цикл. Группа молекулярной биологии отвечает за получение мутантных мишеней, группа фармакологии - за измерение данных по активности и аффинности синтезированных лигандов на мишенях дикого типа и мутантных, группа моделирования - за построение моделей мишеней, предсказание их мутаций и предсказание структур лигандов, группа медицинской химии - за синтез лигандов.

С каждым оборотом такого «фармакологического цикла» прототип приближается к предшественнику и затем к кандидату, который уже тестируется непосредственно на животных (доклинические испытания) и на людях - в процессе клинических испытаний.

Таким образом, роль скрининга заключается в существенном сокращении (на несколько порядков) выборки прототипов (рис. 6).

Рисунок 6. Роль высокопроизводительного скрининга в разработке нового лекарственного препарата. Скрининг, будь то его лабораторный (in vitro ) или компьютерный (in silico ) вариант, - главная и наиболее ресурсоемкая процедура по выбору стартовых структур лекарств (прототипов) из библиотек доступных соединений. Выходные данные скрининга часто являются отправной точкой для дальнейшего процесса разработки лекарства.

Клинические исследования

Медицина - это область, в которой ни в коем случае не следует спешить. В особенности, если речь идет о разработке новых лекарственных препаратов. Достаточно вспомнить историю с препаратом Талидамидом, разработанным в конце 50-х в Германии, применение которого беременными женщинами приводило к рождению детей с врожденными пороками конечностей, вплоть до их полного отсутствия. Этот побочный эффект не был вовремя выявлен во время клинических исследований в силу недостаточно тщательного и аккуратного тестирования.

Поэтому в настоящее время процедура тестирования лекарств достаточно сложна, дорога и требует значительного времени (2–7 лет тестирования в клинике и от 100 миллионов долларов на одно соединение-кандидат, см. рис. 7).

Рисунок 7. Процесс разработки нового лекарства занимает от 5 до 16 лет. Затраты на клиническое тестирование одного соединения-кандидата составляют более 100 миллионов долларов США. Суммарная стоимость разработки, с учетом препаратов, не достигших рынка, часто превышает 1 миллиард долларов.

Прежде всего, еще до поступления в клинику, препараты исследуются на токсичность и канцерогенность, причем исследования должны проводиться, кроме систем in vitro , как минимум на двух видах лабораторных животных. Токсичные препараты, само собой, в клинику не попадают, за исключением тех случаев, когда они предназначены для терапии особо тяжелых заболеваний и не имеют пока менее токсичных аналогов.

Кроме того, препараты подвергаются фармакокинетическим исследованиям, то есть тестируются на такие физиологические и биохимические характеристики, как поглощение, распределение, метаболизм и выведение (по-английски обозначается аббревиатурой ADME - Absorption, Distribution, Metabolism and Extraction ). Биодоступность, например, является подхарактеристикой введения препарата в организм, характеризующая степень потери им биологических свойств при введении в организм. Так, инсулин, принимаемый перорально (через рот), имеет низкую биодоступность, так как, будучи белком, расщепляется желудочными ферментами. Поэтому инсулин вводят либо подкожно, либо внутримышечно. По этой же причине часто разрабатывают препараты, действующие аналогично своим природным прототипам, но имеющие небелковую природу.

Юридически процесс клинических исследований новых препаратов имеет очень много нюансов, так как они требуют огромного количества сопроводительной документации (в сумме несколько тысяч страниц), разрешений, сертификаций и т.д. Кроме того, многие формальные процедуры сильно разнятся в разных странах в силу различного законодательства. Поэтому, для решения этих многочисленных вопросов, существуют специальные компании, принимающие от крупных фармацевтических компаний заказ на проведение клинических испытаний и перенаправляющие их в конкретные клиники, сопровождая весь процесс полной документацией и следя, чтобы никакие формальности не были нарушены.

Роль вычислительной техники в драг-дизайне

В настоящее время в драг-дизайне, как и в большинстве других наукоемких областей, продолжает увеличиваться роль вычислительной техники. Следует сразу оговорить, что современный уровень развития компьютерных методик не позволяет разработать новый лекарственный препарат, используя только компьютеры. Основные преимущества, которые дают вычислительные методы в данном случае - это сокращение времени выпуска нового лекарства на рынок и снижение стоимости разработки.

Основные компьютерные методы, используемые в драг-дизайне, это:

  • молекулярное моделирование (ММ);
  • виртуальный скрининг;
  • дизайн новых лекарственных препаратов de novo ;
  • оценка свойств «подобия лекарству»;
  • моделирование связывания лиганд-мишень.

Методы ММ, основывающиеся на структуре лиганда

В случае, если ничего не известно про трехмерную структуру мишени (что случается достаточно часто), прибегают к методикам создания новых соединений исходя из информации о структуре уже известных лигандов и данных по их активности.

Подход основывается на общепринятой в химии и биологии парадигме, гласящей, что структура определяет свойства. Основываясь на анализе корреляций между структурой известных соединений и их свойствами, можно предсказать структуру нового соединения, обладающего желаемыми свойствами (или же, наоборот, для известной структуры предсказать свойства). Причем, этот подход используется как при модификации известных структур с целью улучшения их свойств, так и при поиске новых соединений используя скрининг библиотек соединений.

Методы определения похожести молекул (или методы отпечатков пальцев) состоят в дискретном учете определенных свойств молекулы, называемых дескрипторами (например, число доноров водородной связи, число бензольных колец, наличие определенного заместителя в определенном положении и т.д.) и сравнивании получившегося «отпечатка» с отпечатком молекулы с известными свойствами (используемой в качестве образца). Степень похожести выражается коэффициентом Танимото, изменяющимся в диапазоне 0–1. Высокая похожесть предполагает близость свойств сравниваемых молекул, и наоборот.

Методы, основывающиеся на известных координатах атомов лиганда, называются методами количественной связи между структурой и активностью (QSAR , Quantitative Structure-Activity Relationship ). Один из наиболее используемых методов этой группы - метод сравнительного анализа молекулярных полей (CoMFA , Comparative Molecular Field Analysis ). Этот метод заключается в приближении трехмерной структуры лиганда набором молекулярных полей, отдельно характеризующих его стерические, электростатические, донорно-акцепторные и другие свойства. CoMFA модель строится на основании множественного регрессионного анализа лигандов с известной активностью и описывает лиганд, который должен хорошо связываться с исследуемой мишенью, в терминах молекулярных полей. Полученный набор полей говорит, в каком месте у лиганда должен быть объемный заместитель, а в каком - маленький, в каком полярный, а в каком - нет, в каком донор водородной связи, а в каком - акцептор, и т.д.

Модель может использоваться в задачах виртуального скрининга библиотек соединений, выступая в данном случае аналогом фармакофора. Самым главным недостатком этого метода является то, что он обладает высокой предсказательной силой лишь на близких классах соединений; при попытке же предсказать активность соединения другой химической природы, чем лиганды, использовавшиеся для построения модели, результат может оказаться недостаточно достоверным.

Схема возможного процесса создания нового лекарства, основывающегося на структуре лиганда, приведена на рисунке 8.

Рисунок 8. Пример молекулярного моделирования, основывающегося на структуре лиганда. Для циклического пептида уротензина II (внизу слева ) определена трехмерная структура методом ЯМР спектроскопии водного раствора (вверху слева ). Пространственное взаиморасположение аминокислотных остатков мотива ТРП-ЛИЗ-ТИР, являющегося важным для биологической функции, было использовано для построения модели фармакофора (вверху справа ). В результате виртуального скрининга найдено новое соединение, демонстрирующее биологическую активность (внизу справа ).

