Главная · Молочные зубы · Автоматизм сердца. Химические процессы, обеспечивающие автоматизм сердца. Причины сердечного автоматизма

Автоматизм сердца. Химические процессы, обеспечивающие автоматизм сердца. Причины сердечного автоматизма

Общие сведения об автоматизме сердечной деятельности

Что такое автоматизм сердечной деятельности? Известно, что если через сосуды, кровоснабжающие сердце, пропустить питательный физиологический раствор, насыщенный кислородом, изолированное сердце лабораторных животных может в течение продолжительного времени работать ритмически.

Исследования показывают, что изолированное сердце обладает функцией ритмически сокращаться самопроизвольно в течение определенного времени. Автоматизм сердечной деятельности - это свойство сердца к ритмическим сокращениям без внешнего раздражения под воздействием кардиоимпульсов, которые генерируются в самом сердце. У животных и человека источником автоматизма сердечной деятельности являются особые кардиомиоциты, которые располагаются в различных отделах сердца.

В здоровом сердце животных и человека основным центром формирования автоматизма кардиоимпульсов являются кардиомиоциты, которые располагаются в правом предсердии. Сердце при работе в автоматическом режиме генерирует слабые электрические сигналы, которые распространяются по всему телу животного или человека. Эти кардиоимпульсы можно записать с поверхности кожи, причем полученная кривая имеет название электрокардиограмма. Электрокардиограмма отображает электрическое состояние миокарда и является важным показателем его функционального состояния.

Нервная регуляция автоматизма сердечной деятельности. Центральная нервная система контролирует работу сердца корректирующими нервными импульсами. В сердце и стенках крупных сосудов располагаются нервные окончания, которые имеют название – интерорецепторы. Они реагируют на колебания давления в сосудах и сердце. Импульсы интерорецепторов формируют рефлексы, которые влияют на функцию миокарда. На сердце воздействует два типа воздействия нервной системы: тормозящие (снижают частоту сердечных сокращений) и ускоряющие (ускоряют пульс).

От нервных центров, которые располагаются в продолговатом и спинном мозге, импульсы передаются к миокарду по нервным волокнам. Тормозящие работу сердца влияния передаются по парасимпатическим нервам, а ускоряющие автоматизм сердечной деятельности - по симпатическим.

Болевые раздражения, мышечная работа, эмоции всегда сказывается на функционировании сердечной деятельности. Гуморальная регуляция работы сердца осуществляется посредством гормонов и нейромедиаторов. Ацетилхолин ослабляет работу сердца, адреналин, наоборот, ускоряет.Таким образом, автоматизм сердечной деятельности важнейшая функция кардиореспираторной системы. Если отказывает автоматизм сердечной деятельности, говорят о клинической смерти.

Автоматизм (греч. automates - самодействующий, самопроизвольный) сердца. Миокард , являясь мышечной тканью, обладает свойствами возбудимости, проводимости и сократимости. Проводящая система сердца обеспечивает последовательные сокращения и расслабления его отделов. Причем это происходит автоматически. Автоматизм сердца - это его способность ритмически сокращаться под влиянием возникающих в нем самом (в клетках его проводящей системы) импульсов. Генератором этих импульсов является синусно-предсердныи узел , в клетках которого возникает потенциал действия (около 90 - 100 мВ), передающийся соседним клеткам проводящей системы, а с них - через вставочные диски на рабочие кардиомиоциты . Возбуждение распространяется по миокарду . Вначале сокращаются предсердия, а затем желудочки. При этом миокард сокращается, когда сила импульса достигает пороговой величины по закону "все или ничего". Согласно этому закону возбудимая ткань дает максимальную ответную реакцию при пороговом или надпороговым раздражении, но если сила раздражения ниже пороговой, ответа нет. Начав сокращаться, миокард уже не отвечает на другие стимулы, пока в нем не начнется процесс расслабления. Здоровый миокард сокращается в течение всей жизни человека и не испытывает при этом утомления. Это связано с рефрактерностью (фр. refractaire "невосприимчивость"). Период абсолютной рефрактерности - это интервал времени, во время которого миокард не отвечает ни на какие импульсы. Миокард является возбудимой тканью. Его клетки обладают потенциалом покоя, генерируют потенциал действия. Возбуждение, которое возникло в любом участке миокарда, передается всем его волокнам. Поэтому в ответ на адекватное раздражение происходит возбуждение всех его волокон. Проводящая система обеспечивает генерацию возбуждения и его проведение к кардиомиоцитам . Клетки синусно-предсердного узла генерируют нервные импульсы, частота которых в покое составляет около 70 в 1 мин, от него возбуждение распространяется в предсердие-желудочковый узел , где задерживается на короткое время, а далее передается на предсердно-желудочковый пучок , по его ножкам и разветвлениям со скоростью около 2 м/с. От окончаний волокон Пуркинье импульс распространяется со скоростью около 1 м/с. Деятельностью сердца управляют

