Главная · Прорезание зубов · Таблица кроветворения. Современная схема кроветворения. Регуляция гемопоэза. Различают два вида кроветворения

Таблица кроветворения. Современная схема кроветворения. Регуляция гемопоэза. Различают два вида кроветворения

Гемопоэз, или процесс кроветворения, происходит в организме в интенсивном и непрерывном режиме. В постоянно образуются клетки крови в достаточно большом объеме. Главная особенность нормального гемопоэза – продукция оптимального количества клеточных элементов в данный момент времени. Повышенная потребность человеческого организма в любом виде клеток приводит к ускорению работы костного мозга в несколько раз, что приводит к повышению их уровня в крови. В течение всей жизни кроветворная система вырабатывает около 5 тонн клеток крови.

Физиологические основы

Все клетки крови развиваются из одной гемопоэтической стволовой клетки.

Гемопоэз представляет собой многостадийный процесс деления и дифференцировки гемопоэтической , конечным результатом которого является поступление в кровеносное русло всех форменных элементов крови.

Эти стволовые клетки закладываются в организме человека в процессе эмбрионального развития в большом объеме, превышающем его нужды в течение всей жизни. Они активируются и вступают в свой жизненный цикл по мере необходимости для обеспечения достаточного количества клеточных элементов в периферической крови.

В процессе гемопоэза можно выделить два крупных ответвления:

  • миелопоэз (образование клеток тромбоцитарного, гранулоцитарного, моноцитарного, эритроцитарного ряда);
  • лимфопоэз (созревание лимфоцитов).

Особенности дифференцировки гемопоэтических клеток

Кроветворная ткань костного мозга объединяет в своем составе комбинацию морфологически нераспознаваемых гемопоэтических клеток-предшественниц и клеток специфических рядов дифференцировки. Все кроветворные клетки, нераспознаваемые с точки зрения морфологии – это гемопоэтические стволовые клетки, которые могут быть:

  • мультипотентными (дифференцируются во всех направлениях);
  • полипотентными (развиваются только по некоторым из них);
  • унипотентными (следуют только по определенному пути развития).

Другая часть клеток, которые удается распознать морфологически, формируется путем дифференцировки из более молодых предшественников, стремительно развивающихся дальше.

Миелопоэз может протекать в нескольких направлениях:

  • мегакариоцитарное;
  • эритроцитарное;
  • моноцитарное;
  • гранулоцитарное.

Лимфопоэз включает в себя две основные линии дифференцировки – образование лимфоцитов Т- и В-клеточного ряда. Каждая из них проходит в два этапа. Первый из них является антиген-независимым и заканчивается продукцией структурно зрелых, но иммунологически неактивных лимфоцитов. Следующий этап начинается после контакта с потенциальным антигеном и завершается выработкой специализированных иммунных клеток (Т-киллеров, Т-хелперов, Т-супрессоров, плазматических клеток, клеток памяти).

Каждый ряд дифференцировки кроветворных клеток дебютирует со стадии так называемых «бластов» (например, миелобласты). Для обозначения клеток промежуточного этапа используют приставку «про» и суффикс «цит» (например, проэритрокариоцит). Зрелые клеточные элементы имеют только суффикс «цит» (например, тромбоцит).

Следует отметить, что процесс дифференцировки различных видов клеточных элементов имеет свои особенности. Так, в гранулоцитарном ряде выделяют не одну, а несколько промежуточных стадий. В этом случае вслед за миелобластом образуется промиелоцит, затем миелоцит, метамиелоцит, а только после этого – зрелые клетки – эозинофилы, базофилы, нейтрофилы.

Регуляция кроветворения


Адекватный и быстрый ответ системы кроветворения на вновь возникающие потребности организма в клетках крови обеспечивают цитокины.