Очевидно, что достоверность моделирования, как и эффективность всего процесса конструирования нового лекарства, можно существенно повысить, если учитывать данные не только о структуре лигандов, но и о структуре белка-мишени. Методы, учитывающие эти данные, носят общее название «драг-дизайн, основывающийся на структурной информации» (SBDD , Structure-Based Drug Design ).

Методы ММ, основывающиеся на структуре белка

В связи с растущим потенциалом структурной биологии, все чаще можно установить экспериментальную трехмерную структуру мишени, или построить ее молекулярную модель, основываясь на гомологии с белком, чья трехмерная структура уже определена.

Наиболее часто используемые методы определения трехмерной структуры биомакромолекул с высоким разрешением (Часто, когда экспериментальная структура мишени все же недоступна, прибегают к моделированию на основании гомологии - методу, для которого показано, что построенная им модель обладает достаточно высоким качеством, если гомология между структурным шаблоном и моделируемым белком не ниже 40%.

Особенно часто к моделированию по гомологии прибегают при разработке лекарств, направленных на G-белок сопряженные рецепторы, так как они, будучи мембранными белками, очень плохо поддаются кристаллизации, а методу ЯМР пока недоступны такие большие белки. Для этого семейства рецепторов известна структура только одного белка - бычьего родопсина, полученная в 2000 г. в Стэнфорде, которая и используется в качестве структурного шаблона в подавляющем числе исследований .

Обычно при исследовании, базирующемся на структурных данных, учитывают также данные по мутагенезу мишени, чтобы установить, какие аминокислотные остатки наиболее важны для функционирования белка и связывания лигандов. Эти сведения особенно ценны при оптимизации построенной модели, которая, будучи лишь производной от структуры белка-шаблона, не может учитывать всей биологической специфики моделируемого объекта.

Трехмерная структура мишени, кроме того, что может объяснить молекулярный механизм взаимодействия лиганда с белком, используется в задачах молекулярного докинга, или компьютерном моделировании взаимодействия лиганда с белком. Докинг использует в качестве стартовой информации трехмерную структуру белка (на данном этапе развития технологии, как правило, конформационно неподвижную), и структуру лиганда, конформационная подвижность и взаиморасположение с рецептором которого моделируется в процессе докинга. Результатом докинга является конформация лиганда, наилучшим образом взаимодействующая с белковым сайтом связывания, с точки зрения оценочной функции докинга, приближающей свободную энергию связывания лиганда. Реально, в силу множества приближений, оценочная функция далеко не всегда коррелирует с соответствующей экспериментальной энергией связывания.

Докинг позволяет сократить затраты средств и времени за счет проведения процедуры, аналогичной высокопроизводительному скринингу, на компьютерных комплексах. Эта процедура называется виртуальным скринингом, и основным ее преимуществом является то, что для реальных фармакологических испытаний нужно приобретать не целую библиотеку, состоящую из миллиона соединений, а только «виртуальные прототипы». Обычно же, с целью избежания ошибок, скрининг и докинг используются одновременно, взаимно дополняя друг друга (рис. 9).

Рисунок 9. Два варианта совместного использования высокопроизводительного скрининга и молекулярного моделирования. Сверху: последовательный итеративный скрининг. На каждом шаге процедуры используется сравнительно небольшой набор лигандов; по результатам скрининга строится модель, объясняющая связь между структурой и активностью. Модель используется для выбора следующего набора лигандов для тестирования. Снизу: «разовый» скрининг. На каждом шаге модель строится по обучающей выборке и используется для предсказаний на тестовой выборке.

С увеличением компьютерных мощностей и появлением более корректных и физичных алгоритмов, докинг будет лучше оценивать энергию связывания белка с лигандом, начнет учитывать подвижность белковых цепей и влияние растворителя. Однако, неизвестно, сможет ли виртуальный скрининг когда-нибудь полностью заменить реальный биохимический эксперимент; если да - то для этого необходим, очевидно, качественно новый уровень алгоритмов, неспособных на сегодняшний день абсолютно корректно описать взаимодействие лиганда с белком.

Одно из явлений, иллюстрирующих несовершенство алгоритмов докинга, - парадокс похожести. Этот парадокс заключается в том, что соединения, структурно совсем немного различающиеся, могут иметь драматически различную активность, и в то же время с точки зрения алгоритмов докинга быть практически неразличимыми.

Прототипы лекарства можно получать не только выбирая из уже подготовленной базы данных соединений. Если есть структура мишени (или хотя бы трехмерная модель фармакофора), возможно построение лигандов de novo, используя общие принципы межмолекулярного взаимодействия. При этом подходе в сайт связывания лиганда помещается один или несколько базовых молекулярных фрагментов, и лиганд последовательно «наращивается» в сайте связывания, подвергаясь оптимизации на каждом шаге алгоритма. Полученные структуры, так же, как и при докинге, оцениваются с помощью эмпирических оценочных функций.

Ограничения применения компьютерных методов

Несмотря на всю свою перспективность, компьютерные методы имеют ряд ограничений, которые необходимо иметь ввиду, чтобы правильно представлять себе возможности этих методов.

Прежде всего, хотя идеология in silico подразумевает проведение полноценных компьютерных экспериментов, то есть экспериментов, результаты которых ценны и достоверны сами по себе, необходима обязательная экспериментальная проверка полученных результатов. То есть, подразумевается тесное сотрудничество научных групп, проводящих компьютерный эксперимент, с другими экспериментальными группами (рис. 5).

Кроме того, компьютерные методы пока не в силах учесть всего разнообразия влияния лекарственного препарата на организм человека, поэтому эти методы не в силах ни упразднить, ни даже существенно сократить клиническое тестирование, занимающее основную долю времени в разработке нового препарата.

Таким образом, на сегодняшний день роль компьютерных методов в драг-дизайне сводится к ускорению и удешевлению исследований, предшествующих клиническим испытаниям.

Перспектива драг-дизайна

Мишень - это молекула с центром связывания для лекарства. Эта молекула может содержать мембранные белки, распознающие гормоны или нейротрансмиттеры (рецепторы), а также ионные каналы, нуклеиновые кислоты, молекулы-переносчики или ферменты. Но не все лекарства действуют на рецепторы.

Большинство лекарств должны связаться с молекулярной мишенью, чтобы произвести эффект, но существуют и исключения. Уже в первых исследованиях эффектов лекарств на тканях животных в конце XIX в. стало ясно, что большинство лекарств реализуют специфическое действие в определенных тканях, т.е.:

Лекарство, которое оказывает эффект на один тип ткани, может не влиять на другой;
лекарство может оказывать совершенно разные эффекты на разные ткани.

Например, алкалоид пилокарпин , как и нейротрансмиттер ацетилхолин, вызывает сокращение гладких мышц кишечника и тормозит частоту сердечных сокращений. С учетом этих феноменов Сэмуэль Лэнгли (1852-1925) в 1878 г., основываясь на изучении эффектов алкалоидов пилокарпина и атропина на слюноотделение, предположил, что «существуют некие рецепторные вещества... с которыми оба могут образовывать соединения».