1.К какой ткани относится кровь и почему?
2.Проследите по рис. 37 образование тканевой жидкости и лимфы и отток последней в вены большого круга. Какую роль при этом выполняют лимфатические узлы?
3.Почему лимфатические узлы нельзя массировать?
4.Какие особенности эритроцитов отличают млекопитающих от остальных классов позвоночных животных?
5.Какую функцию выполняют плазма крови, эритроциты, лейкоциты и тромбоциты?
6.В чем заслуга Луи Пастера и Ильи Ильича Мечникова?
7.Что дало человечеству открытие иммунитета?
8.Каково значение вакцин и лечебных сывороток? Чем они отличаются?
9.Почему при переливании крови следует учитывать группы крови донора и реципиента?
10.В каких случаях надо учитывать резус-фактор?
11.Пользуясь табл.1 на стр.11 учебника, выпишите особенности кровеносной системы, доказывающие принадлежность человека к млекопитающим животным, укажите их функциональное значение.
12.По рис. 44 проследите путь крови по малому и большому кругам кровообращения.
13.Почему вредны перетяжки?
14.Каково значение венозных клапанов?
15.По рис. 41 разберите строение сердца и укажите роль клапанов сердца в обеспечении движения крови из предсердий в желудочки, из желудочков в артерии. Что показывают стрелки на рисунке?
16.Как можно определить скорость движения крови в капиллярах ногтевого ложа?
17.В чем заключается автоматизм сердечной деятельности и как он отражается на сердечном цикле?
18.Как происходят нервная и гуморальная регуляции сердца?
19.Как измеряется артериальное давление крови и почему принято измерять его на плечевой артерии?
20.Какова скорость крови в артериях, капиллярах и венах?
21.Как предупредить болезни сердечно-сосудистой системы?
22.Что необходимо делать для укрепления сердечно-сосудистой системы?

Кто может помочь с биологией???помогите плз кто чем сможет

1.какие особенности эритроцитов отличают млекопитающих от остальных классов позвоночных животных?
2.что дало человечеству открытие иммунитета?
3.каково значение венозных клапанов?
4.как можно определить скорость движения крови в капиллярах ногтевого ложа?
5.в чём заключается автоматизм сердечной деятельности и как он отражается на сердечном цикле?
6.какова скорость крови в артериях,капиллярах и венах?
7.как предупредить болезни сердечно-сосудистой системы?

1)Какие системы регулируют деятельность организма животного? 2)В чем заключается роль нервной системы? 3)Каково строение нервной системы? 4)Что такое

рефлекс?Какие бывают рефлексы? 5)У каких животных сетчатая нервная система? 6)Как устроена нервная система дождевого червя? 7)Расскажите о строение нервной системы позвоночных. 8)Какие отделы различают в головном мозге позвоночных? 9)Какие отделы головного мозга наиболее хорошо развиты у млекопитающих и почему? 10)Что такое кора головного мозга?Какого ее значение? 11)Что такое гормоны? 12)Какие железы,выделяющие гормоны,вы знаете у животных? 13)Что такое ростовые вещества и как они влияют на растение? СКАЖИТЕ УМОЛЯЮ)

Ответ на этот вопрос можно найти в представленной ниже статье. Помимо этого, здесь содержится информация о нарушениях здоровья человека, связанных с названным понятием.

Что такое автоматизм сердца?

Мышечные волокна в организме человека обладают способностью реагировать на раздражающий импульс сокращением и затем последовательно передавать это сокращение по всей мышечной структуре. Доказано, что изолированная сердечная мышца способна самостоятельно генерировать возбуждение и совершать ритмические сокращения. Такая способность называется автоматизмом сердца.

Причины сердечного автоматизма

Понять, в чем заключается автоматизм сердца, можно из нижеследующего. Сердце имеет специфическую способность к генерации электрического импульса с последующим его проведением до мышечных структур.

Синоатриальный узел - скопление пейсмекерских клеток первого типа (содержит около 40 % митохондрий, рыхло расположенные миофибриллы, отсутствует Т-система, содержит большое количество свободного кальция, имеет слаборазвитую саркоплазматическую сеть), располагается в правой стенке верхней полой вены, в месте впадения в правое предсердие.