В норме регуляция гемопоэза осуществляется непосредственным влиянием микроокружения и гуморальными факторами, обладающими активирующим или угнетающим действием. Эти факторы получили название цитокины. Они позволяют обеспечивать адекватный и быстрый ответ системы кроветворения на вновь возникающие потребности организма в клетках крови. К цитокинам активирующего типа относятся:

  • факторы роста (колониестимулирующие);
  • эритропоэтины;
  • фактор стволовых клеток;
  • интерлейкины и др.

Угнетают клеточную активность и кроветворение следующие субстанции:

  • фактор некроза опухоли;
  • интерферон-гамма;
  • лейкоз-ингибирующий фактор и др.

При этом подавление роста одного вида клеток может приводить к усиленной дифференцировке другого.

Количество клеток в периферической крови регулируется по принципу обратной связи. Так, содержание эритроцитов в крови и насыщение их гемоглобином зависит от потребностей тканей в кислороде. Если она возрастает, то включаются не только компенсаторные механизмы (увеличение частоты дыхания и сердечных сокращений), но и стимулируется эритропоэз.

Заключение

Гемопоэз – сложный процесс, позволяющий поддерживать постоянство внутренней среды организма, адекватную работу которого обеспечивает большое количество физиологических механизмов.

Кроветворение - гемопоэз - это процесс развития кле­точных элементов, который приводит к образованию зрелых клеток периферической крови.

Процесс кроветворения можно изобразить в виде схемы, в которой клетки расположены в определенной последовательности, осно­ванной на степени их созревания. Согласно современным представлениям о кроветворении все клетки крови проис­ходят из одной, которая дает начало трем росткам кроветворения: лейкоцитарному, эритроцитарному и тромбоцитарному.

В схеме кроветворения клетки крови разделены на 6 классов. Первые четыре класса составляют клетки-предшественники, пятый класс - созревающие клетки и шестой - зрелые.

Класс I.- Класс полипотентных клеток - предшественников

Представлен стволовыми клетками, количе­ство которых в кроветворной ткани составляет доли процента. Эти клетки способны к неограниченному само поддержанию в течение длительного времени (больше, чем продолжительность жизни человека). Стволовые клетки полипотентные, т. е. из них развиваются все ростки кро­ветворения. Большая часть стволовых клеток находится в состоянии покоя и только около 10% из них делятся. При делении образуются два типа клеток - стволовые (само поддержание) и клетки, способные к дальнейшему разви­тию (дифференцировке). Последние составляют следу­ющий класс.

II.Класс частично детерминированных полипотентных клеток предшественников

Представлен ограниченно полипотентными клетками, т. е. клетками, которые способны дать начало либо лимфопоэзу (образованию клеток лимфоидного ря­да), либо миелопоэзу (образованию клеток миелоидного ряда). В отличие от стволовых клеток они способны лишь к частичному само поддержанию.

Класс III. Класс унипотентных клеток - предшественников

В процессе дальнейшей дифференцировки образуются клетки, называемые унипотентными предше­ственниками. Они дают начало одному строго определен­ному ряду клеток: лимфоцитам, моноцитам и гранулоцитам (лейкоцитам, имеющим в цитоплазме зернистость), эритроцитам и тромбоцитам.

В костном мозге обнаруживается две категории кле­ток-предшественников лимфоцитов, из которых образуют­ся. В - и Т-лимфоциты. В-лимфоциты созревают в костном мозге, а затем заносятся кровотоком в лимфоидные органы. Из предшественников В-лимфоцитов образуются плазмоциты. Часть лимфоцитов в эмбриональном периоде поступает через кровь в вилочковую железу (thymus) и обозначается как Т-лимфоциты. В дальнейшем они диф­ференцируются в лимфоциты.

Клетки этого класса также не способны к длительному само поддержанию, но способные к размножению и дифференцировке.