Позже, в 1905 г ., изучая действие никотина и кураре на скелетные мышцы, он обнаружил, что никотин вызывает сокращения, когда действует на определенные небольшие участки мышц. Лэнгли заключил, что «рецепторная субстанция» для никотина находится в этих участках и что кураре действует путем блокады взаимодействия никотина с рецептором.

Считается, что Пауль Эрлих (1854-1915) самостоятельно разработал теорию рецепторов, наблюдая, как многие органические красители селективно окрашивают специфические компоненты клетки. В 1885 г. он предположил, что у клеток есть «боковые цепи», или «рецепторы», к которым лекарства или токсины могут присоединяться, реализуя свое действие. До сих пор Эрлих известен благодаря своей идее о «волшебной пуле» - химическом соединении, образованном для выявления селективной токсичности, например, инфекционного агента.

Кроме того, Эрлих синтезировал органические производные мышьяка, которые использовали ранее при лечении . Развивая теорию рецепторов, Эрлих был первым, кто показал, что быстрая обратимость действия алкалоидов свидетельствует о непрочных (нековалентных) химических связях между лекарством и рецепторами.

Последние достижения молекулярной биологии раскрывают природу связи лекарство-рецептор на молекулярном уровне. Сегодня под рецептором понимают специфическую молекулярную структуру, которая работает как молекулярная мишень для группы соответствующих лекарств (раньше связывающий центр не был определен отдельно от молекулярной мишени, и весь комплекс в целом рассматривали как рецептор).

Для лекарств , действующих на ферменты, молекулярной мишенью является фермент. Рецептором выступает та часть фермента, которая связывается с лекарством. Для большинства лекарств молекулярными мишенями являются белки, углеводы, липиды и другие макромолекулы, на которые направлено действие препаратов. С этой позиции молекулярные мишени определены более точно, чем другие рецепторы.

Сегодня рецепторы определены и охарактеризованы с помощью методов молекулярной биологии. Действие некоторых типов лекарств легко объяснить без вовлечения молекулярных мишеней человека. К этим типам лекарств относятся антациды (буферы), которые уменьшают кислотность в желудке, формообразующие слабительные и комплексо-образователи. Есть вещества, для механизма действия которых характерно отсутствие четкой химической специфичности. Основным примером являются газообразные и летучие общие анестетики, включая инертный газ ксенон.

Для этих препаратов практически невозможно определить связывающий центр или одну молекулярную мишень. Тем не менее, вероятно, их фармакологические эффекты происходят из-за действия на компонент мембран (например, потенциал- или лиганд-зависимые ионные каналы). Этот компонент и является молекулярной мишенью для анестетиков.

Для эффективного функционирования многоклеточного организма необходимо точное координированное взаимодействие между различными биологическими молекулами, надмолекулярными и субклеточными структурами, клетками и органами, которые представляют собой функционально единую целостную систему. Физиологические функции органа, системы органов и организма в целом невыполнимы обособленными специализированными клетками и, тем более, субклеточными образованиями. Одним из ключевых этапов эволюции живого явилось приобретение способности макромолекул к обратимому, специфическому межмолекулярному взаимодействию, приводящему к изменению их функциональной активности, что в итоге предопределило регулируемость физиологических процессов на различных уровнях организации биологической системы - молекулярном, надмолекулярном, субклеточном, клеточном, органном и, наконец, в организме в целом. Биохимические процессы внутри клеток многоклеточного организма согласованы и, одновременно, адекватны возможностям отдельной клетки, ее способности участвовать в работе целостного организма. Подобный характер клеточного поведения в многоклеточном организме обусловлен способностью клеток вступать в регулируемые как со стороны клетки, так и со стороны организма, межклеточные, матрикс-клеточные и гуморально-клеточные взаимодействия посредством специализированных структур пептидной природы - рецепторов. Посредством межклеточных, матрикс-клеточных и гуморально-клеточных взаимодействий из клеток различной физиологической специализации, в которых осуществляется согласованная регуляция метаболической активности, позволяющая им выполнять физиологические функции, присущие органу/системе органов формируется функционально единая структура ткани, органа, организма в целом.

Структуры цитоплазматической мембраны многоклеточного организма в ходе эволюции формировались на основе уже существующих внутриклеточных структур пептидной природы 1 . Модификация соответствующих генов и эволюционный отбор обеспечили как сохранение определенных доменов белковой молекулы, получивших название эволюционно-консервативных, так и способствовали появлению новых, призванных выполнять специализированные функции. Наличие эволюционно-консервативных доменов в молекулах пептидной природы различного функционального назначения значимо, в числе прочего, для регуляции их функциональной активности по единым принципам, едиными воздействиями.

Домены молекул пептидной природы , обогащенных остатками серы в составе цистеина, принадлежат к эволюционно-консервативным компонентам молекулярной структуры. Обогащенные цистеином эволюционно-консервативные домены обнаружены в составе внеклеточных и внутриклеточных транспортных, регулирующих, сенсорных, исполнительных, структурных и других, по функциональному назначению, молекул пептидной природы

Рецепторные тирозинкиназы имеют эволюционно консервативный внеклеточный домен, обогащенный остатками цистеина. Сульфгидрильные группы остатков цистеина в составе поверхностно-клеточных доменов рецепторов чувствительны к действию окисляющих реагентов, приводящих к образованию внутримолекулярных и межмолекулярных дисульфидных сшивок (связей) , изменяющих функциональный статус поверхностно-клеточного домена (например, повышение тропности и/или специфичности в отношении агониста или агонистов) и/или инициирующих активность рецепторной тирозинкиназы 2 .

Остатки серы в составе цистеина эволюционно-консервативных доменов молекул пептидной природы являются одними из важнейших точек приложения факторов, влияющих на конформацию молекул пептидной природы 3 4 .

Возможность обратимого, регулируемого изменения конформации внеклеточных и внутриклеточных молекул пептидной природы (включая рецепторы, мембранные транспортеры, ионные каналы, ферменты и другие специализированные молекулы пептидной природы ), сопряженная с их способностью к выполнению физиологических функций, сделала конформационные перестройки на уровне третичной и четвертичной структур одним из эффективных универсальных механизмов воздействия на активность различных белков, включая молекулы, ответственные за межклеточные, матрикс-клеточные, гуморально-клеточные взаимодействия, обмен ионами и субстратами, организацию структуры клетки и ее метаболическую активность 5 6 7

Регуляторное воздействие на остатки серы в составе цистеина эволюционно-консервативных доменов структурных и функциональных молекул пептидной природы внеклеточного и внутриклеточного пространств определяется, в числе прочего, окислительно-восстановительным (редокс) окружением. Редокс-окружение отражает уровень соотношения взаимопревращаемых окисленной и восстановленной специфической редокс-пары. Редокс-окружение, образуемое взаимосвязанными редокс-парами в биологических жидкостях внеклеточного пространства, цитозоля и органелл клеток определяется суммированием в них восстановительного потенциала и восстановительной емкостью этих редокс пар.