Атриовентрикулярный узел образован переходными клетками второго типа, которые проводят импульс из синоатриального узла, однако в особых условиях могут самостоятельно генерировать электрический заряд. Переходные клетки содержат меньше митохондрий (20-30 %) и несколько больше миофибрилл, чем клетки первого порядка. Атриовентрикулярный узел расположен в межпредсердной перегородке, по нему возбуждение передается к пучку и ножкам пучка Гиса (содержат 20-15 % митохондрий).

Являются следующим этапом передачи возбуждения. Они отходят приблизительно на уровне середины перегородки от каждой из двух ножек пучка Гиса. Их клетки содержат около 10 % митохондрий, по структуре несколько больше похожи на сердечные мышечные волокна.

Самопроизвольное возникновение электрического импульса происходит в пейсмекерских клетках синоатриального узла, который потенцирует волну возбуждения, стимулирующую 60-80 сокращений в минуту. Он является водителем первого порядка. Затем возникшая волна передается на проводящие структуры второго и третьего уровня. Они способны как проводить волны возбуждения, так и самостоятельно индуцировать сокращения более низкой частоты. Водителем второго уровня после синусового узла является атриовентрикулярный узел, который способен самостоятельно создавать 40-50 разрядов в минуту в отсутствии подавляющей активности синусового узла. Далее возбуждение передается на структуры который воспроизводит 30-40 сокращений в минуту, затем электрический заряд перетекает на ножки пучка Гиса (25-30 импульсов в минуту) и систему волокон Пуркинье (20 импульсов в минуту) и попадает на рабочие мышечные клетки миокарда.

Обычно импульсы из синоатриального узла подавляют самостоятельную способность к электрической активности нижележащих структур. Если нарушается функционирование водителя первого порядка, то его работу на себя берут стоящие ниже звенья проводящей системы.

Химические процессы, обеспечивающие автоматизм сердца

Что такое автоматизм сердца с точки зрения химии? На молекулярном уровне основой для самостоятельного возникновения электрического заряда (потенциала действия) на мембранах пейсмекерских клеток является наличие так называемого импульсатора. Его работа (функция автоматизма сердца) содержит три этапа.

Этапы работы импульсатора:

  • 1-я фаза подготовительная (в результате взаимодействия супероксидного кислорода с положительно заряженными фосфолипидами на поверхности мембраны пейсмекерской клетки она приобретает отрицательный заряд, это нарушает потенциал покоя);
  • 2-я фаза активного транспорта калия и натрия, во время работы которого наружный заряд клетки становится равен +30 мВт;
  • 3-я фаза электрохимического скачка - используется энергия, возникающая при утилизации активных форм кислорода (ионизированного кислорода и перекиси водорода) с помощью ферментов супероксиддисмутазы и каталазы. Возникшие кванты энергии повышают биопотенциал пейсмекера настолько, что он вызывает потенциал действия.

Процессы генерации импульса клетками - пейсмекерами обязательно происходят в условиях достаточного присутствия молекулярного кислорода, который доставляется к ним эритроцитами притекающей крови.

Снижение уровня работы или частичное прекращение функционирования одного или нескольких этапов системы импульсатора нарушает согласованную работу пейсмекерских клеток, что вызывает аритмии. Блокировка одного из процессов этой системы вызывает внезапную остановку сердца. Поняв, что такое автоматизм сердца, можно осознать и этот процесс.

Воздействие автономной нервной системы на работу сердечной мышцы

Помимо собственной возможности генерировать электрические импульсы, работа сердца контролируется сигналами из иннервирующих мышцу симпатических и парасимпатических нервных окончаний, при сбое которых возможно нарушение автоматизма сердца.

Воздействие симпатического отдела ускоряет работу сердца, оказывает стимулирующее действие. Симпатическая иннервация оказывает положительное хронотропное, инотропное, дромотропное действие.

Под преобладающим действием происходит замедление процессов деполяризации пейсмекерских клеток (тормозящее действие), а значит, урежение сердечного ритма (отрицательное хронотропное действие), снижение проводимости внутри сердца (отрицательное дромотропное действие), уменьшение энергии систолического сокращения (отрицательное инотропное действие), но усиливается возбудимость сердца (положительное батмотропное действие). Последнее тоже принимается за нарушение функции автоматизма сердца.

Причины нарушения автоматизма сердца

  1. Ишемия миокарда.
  2. Воспаление.
  3. Интоксикация.
  4. Нарушение баланса натрия, калия, магния, кальция.
  5. Гормональная дисфункция.
  6. Нарушение воздействия автономных симпатических и парасимпатических окончаний.

Типы нарушений ритма вследствие нарушения автоматизма сердца

  1. Синусовая тахи- и брадикардия.
  2. Дыхательная (юношеская) аритмия.
  3. Экстрасистолическая аритмия желудочковая).
  4. Пароксизмальные тахикардии.