Все клетки трех классов морфологически не дифференцируемые клетки

Класс IV.Морфологически распознаваемых пролиферирующих клеток

Представлен.молодыми, способными к делению клетками, образующими отдельные ряды миело и лимфопоэза. Все элементы этого ряда имеют окончание «бласт»: плазмобласт, лимфобласт, монобласт, миелобласт, эритробласт, мегакариобласт. Из клеток этого клас­са в процессе деления образуются клетки следующего класса.

Класс V.Класс созревающих клеток

Представлен созревающими клетками, назва­ния которых имеют общее окончание «цит». Все элементы этого класса расположены в схеме по вертикали и определенной последовательности, обусловленной стадией их развития.

Названия клеток первой стадии начинаются пристав­кой «про» (перед): проплазмоцит, пролимфоцит, промоноцит, промиелоцит, пронормоцит, промегакариоцит. Эле­менты гранулоцитарного ряда проходят еще две стадии в процессе развития: миелоцит и метамиелоцит («мета» означает после). Метамиелоцит, находящийся на схеме ниже миелоцита, представляет переход от миелоцита к зрелым гранулоцитам. К клеткам этого класса относят также и палочкоядерные гранулоциты. Пронормоциты в процессе эритропоэза проходят стадии нормоцитов, кото­рые, в зависимости от степени насыщения гемоглобином цитоплазмы, имеют добавочные определения: нормоцит базофильный, нормоцит полихроматофильный и нормоцит оксифильный. Из них образуются ретикулоциты - незрелые эритроциты с остатками ядерной субстанции.

Класс VI. Класс зрелых клеток

Представлен зрелыми клетками, неспособ­ными к дальнейшей дифференцировке с ограниченным жизненным циклом. К ним относятся: плазмоцит, лимфо­цит, моноцит, сегментоядерные гранулоциты (эозинофил, базофил, нейтрофил), эритроцит, тромбоцит.

Зрелые клетки поступают из костного мозга в перифе­рическую кровь.

Показателем, характеризующим состояние костномозгового кроветворения, является миелограмма – количественное соотношение клеток разной степени зрелости всех ростков кроветворения

Презентация на тему: Современная схема кроветворения. Регуляция гемопоэза























1 из 22

Презентация на тему: Современная схема кроветворения. Регуляция гемопоэза

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Современная теория кроветворения Современная теория кроветворения базируется на унитарной теории А.А. Максимова (1918), согласно которой все клетки крови происходят из единой родоначальной клетки, морфологически напоминающей лимфоцит. Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток»

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Современная теория кроветворения Нормальное кроветворение поликлональное, т. е. осуществляется одновременно многими клонами.Размер индивидуального клона - 0,5-1 млн зрелых клетокПродолжительность жизни клона - не превышает 1 месяц, около 10% клонов существуют до полугода. Клональный состав кроветворной ткани полностью меняется в течение 1-4 месяцев. Постоянная замена клонов объясняется истощением пролиферативного потенциала стволовой кроветворной клетки, поэтому исчезнувшие клоны никогда не появляются вновь. Различные гемопоэтические органы заселены разными клонами и только некоторые из них достигают такой величины, что оккупируют более чем одну кроветворную территорию.

№ слайда 5

Описание слайда:

Дифференцировка клеток гемопоэза Клетки гемопоэза условно подразделены на 5-6 отделов, границы между которыми весьма размыты, а между отделами содержится много переходных, промежуточных форм. В процессе дифференцировки происходит постепенное снижение пролиферативной активности клеток и способности развиваться сначала во все кроветворные линии, а затем во все более ограниченное количество линий.

№ слайда 6

Описание слайда:

Дифференцировка клеток гемопоэза I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК)СКК обладают уникальным свойством - полипотентностью, т. е. способностью к дифференцировке во все без исключения линии гемопоэза. В клеточной культуре можно создать условия, когда возникающая из одной клетки колония содержит до 6 различных клеточных линий дифференцировки.