Восстанавливающие эквиваленты преобладают как во внутриклеточном пространстве, так и вне клетки, но величина их отношения к окисляющим формам вне клетки и в ряде органелл несколько ниже внутриклеточного значения в цитозоле. Вследствие этого окружающая клетки среда и среда ряда внутриклеточных органелл характеризуется большей окисляющей способностью в сравнении с цитозолем 8 9 10

Функционально-активные конформации молекул внутриклеточного и внеклеточного пространства адаптированы к эволюционно сложившимся особенностям окислительно-восстановительных условий. Как отмечалось выше, остатки серы в составе цистеина структурных и регуляторных молекул пептидной природы являются одними из важнейших точек приложения эффекторных молекул, осуществляющих редокс-модуляцию. Цистеин сосредоточен в эволюционно-консервативных доменах структурных и функциональных молекул пептидной природы. Остатки цистеина эволюционно консервативных доменов регуляторных, структурных, каталитических молекул пептидной природы , редокс-модуляция связи серы которых приводит к изменению конформации и/или функциональной активности, получили обозначение «горячих цистеинов». Сульфгидрильные группы цистеина принимают участие в большинстве реакций в виде меркаптидного иона RS?. Меркаптидные ионы белков более реакционоспособны и легче подвержены окислению, чем недиссоциированные сульфгидрильные группы. Значение рК а (константы ионизации) у SH-групп белков варьирует в широких пределах и в значительной степени определяется их взаимодействием с соседними функциональными группами в молекуле. Наличие положительно заряженной группы в непосредственной близости от SH-группы понижает ее константу ионизации. Значение рК а большинства SH-групп в активных центрах ферментов составляет приблизительно 8,5 11 12 . Следовательно, при физиологическом значении рН в клеточном микроокружении и клетке (~7,4) существующие сульфгидрильные группы большинства молекул пептидной природы остаются неионизированными из-за высокого значения рК а, поэтому они устойчивы к окислению. «Горячие цистеины» эволюционно консервативных доменов окружены близлежащими положительно заряженными группами, вследствие чего их рК а колеблется от 4,7 до 5,4. Таким образом, сульфгидрильная группа в их составе ионизирована даже при физиологическом значении рН и легко подвергается окислительной модификации. Функционально активная конформация основной массы внутриклеточных молекул пептидной природы формируется при восстановлении остатков серы в составе «горячих цистеинов» до сульфгидрильных групп 13 14 15 16 . Напротив, функционально активная конформация основной массы внеклеточных молекул пептидной природы формируется при образовании дисульфидной связи между остатками серы «горячих цистеинов» 17 18 19 20 .

Восстановленный (GSH) и окисленный глутатион (GSSG) представляют одну из основных биохимических пар биологических пространств, значение соотношения которых (GSH/GSSG) определяет величину окислительно-восстановительного потенциала соответствующего физиологического пространства 21 22 . Физиологически необходимое значение соотношения GSH/GSSG регулируется и формируется соответствующими биохимическими системами, отслеживается молекулярными редокс-сенсорами в структуре поверхностно-клеточных рецепторов, ионных каналов, биорегуляторов, ферментов, транспортеров цитоплазматической мембраны и других молекул пептидной природы внутриклеточного и внеклеточного пространств 23 24 . Следствием реакции молекулярного редокс-сенсора на изменение величины редокс-потенциала является формирование регуляторного сигнала, влияющего на биохимические процессы или процесс, клеточную реакцию или реакции 25 26 , определяющие, с одной стороны, клеточный ответ, с другой - восстановление физиологически адекватной величины редокс-потенциала. В этой связи, факторы, влияющие на величину соотношения между восстановленным и окисленным глутатионом (активные формы кислорода 27 , активные формы азота 28 29 30 , монооксид углерода 31 , органические перекиси 32 ), способны модулировать биохимические процессы и клеточные реакции посредством изменения величины редокс потенциала и величины соотношения в системе восстановленный/окисленный глутатион.

Рисунки 2 и 3 на примере биорегуляторов и их рецепторов иллюстрируют принцип молекулярного механизма участия сульфгидрильных групп эволюционно консервативных цистеин-содержащих доменов, восстановленного (GSH) и окисленного (GSSG) глутатиона в контроле функциональной активности молекул пептидной природы внеклеточного пространства.

Рис.2. Воздействие с участием восстановленного глутатиона (GSH) на дисульфидные сшивки (связи) в структуре функционально активных внеклеточных и/или их поверхностно-клеточных рецепторов приводит к формированию пула молекул, конформация которых ограничивает их физиологически адекватные взаимодействия.

Рис.3. Воздействие на сульфгидрильные (SH) группы в структуре функционально неактивных внеклеточных биорегуляторов пептидной природы и/или их поверхностно-клеточных рецепторов, обусловленное снижением величины редокс-потенциала вследствие увеличения количества окисленного глутатиона (GSSG), приводит к формированию пула молекул, конформация которых адекватна характеру ситуационно обусловленных физиологических взаимодействий.

Необходимо отметить, что активные формы кислорода, активные формы азота, органические перекиси способны непосредственно осуществлять окислительную модификацию сульфгидрильных групп до сульфенатов. Однако, физиологический характер такого воздействия будет реализован, если после образования сульфената с участием GSH образуется смешанный дисульфид с глутатионом (реакция глутатионилирования) и далее будет осуществлен упорядоченный ферментативный процесс формирования правильной дисульфидной сшивки или восстановления остатка серы в составе цистеина 33 . В противном случае может произойти необратимое окисление остатка серы в составе цистеина до цистин-сульфоновой кислоты (Cys-SO 3 H) и, как следствие, утрата возможности регулировать функцию белка.


"Московские аптеки", 2003, N 6

ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ. "МИШЕНИ" ДЛЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Влияние лекарственных веществ на органы, ткани, клетки обусловлено воздействием на биохимические субстраты, от которых зависит та или иная функция. Современные методы исследования позволяют выяснить, где находится субстрат-мишень, с которым взаимодействует лекарственное вещество, т.е. где локализовано его действие. Благодаря современным техническим средствам и усовершенствованным методическим приемам локализацию действия веществ можно установить не только на системном и органном, но и на клеточном, молекулярном и других уровнях.

Например, препараты наперстянки действуют на

сердечно-сосудистую систему (системный уровень), на сердце

(органный уровень), на мембраны кардиомиоцитов (клеточный

+ +

уровень), на Na , K - АТФазу (молекулярный уровень).

Механизм действия - это способ взаимодействия лекарственного вещества со специфическими участками связывания в организме.

Получение одного и того же фармакологического эффекта возможно с помощью нескольких препаратов, обладающих различными механизмами действия.

"Мишенями" для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.

РЕЦЕПТОРЫ

Рецепторы (от лат. recipere - получать) представляют собой биологические макромолекулы, которые предназначены для связывания с эндогенными лигандами (нейротрансмиттерами, гормонами, факторами роста). Рецепторы могут взаимодействовать также с экзогенными биологически активными веществами, в т.ч. и с лекарственными.

При взаимодействии лекарственного вещества с рецептором развивается цепь биохимических превращений, конечным итогом которых является фармакологический эффект. Рецепторы имеют структуру липопротеинов, гликопротеинов, нуклеопротеинов, металлопротеинов. Рецепторную функцию могут выполнять ферменты, транспортные и структурные белки. В каждом рецепторе имеются активные центры, представленные функциональными группами аминокислот, фосфатидов, нуклеотидов и др.

Взаимодействие "вещество - рецептор" осуществляется за счет межмолекулярных связей.

Ковалентные связи - самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов. Ковалентные связи возникают главным образом при действии токсических доз лекарственных веществ или ядов, и разорвать эти связи во многих случаях не удается - наступает необратимое действие. Основываясь на принципе ковалентной связи, П.Эрлих в 1910 г. впервые создал органические препараты мышьяка и предложил их для лечения сифилиса. Эти соединения вступают в прочную ковалентную связь с SН-группами структурных белков и ферментов микроорганизмов, вследствие чего нарушается их функция и происходит гибель микроорганизмов.