Различают аритмии вследствие нарушения автоматизма и проводимости с образованием циркуляции волны возбуждения (волна re-entry) в одном определенном или нескольких отделах сердца, в результате возникает фибрилляция или трепетание предсердий.

Фибрилляция желудочков - одна из наиболее угрожающих для жизни аритмий, следствием которой является внезапная остановка сердца и смерть. Наиболее эффективный метод лечения - электрическая дефибрилляция.

Заключение

Итак, рассмотрев, в чем заключается автоматизм работы сердца, можно понять, какие нарушения возможны в случае заболевания. Это, в свою очередь, дает возможность бороться с болезнью более оптимальными и действенными методами.

Сердце — это полый мышечный орган, который обеспечивает кровообращение. происходят вследствие периодически возникающих в сердечной мышце процессов возбуждения.

Возбуждение в сердце возникает периодически под влиянием процессов, протекающих в нем самом. Эта способность сердца сокращаться под действием импульсов, возникающих в самой ткани без внешних воздействий, получила название автоматии.

Показателем автоматии сердечной мышцы может быть тот факт, что изолированное сердце лягушки, удаленное из организма и помещенное в физиологический раствор, может в течение длительного времени ритмически сокращаться.

Способностью к автоматии обладают определенные участки миокарда, состоящие из специфической (атипической) мышечной ткани, бедной миофибриллами, богатой саркоплазмой и напоминающей эмбриональную мышечную ткань. Специфическая (атипическая) мускулатура образует в сердце проводящую систему.

Помимо специфической ткани, в миокарде сердца есть и неспецифическая (типическая) мышечная ткань. По строению она сходна с поперечно-полосатой скелетной мышечной тканью и образует рабочую часть миокарда.

В клетках специфической ткани находится большое количество межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками атипической ткани и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Представлена тремя узлами — водителями ритма (рис. 1): синусно-предсердный, или синоатриальный, узел расположен в стенке правого предсердия в устье полых вен; предсердно-желудочковый узел, атриовентрикулярный узел, расположенный в нижней трети правого предсердия и межжелудочковой перегородке; от этого узла берет начало предсердно-желудочковый пучок (пучок Гиса ), прободающий предсердно-желудочковую перегородку и делящийся на правую и левую ножки, следующие в межжелудочковой перегородке. В области верхушки сердца ножки пучка Гиса загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокна Пуркинье), погруженных в рабочий (сократительный) миокард желудочков. Проводящая система сердца, как уже говорилось, обладает автоматиеи.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии , выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60-80 в минуту.

Рис. 1. Строение проводящей системы сердца и хронотопография распространения возбуждения: SA — синоатриальный узел. AV- атриовентрикулярный узел. Цифры обозначают охват возбуждением отделов сердца в секундах от момента зарождения импульса в синоатриальном узле

В обычных условиях автоматия всех ниже расположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна пучка Гиса. Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.

Доказательством разной активности водителей ритма является опыт Станниуса с наложением лигатур — перевязок (рис. 2). В опыте на лягушке с помощью лигатуры отделяется часть предсердия вместе с синоатриальным узлом от остальной части сердца. После этого все сердце перестает сокращаться, а отделенный участок предсердия продолжает сокращаться в том же ритме, что и до наложения лигатуры. Это свидетельствует о том, что синоатриальный узел является ведущим, от него зависит частота сердечных сокращений. Станниус назвал этот узел водителем ритма 1-го порядка.

Рис. 2. Лигатуры Станниуса: А — работа сердца без лигатур; Б — лигатура отделяет синусный узел, предсердия и желудочки не сокращаются; В — вторая лигатура, желудочки сокращаются медленно; Г — третья лигатура, верхушка сердца не сокращается, в ней нет атипической ткани

Через 20-30 мин после наложения лигатуры на сердце лягушки проявляется автоматия атриовентрикулярного узла: сердце начинает сокращаться, но в более редком ритме, чем до наложения лигатуры, причем предсердия и желудочки сокращаются одновременно. Атриовентрикулярный узел был назван водителем ритма 2-го порядка. Иногда для включения атриовентрикулярного узла требуется наложить вторую лигатуру, вызвав таким образом механическое раздражение водителя ритма 2-го порядка.

Если на сердце теплокровного животного создать блок между атриовентрикулярным узлов и пучком Гиса, то верхушка сердца будет сокращаться в еще более редком ритме, который зависит от автоматам пучка Гиса или волокон Пуркинье. Наложение третьей лигатуры на верхушку сердца показывает, что в ней отсутствует атипическая ткань, следовательно, она не сокращается, не обладает автоматией.