№ слайда 7

Описание слайда:

Стволовые кроветворные клетки СКК закладываются в период эмбриогенеза и расходуются последовательно, образуя сменяющие друг друга клоны более зрелых кроветворных клеток.90% клонов являются короткоживущими, 10% клонов может функционировать в течение длительного времени. СКК обладают высоким, но ограниченным пролиферативным потенциалом, способны к ограниченному самоподдержанию, т. е. не бессмертны. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека.

№ слайда 8

Описание слайда:

Стволовые кроветворные клетки Отдел СКК гетерогенен, представлен 2 категориями предшественников, обладающих различным пролиферативным потенциалом. Основная масса СКК находится в фазе покоя G0 клеточного цикла, обладает огромным пролиферативным потенциалом. При выходе из покоя СКК вступает на путь дифференцировки, снижая пролиферативный потенциал и ограничивая набор дифференцировочных программ. После нескольких циклов деления (1-5) СКК может вернуться вновь в состояние покоя, при этом их состояние покоя менее глубоко и при наличии запроса они отвечают быстрее, приобретая маркеры определенных линий дифференцировок в культуре клеток за 1-2 дня, тогда как исходным СКК требуется 10-14 дней. Длительное поддержание кроветворения обеспечивается резервными СКК. Необходимость срочного ответа на запрос удовлетворяется за счет СКК, прошедших дифференцировку и находящихся в состоянии быстро мобилизуемого резерва.

№ слайда 9

Описание слайда:

Стволовые кроветворные клетки Гетерогенность пула СКК и степень их дифференцировки устанавливается на основе экспрессии ряда дифференцировочных мембранных антигенов. Среди СКК выделены: примитивные мультипотентные предшественники (CD34+Thyl+) более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. Истинные СКК не экспрессируют линейно специфические маркеры и дают рост всем линиям гемопоэтических клеток. Количество СКК в костном мозге - около 0,01%, а вместе с клетками-предшественниками - 0,05%.

№ слайда 10

Описание слайда:

Стволовые кроветворные клетки Одним из основных методов изучения СКК является метод колониеобразования in vivo или in vitro, поэтому иначе СКК называют “колониеобразующими единицами” (КОЕ). Истинные СКК способны к формированию колоний из бластных клеток (КОЕ-бластные). Сюда же относят клетки, формирующие селезеночные колонии (КОЕс). Эти клетки способны полностью восстанавливать гемопоэз.

№ слайда 11

Описание слайда:

Дифференцировка клеток гемопоэза III отдел - По мере снижения пролиферативного потенциала СКК дифференцируются в полиолигопотентные коммитированные клетки-предшественники, имеющие ограниченную потентность, так как коммитированы (commit - принятие на себя обязательств) к дифференцировке в направлении 2-5 гемопоэтических клеточных линий. Полиолигопотентные коммитированные предшественники КОЕ-ГЭММ (гранулоцитарно-эритроцитарно-макрофагально-мегакариоцитарные) дают начало 4 росткам гемопоэза, КОЕ-ГМ - двум росткам. КОЕ-ГЭММ являются общим предшественником миелопоэза. Они имеют маркер CD34, маркер миелоидной линии CD33, детерминанты гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DR.

№ слайда 12

Описание слайда:

Дифференцировка клеток гемопоэза Клетки IV отдела - монопотентные коммитированные предшественники являются родоначальными для одного ростка гемопоэза: КОЕ-Г для гранулоцитарного, КОЕ-М - для моноцитарно-макрофагального, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Мгкц - предшественники мегакариоцитов Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Монопотентные коммитированные предшественники экспрессируют маркеры соответствующей клеточной линии дифференцировки.

№ слайда 13

Описание слайда:

СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название “homing-effect” (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике.