Ионные связи возникают между ионами, несущими разноименные заряды (электростатическое взаимодействие). Этот вид связи характерен для ганглиоблокаторов, курареподобных средств и ацетилхолина.

Ион-дипольные и диполь-дипольные связи возникают в электрически нейтральных молекулах лекарственных веществ, чаще всего имеющих неодинаковые атомы. Пара общих электронов бывает сдвинута в сторону какого-либо одного атома и поэтому создает около него электроотрицательность, а у другого атома в силу этого создается электроположительность. Таким образом возникает полярность молекул.

В молекулах лекарственных веществ, попадающих в электрическое поле клеточных мембран или находящихся в окружении ионов, происходит образование индуцированного диполя. Поэтому дипольные связи лекарственных веществ с биомолекулами являются очень распространенными.

Водородные связи по сравнению с ковалентными являются слабыми, но их роль в действии лекарственных веществ весьма существенна. Атом водорода способен связывать атомы кислорода, азота, серы, галогенов. Для возникновения этой связи необходимо присутствие лекарственного вещества вблизи молекулы-мишени на расстоянии не более 0,3 нм, а реагирующий атом в молекуле лекарственного вещества должен находиться на одной прямой с группой ОН или NН2 в молекуле-мишени.

Вандерваальсовы связи возникают между двумя любыми атомами, входящими в лекарственное вещество и молекулы организма, если они будут находиться на расстоянии не более 0,2 нм. При увеличении расстояния связи резко ослабевают.

Гидрофобные связи возникают при взаимодействии неполярных молекул в водной среде.

Лекарственные вещества, как правило, взаимодействуют с молекулами клеток и жидких сред организма с помощью сравнительно слабых связей, поэтому действие их в терапевтических дозах является обратимым.

Выделяют четыре типа рецепторов:

1. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они связаны с плазматической мембраной клеток, фосфорилируют белки клеток и изменяют их активность. По такому принципу устроены рецепторы к инсулину, лимфокинам, эпидермальному и тромбоцитарному факторам роста.

2. Рецепторы, осуществляющие контроль за функцией ионных

каналов. Рецепторы ионных каналов обеспечивают проницаемость

мембран для ионов. Н-холинорецепторы, рецепторы глутаминовой и

аспарагиновой кислот увеличивают проницаемость мембран для ионов

Na , K , Ca , вызывая деполяризацию и возбуждение функции клеток.

ГАМКА-рецепторы, глициновые рецепторы увеличивают проницаемость

мембран для Cl , вызывая гиперполяризацию и торможение функции

клеток.

3. Рецепторы, ассоциированные с G-белками. При возбуждении

этих рецепторов влияние на активность внутриклеточных ферментов

опосредуется через G-белки. Изменяя кинетику ионных каналов и

синтез вторичных мессенджеров (цАМФ, цГМФ, ИФ3, ДАГ, Са),

G-белки регулируют активность протеинкиназ, которые обеспечивают

внутриклеточное фосфорилирование важных регуляторных белков и

развитие разнообразных эффектов. К числу таких рецепторов

относятся рецепторы для полипептидных гормонов и медиаторов

(м-холинорецепторы, адренорецепторы, гистаминовые рецепторы).

Рецепторы 1-3 типов локализованы на цитоплазматической мембране.

4. Рецепторы - регуляторы транскрипции ДНК. Эти рецепторы являются внутриклеточными и представляют собой растворимые цитозольные или ядерные белки. С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны. Функция рецепторов - активация или ингибирование транскрипции генов.

Рецепторы, обеспечивающие проявление действия определенных веществ, называют специфическими.

По отношению к рецепторам лекарственные вещества обладают аффинитетом и внутренней активностью.

Аффинитет (от лат. affinis - родственный) - сродство лекарственного вещества к рецептору, приводящее к образованию комплекса "вещество - рецептор". Внутренняя активность - способность вещества при взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект.

В зависимости от выраженности аффинитета и наличия внутренней активности лекарственные вещества разделяют на две группы.

1. Агонисты (от греч. agonistes - соперник, agon - борьба) или миметики (от греч. mimeomai - подражать) - вещества, обладающие аффинитетом и высокой внутренней активностью. Они взаимодействуют со специфическими рецепторами и вызывают в них изменения, приводящие к развитию определенных эффектов. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект. Частичные агонисты при взаимодействии с рецепторами вызывают меньший эффект.

2. Антагонисты (от греч. antagonisma - соперничество, anti - против, agon - борьба) или блокаторы - вещества с высоким аффинитетом, но лишенные внутренней активности. Они связываются с рецепторами и препятствуют действию эндогенных агонистов (медиаторов, гормонов).

Если антагонисты занимают те же рецепторы, что и агонисты, то их называют конкурентными антагонистами.

Если антагонисты занимают другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентные антагонисты.

Некоторые лекарственные вещества сочетают в себе способность возбуждать один подтип рецепторов и блокировать другой. Их называют агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом m- и агонистом d- и k-опиоидных рецепторов.

ИОННЫЕ КАНАЛЫ

Участками связывания лекарственных веществ могут являться ионные каналы. Эти каналы представляют основные пути, по которым ионы проникают через клеточные мембраны.

Естественными лигандами ионных каналов являются медиаторы:

ацетилхолин, гамма-аминомасляная кислота (ГАМК), возбуждающие

аминокислоты (аспарагиновая, глутаминовая, глицин). Увеличение

трансмембранной проводимости определенных ионов через

соответствующие каналы приводит к изменению электрического

потенциала мембраны. Так, ацетилхолин способствует открытию

ионного канала N-холинорецептора, в результате чего Na проходит в

клетку, вызывая деполяризацию мембраны и развитие потенциала

действия. ГАМК способствует открытию ионного канала Cl , что

вызывает гиперполяризацию мембраны и развитие синаптического

торможения.

Важную роль в действии лекарственных веществ играет их способность имитировать или блокировать действие эндогенных лигандов, регулирующих ток ионов через каналы плазматической мембраны.

В середине ХХ в. было установлено, что местные анестетики

блокируют потенциалозависимые Na -каналы. К числу блокаторов

Na -каналов относятся и многие противоаритмические средства. Кроме

того, было показано, что ряд противоэпилептических средств

(дифенин, карбамазепин) также блокируют потенциалозависимые

Na -каналы и с этим связана их противосудорожная активность. Ионы

Са принимают участие во многих физиологических процессах: в

сокращении гладких мышц, в проведении возбуждения по проводящей

системе сердца, в секреторной активности клеток, в функции

тромбоцитов и др. Вхождение ионов Са внутрь клетки через

потенциалозависимые Са -каналы нарушает группа лекарственных

препаратов, получившая название "блокаторы Са -каналов".

Препараты этой группы широко применяются для лечения

ишемической болезни сердца, сердечных аритмий, гипертонической

болезни. Са -каналы гетерогенны, и поэтому интерес представляет

поиск их блокаторов с преимущественным действием на сердце и

сосуды (особенно разных областей: периферических, мозга, сердца и

др.). Так, верапамил оказывает более сильное влияние на ино-,

хронотропную функцию сердца и на атриовентрикулярную проводимость

и в меньшей степени на гладкие мышцы сосудов; нифедипин оказывает

большее воздействие на гладкие мышцы сосудов и меньшее - на

функцию сердца; дилтиазем в равной степени влияет на гладкие мышцы

сосудов и проводящую систему; нимодипин обладает избирательным

цереброваскулярным действием.

В последние годы большое внимание привлекают вещества,

регулирующие функцию К -каналов. Среди лекарственных веществ

имеются как активаторы, так и блокаторы К -каналов.

Активаторы К -каналов участвуют в механизме их открытия и

выхода ионов К из клетки. Если этот процесс происходит в гладких

мышцах сосудов, то развивается гиперполяризация мембраны, тонус

мышц уменьшается и снижается артериальное давление. Такой механизм

гипотензивного действия характерен для миноксидила.

+ +

Блокаторы К -каналов препятствуют их открытию и поступлению К

в клетки. Антиаритмический эффект амиодарона и соталола обусловлен

блокадой К -каналов клеточных мембран миокарда.

Блокада АТФ-зависимых К -каналов в поджелудочной железе приводит к

повышению секреции инсулина. По такому принципу действуют

противодиабетические средства группы сульфонилмочевины

(хлорпропамид, бутамид и др.).

ФЕРМЕНТЫ

Важной "мишенью" для действия лекарственных веществ являются ферменты. В медицине широко применяются группы лекарственных средств, снижающие активность определенных ферментов. Блокада фермента моноаминоксидазы приводит к снижению метаболизма катехоламинов и повышению их содержания в ЦНС. На этом принципе основано действие антидепрессантов - ингибиторов МАО (ниаламида, пиразидола). Механизм действия нестероидных противовоспалительных средств обусловлен ингибированием фермента циклооксигеназы и снижением биосинтеза простагландинов.

В качестве гипотензивных средств используются ингибиторы ангиотензинпревращающего фермента (каптоприл, эналаприл, периндоприл и др.). Антихолинэстеразные средства, блокирующие фермент ацетилхолинэстеразу и стабилизирующие ацетилхолин, применяются для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

ТРАНСПОРТНЫЕ СИСТЕМЫ

Лекарственные средства могут воздействовать на транспортные

системы молекул, ионов, медиаторов. Транспортную функцию выполняют

так называемые транспортные белки, переносящие вышеуказанные

молекулы и ионы через клеточную мембрану. Эти белки имеют

"распознающие участки" - места связывания эндогенных веществ, с

которыми могут взаимодействовать лекарственные средства. Блокада

+ +

Н, К -АТФазы секреторной мембраны париетальных клеток

("протонного насоса") прекращает поступление ионов водорода в

полость желудка, что сопровождается угнетением образования HCl.

Такой механизм действия характерен для омепразола, пантопразола,

которые применяются для лечения язвенной болезни желудка и

двенадцатиперстной кишки.

ГЕНЫ

Перспективной "мишенью" для действия лекарственных средств являются гены. С помощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов. Учитывая полиморфизм генов, такая задача достаточно сложна. Тем не менее исследования в области генной фармакологии получают все более широкое развитие.

2. Местное и резорбтивное действие лекарственных средств

Действие вещества, проявляющееся на месте его приложения, называют местным. Например, обволакивающие средства покрывают слизистую оболочку, препятствуя раздражению окончаний афферентных нервов. Однако истинно местное действие наблюдается очень редко, так как вещества могут либо частично всасываться, либо оказывать рефлекторное влияние.

Действие вещества, развивающееся после его всасывания и поступления в общий кровоток, а затем в ткани, называют резорбтивным. Резорбтивное действие зависит от путей введения лекарственного вещества и его способности проникать через биологические барьеры.

При местном и резорбтивном действии лекарственные средства оказывают либо прямое, либо рефлекторное влияние. Прямое влияние реализуется на месте непосредственного контакта вещества с тканью. При рефлекторном воздействии вещества влияют на экстеро– или интерорецепторы, поэтому эффект проявляется изменением состояния либо соответствующих нервных центров, либо исполнительных органов. Так, использование горчичников при патологии органов дыхания рефлекторно улучшает их трофику (через экстерорецепторы кожи).

Лекция 6. Основные вопросы фармакодинамики (часть 1)

Основная задача фармакодинамики – выяснить, где и как действуют лекарственные вещества, вызывая те или иные эффекты, то есть установить мишени, с которыми взаимодействуют лекарства.

1. Мишени лекарственных средств

В качестве мишеней лекарственных средств выступают рецепторы, ионные каналы, ферменты, транспортные системы, гены. Рецепторами называют активные группировки макромолекул субстратов, с которыми взаимодействует вещество. Рецепторы, обеспечивающие проявление действия вещества, называют специфическими.

Выделяют 4 типа рецепторов:

рецепторы, осуществляющие прямой контроль за функцией ионных каналов (Н– холинорецепторы, Г АМК А -рецепторы);

рецепторы, сопряженные с эффектором через систему «G-белки-вторичные передатчики» или «G-белки-ионные каналы». Такие рецепторы имеются для многих гормонов и медиаторов (М– холинорецепторы, адренорецепторы);

рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они непосредственно связаны с тирозинкиназой и регулируют фосфорилирование белков (рецепторы инсулина);

рецепторы, осуществляющие транскрипцию ДНК. Это внутриклеточные рецепторы. С ними взаимодействуют стероидные и тиреоидные гормоны.

Сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество– рецептор», обозначается термином «аффинитет». Способность вещества при взаимодействии со специфическим рецептором стимулировать его и вызывать тот или иной эффект называется внутренней активностью.

2. Понятие о веществах-агонистах и антагонистах

Вещества, которые при взаимодействии со специфическими рецепторами вызывают в них изменения, приводящие к биологическому эффекту, называют агонистами. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Если агонист, взаимодействуя с рецепторами, вызывает максимальный эффект, то это полный агонист. В отличие от последнего частичные агонисты при взаимодействии с теми же рецепторами не вызывают максимального эффекта.

Вещества, связывающиеся с рецепторами, но не вызывающие их стимуляции, называют антагонистами. Их внутренняя активность равна нулю. Их фармакологические эффекты обусловлены антагонизмом с эндогенными лигандами (медиаторами, гормонами), а также с экзогенными веществами-агонистами. Если они оккупируют те же рецепторы, с которыми взаимодействуют агонисты, то речь идет о конкурентных антагонистах; если другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то говорят о неконкурентных антагонистах.

Если вещество действует как агонист на один подтип рецепторов и как антагонист – на другой, оно обозначается как агонист-антагонист.

Выделяют и так называемые неспецифические рецепторы, связываясь с которыми вещества не вызывают возникновения эффекта (белки плазмы крови, мукополисахариды соединительной ткани); их еще называют местами неспецифического связывания веществ.

Взаимодействие «вещество – рецептор» осуществляется за счет межмолекулярных связей. Один из наиболее прочных видов связи – ковалентная связь. Она известна для небольшого количества препаратов (некоторые противобластомные вещества). Менее стойкой является более распространенная ионная связь, типичная для ганглиоблокаторов и ацетилхолина. Важную роль играют вандерваальсовы силы (основа гидрофобных взаимодействий) и водородные связи.

В зависимости от прочности связи «вещество – рецептор» различают обратимое действие, характерное для большинства веществ, и необратимое действие (в случае ковалентной связи).

Если вещество взаимодействует только с функционально однозначными рецепторами определенной локализации и не влияет на другие рецепторы, то действие такого вещества считают избирательным. Основой избирательности действия является сродство (аффинитет) вещества к рецептору.

Другой важной мишенью лекарственных веществ являются ионные каналы. Особый интерес представляет поиск блокаторов и активаторов Са 2 +-каналов с преимущественным влиянием на сердце и сосуды. В последние годы большое внимание привлекают вещества, регулирующие функцию К+-каналов.

Важной мишенью многих лекарственных веществ являются ферменты. Например, механизм действия нестероидных противовоспалительных средств обусловлен ингибированием циклооксигеназы и снижением биосинтеза простогландинов. Антибластомный препарат метотрексат блокирует дигидрофолатредуктазу, препятствуя образованию тетрагидрофолата, необходимого для синтеза пуринового нуклеотида-тимидилата. Ацикловир ингибирует вирусную ДНК-полимеразу.

Еще одна возможная мишень лекарственных средств – транспортные системы для полярных молекул, ионов и мелких гидрофильных молекул. Одно из последних достижений в этом направлении – создание ингибиторов пропионового насоса в слизистой оболочке желудка (омепразол).

Важной мишенью многих лекарственных веществ считаются гены. Исследования в области генной фармакологии получают все более широкое распространение.

Лекция 7. Зависимость фармакотерапевтического эффекта от свойств лекарственных средств и условий их применения

1. Химическое строение

I. Химическое строение, физико-химические и физические свойства лекарственных средств. Для эффективного взаимодействия вещества с рецептором необходима такая структура лекарственного средства, которая обеспечивает наиболее тесный контакт его с рецептором. От степени сближения вещества с рецептором зависит прочность межмолекулярных связей. Для взаимодействия вещества с рецептором особенно важно их пространственное соответствие, т. е. комплементарность. Это подтверждается различиями в активности стереоизомеров. Если вещество имеет несколько функционально активных группировок, то необходимо учитывать расстояние между ними.

Многие количественные и качественные характеристики действия вещества зависят также от таких физических и физико-химических свойств, как растворимость в воде и липидах; для порошкообразных соединений очень важна степень их измельчения, для летучих веществ – степень летучести и т. д.

2. Дозы и концентрации

II. В зависимости от дозы (концентрации) меняются скорость развития эффекта, его выраженность, продолжительность, а иногда и характер действия. Обычно с повышением дозы уменьшается латентный период и увеличиваются выраженность и длительность эффекта.

Дозой называют количество вещества на один прием (разовая доза). Обозначают дозу в граммах или долях грамма. Минимальные дозы, в которых лекарственные средства вызывают начальный биологический эффект, называют пороговыми, или минимальными, действующими дозами. В практической медицине чаще всего используют средние терапевтические дозы, в которых препараты у подавляющего большинства больных оказывают необходимое фармакотерапевтическое действие. Если при их назначении эффект недостаточно выражен, дозу увеличивают до высшей терапевтической. Кроме того, выделяют токсические дозы, в которых вещества вызывают опасные для организма токсические эффекты, и смертельные дозы. В некоторых случаях указывается доза препарата на курс лечения (курсовая доза). Если возникает необходимость быстро создать высокую концентрацию лекарственного вещества в организме, то первая доза (ударная) превышает последующие.

3. Повторное применение лекарственных средств Химическое строение

III. Увеличение эффекта ряда веществ связано с их способностью к кумуляции. Под материальной кумуляцией имеют в виду накопление в организме фармакологического вещества. Это типично для длительно действующих препаратов, которые медленно выводятся или прочно связываются в организме (например, некоторые сердечные гликозиды из группы наперстянки). Накопление вещества при его повторном употреблении может быть причиной развития токсических эффектов. В связи с этим дозировать такие препараты нужно с учетом кумуляции, постепенно уменьшая дозу или увеличивая интервалы между приемами препарата.

Известны примеры функциональной кумуляции, при которой накапливается эффект, а не вещество. Так, при алкоголизме нарастающие изменения ЦНС приводят к возникновению белой горячки. В данном случае вещество (этиловый спирт) быстро окисляется и в тканях не задерживается. Суммируются при этом лишь нейротропные эффекты.

Снижение эффективности веществ при их повторном применении – привыкание (толерантность) – наблюдается при использовании различных препаратов (анальгетики, гипотензивные и слабительные вещества). Оно может быть связано с уменьшением всасывания вещества, увеличением скорости его инактивации и (или) повышением выведения, снижением чувствительности к нему рецепторов или уменьшением их плотности в тканях. В случае привыкания для получения исходного эффекта дозу препарата надо повышать или одно вещество заменить другим. При последнем варианте следует учитывать, что существует перекрестное привыкание к веществам, взаимодействующим с теми же рецепторами. Особым видом привыкания является тахифилаксия – привыкание, возникающее очень быстро, иногда после однократного приема препарата.

По отношению к некоторым веществам (обычно нейротропным) при их повторном введении развивается лекарственная зависимость. Она проявляется непреодолимым стремлением к приему вещества, обычно с целью повышения настроения, улучшения самочувствия, устранения неприятных переживаний и ощущений, в том числе возникающих при отмене веществ, вызывающих лекарственную зависимость. В случае психической зависимости прекращение введения препарата (кокаин, галлюциногены) вызывает лишь эмоциональный дискомфорт. При приеме некоторых веществ (морфин, героин) развивается физическая зависимость. Отмена препарата в данном случае вызывает тяжелое состояние, которое, помимо резких психических изменений, проявляется разнообразными, часто тяжелыми соматическими нарушениями, связанными с расстройством функции многих систем организма вплоть до смертельного исхода. Это так называемый синдром абстиненции.

Лекция 8. Взаимодействие лекарственных средств (часть 1)

1. Основные виды взаимодействия лекарственных препаратов

При одновременном назначении нескольких лекарственных веществ возможно их взаимодействие друг с другом, приводящее к изменению выраженности и характера основного эффекта, его продолжительности, а также к усилению или ослаблению побочных и токсических влияний. Взаимодействие лекарственных средств обычно подразделяют на фармакологическое и фармацевтическое .

Фармакологическое взаимодействие основано на изменении фармакокинетики и фармакодинамики лекарственных средств, химическом и физико-химическом взаимодействии лекарственных средств в средах организма.

Фармацевтическое взаимодействие связано с комбинациями различных лекарственных средств, нередко используемых для усиления или сочетания эффектов, полезных в медицинской практике. Вместе с тем при сочетании веществ может возникать и неблагоприятное взаимодействие, которое обозначается как несовместимость лекарственных средств. Проявляется несовместимость ослаблением, полной утратой или изменением характера фармакотерапевтического эффекта либо усилением побочного или токсического действия. Это происходит при одновременном назначении двух или более лекарственных средств (фармакологическая несовместимость). Несовместимость возможна также при изготовлении и хранении комбинированных препаратов (фармацевтическая несовместимость).

2. Фармакологическое взаимодействие

I. Фармакокинетический тип взаимодействия может проявляться уже на этапе всасывания вещества, которое может изменяться по разным причинам. Так, в пищеварительном тракте возможны связывание веществ адсорбентами (активированным углем, белой глиной) или анионообменными смолами (холестирамин), образование неактивных хелатных соединений или комплексонов (по такому принципу взаимодействуют антибиотики группы тетрациклина с ионами железа, кальция и магния). Все эти варианты взаимодействия препятствуют всасыванию лекарственных средств и уменьшают их фармакотерапевтические эффекты. Для всасывания ряда веществ из пищеварительного тракта важное значение имеет величина рН среды. Так, изменяя реакцию пищеварительных соков, можно существенно влиять на скорость и полноту абсорбции слабокислых и слабощелочных соединений.

Изменение перистальтики пищеварительного тракта также сказывается на всасывании веществ. Например, повышение холиномиметиками перистальтики кишечника снижает всасывание дигоксина. Кроме того, известны примеры взаимодействия веществ на уровне их транспорта через слизистую оболочку кишечника (барбитураты уменьшают всасывание гризеофульвина.

Угнетение активности ферментов также может влиять на всасывание. Так, дифенин ингибирует фолатдеконъюгазу и нарушает всасывание фолиевой кислоты из пищевых продуктов. В результате развивается недостаточность фолиевой кислоты. Некоторые вещества (алмагель, вазелиновое масло) образуют слои на поверхности слизистой оболочки пищеварительного тракта, что может несколько затруднять всасывание лекарственных средств.

Взаимодействие веществ возможно на этапе их транспорта с белками крови. В этом случае одно вещество может вытеснять другое из комплекса с белками плазмы крови. Так, индометацин и бутадион высвобождают из комплекса с белками плазмы антикоагулянты непрямого действия, что повышает концентрацию свободных антикоагулянтов и может привести к кровотечению.

Некоторые лекарственные вещества способны взаимодействовать на уровне биотрансформации веществ. Есть препараты, которые повышают (индуцируют) активность микросомальных ферментов печени (фенобарбитал, дифенин и др.). На фоне их действия биотрансформация многих веществ протекает более интенсивно.

Это снижает выраженность и продолжительность их эффекта. Возможно также взаимодействие лекарственных средств, связанное с ингибирующим влиянием на микросомальные и немикросомальные ферменты. Так, противоподагрический препарат аллопуринол повышает токсичность противоопухолевого препарата меркаптопурина.

Выведение лекарственных веществ также может существенно изменяться при комбинированном применении веществ. Реабсорбция в почечных канальцах слабокислых и слабощелочных соединений зависит от значения рН первичной мочи. Изменяя ее реакцию, можно повысить или понизить степень ионизации вещества. Чем меньше степень ионизации вещества, тем выше его липофильность и тем интенсивнее протекает реабсорбция в почечных канальцах. Более ионизированные вещества плохо реабсорбируются и в большей степени выделяются с мочой. Для подщелачивания мочи используется натрия гидрокарбонат, а для подкисления – аммония хлорид.

Следует иметь в виду, что при взаимодействии веществ их фармакокинетика может меняться на нескольких этапах одновременно.

II. Фармакодинамический тип взаимодействия. Если взаимодействие осуществляется на уровне рецепторов, то оно в основном касается агонистов и антагонистов различных типов рецепторов.

В случае синергизма взаимодействие веществ сопровождается усилением конечного эффекта. Синергизм лекарственных веществ может проявляться простым суммированием или потенциированием конечного эффекта. Суммированный (аддитивный) эффект наблюдается при простом сложении эффектов каждого из компонентов. Если при введении двух веществ общий эффект превышает сумму эффектов обоих веществ, то это свидетельствует о потенцировании.

Синергизм может быть прямой (если оба соединения действуют на один субстрат) или косвенный (при разной локализации их действия).

Способность одного вещества в той или иной степени уменьшать эффект другого называют антагонизмом. По аналогии с синергизмом он может быть прямым и косвенным.

Кроме того, выделяют синергоантагонизм, при котором одни эффекты комбинируемых веществ усиливаются, а другие ослабляются.

III. Химическое или физико-химическое взаимодействие веществ в средах организма чаще всего используется при передозировке или остром отравлении лекарственными средствами. При передозировке антикоагулянта гепарина назначают его антидот – протамина сульфат, который инактивирует гепарин за счет электростатического взаимодействия с ним (физико-химическое взаимодействие). Примером химического взаимодействия является образование комплексонов. Так, ионы меди, ртути, свинца, железа и кальция связывают пеницилламин.

Лекция 9. Взаимодействие лекарственных средств (часть 2)

1. Фармацевтическое взаимодействие

Возможны случаи фармацевтической несовместимости, при которой в процессе изготовления препаратов и (или) их хранения, а также при смешивании в одном шприце происходит взаимодействие компонентов смеси и наступают такие изменения, в результате которых препарат становится непригодным для практического использования. В некоторых случаях появляются новые, иногда неблагоприятные (токсические) свойства. Несовместимость может быть обусловлена недостаточной растворимостью или полной нерастворимостью веществ в растворителе, коагуляцией лекарственных форм, расслоением эмульсии, отсыреванием и расплавлением порошков в связи с их гигроскопичностью, возможна нежелательная абсорбция активных веществ. В неправильных рецептурных прописях в результате химического взаимодействия веществ иногда образуется осадок или изменяются цвет, вкус, запах и консистенция лекарственной формы.

2. Значение индивидуальных особенностей организма и его состояния для проявления действия лекарственных средств

I. Возраст. Чувствительность к лекарственным средствам меняется в зависимости от возраста. В связи с этим в качестве самостоятельной дисциплины выделилась перинатальная фармакология, исследующая особенности влияния лекарственных средств на плод (за 24 недели до родов и до 4 недель после рождения). Раздел фармакологии, изучающий особенности действия лекарственных препаратов на детский организм, называется педиатрической фармакологией.

Для лекарственных веществ (кроме ядовитых и сильнодействующих) существует упрощенное правило расчета веществ для детей разного возраста, исходящее из того, что на каждый год ребенка требуется 1/20 дозы взрослого.

В пожилом и старческом возрасте замедляется всасывание лекарственных веществ, менее эффективно протекает их метаболизм, снижается скорость экскреции препаратов почками. Выяснением особенностей действия и применения лекарственных средств у лиц пожилого и старческого возраста занимается гериатрическая фармакология.

II. Пол. К ряду веществ (никотин, стрихнин) мужские особи менее чувствительны, чем женские.

III. Генетические факторы. Чувствительность к лекарственным средствам может быть обусловлена генетически. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6–8 ч (в нормальных условиях – 5–7 мин.).

Известны примеры атипичных реакций на вещества (идиосинкразия). Например, противомалярийные средства из группы 8-аминохинолина (примахин) у лиц с генетической энзимопатией могут вызвать гемолиз. Известны и другие вещества с потенциальным гемолитическим действием: сульфаниламиды (стрептоцид, сульфацил-натрий), нитрофураны (фуразолидон, фурадонин), ненаркотические анальгетики (аспирин, фенацетин).

IV. Состояние организма. Жаропонижающие средства действуют только при лихорадке (при нормотермии они неэффективны), а сердечные гликозиды – только на фоне сердечной недостаточности. Заболевания, сопровождающиеся нарушением функции печени и почек, изменяют биотрансформацию и экскрецию веществ. Фармакокинетика лекарственных средств также изменяется при беременности и ожирении.

V. Значение суточных ритмов. Исследование зависимости фармакологического эффекта лекарственных препаратов от суточного периодизма является одной из основных задач хронофармакологии. В большинстве случаев наиболее выраженный эффект веществ отмечается в период максимальной активности. Так, у человека действие морфина более выражено в начале второй половины дня, чем утром или ночью.

Фармакокинетические параметры тоже зависят от суточных ритмов. Наибольшее всасывание гризеофульвина происходит примерно в 12 ч дня. В течение суток существенно меняются интенсивность метаболизма веществ, функция почек и их способность экскретировать фармакологические вещества.