№ слайда 14

Описание слайда:

№ слайда 15

Описание слайда:

Регуляция гемопоэза Кроветворная ткань - динамичная, постоянно обновляющаяся клеточная система организма. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. По мере созревания, образующиеся в костном мозге клетки, равномерно поступают в кровеносное русло.Эритроциты циркулируют в крови - 110-130 суток, тромбоциты - около 10 суток, нейтрофилы - менее 10 ч. Ежедневно теряется 1х10¹¹ клеток крови, что восполняется «клеточной фабрикой» - костным мозгом. При повышении запроса на зрелые клетки (кровопотеря, острый гемолиз, воспаление), производство может быть увеличено в течение нескольких часов в 10-12 раз. Увеличение клеточной продукции обеспечивается гемопоэтическими факторами роста

№ слайда 16

Описание слайда:

Регуляция гемопоэза Гемопоэз инициируется ростовыми факторами, цитокинами и непрерывно поддерживается благодаря пулу СКК. Стволовые кроветворные клетки стромозависимы и воспринимают короткодистантные стимулы, получаемые ими при межклеточном контакте с клетками стромального микроокружения. По мере дифференцировки клетка начинает реагировать на дальнедействующие гуморальные факторы. Эндогенная регуляция всех этапов гемопоэза осуществляется цитокинами через рецепторы на клеточной мембране, посредством которых про водится сигнал в ядро клетки, где происходит активация соответствующих генов. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др.

Описание слайда:

№ слайда 19

Описание слайда:

Регуляторы гемопоэза Выделяют позитивные и негативные регуляторы гемопоэза. Позитивные регуляторы необходимы: для выживания СКК и их пролиферации, для дифференцировки и созревания более поздних стадий гемопоэтических клеток. К ингибиторам (негативные регуляторы) пролиферативной активности СКК и всех видов ранних гемопоэтических предшественников относят:трансформирующий ростовой фактор β (TGF-β), макрофагальный воспалительный белок (MIP-1α), фактор некроза опухоли а (ФНО-α), интерферон -а интерферон -у, кислые изоферритины, лактоферрин другие факторы.

№ слайда 20

Описание слайда:

Факторы регуляции гемопоэза Факторы регуляции гемопоэза подразделяются на короткодистантные (для СКК) и дальнодействующие для коммитированных предшественников и созревающих клеток. В зависимости от уровня дифференцировки клетки факторы регуляции делят на 3 основных класса: 1. Факторы, влияющие на ранние СКК:фактор стволовых клеток (ФСК), гранулоцитарный колониестимулирующий фактор (Г - КСФ), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). Эта фаза регуляции СКК не зависит от запросов организма.

№ слайда 21

Описание слайда:

Факторы регуляции гемопоэза 2. Линейно-неспецифические факторы:ИЛ-3,ИЛ-4, ГМ-КСФ (для гранулоцитомонопоэза). 3. Позднедействующие линейно-специфические факторы, которые поддерживают пролиферацию и созревание коммитированных предшественников и их потомков:эритропоэтин, тромбопоэтин, колониестимулирующие факторы (Г-КСФ, М-КСФ, ГМ-КСФ), ИЛ-5. Один и тот же ростовой фактор может действовать на разнообразные клетки-мишени на различных этапах дифференцировки, что обеспечивает взаимозаменяемость молекул, регулирующих гемопоэз.

№ слайда 22

Описание слайда:

Активация и функционирование клеток зависит от многих цитокинов. Клетка начинает дифференцировку только после взаимодействия с факторами роста, но в выборе направления дифференцировки они не участвуют. Содержание цитокинов определяет количество продуцируемых клеток, число проделываемых клеткой митозов. Так, после кровопотери снижение рО2 в почках приводит к усилению продукции эритропоэтина, под действием которого эритропоэтинчувствительные эритроидные клетки - предшественники костного мозга (БОЕ-Э), увеличивают на 3-5 число митозов, что повышает образование эритроцитов в 10-30 раз. Число тромбоцитов в крови регулирует выработку фактора роста и развитие клеточных элементов мегакариоцитопоэза. Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть

Организм человека является очень сложной системой, все структуры которой взаимосвязаны. Разрыв даже одного звена влечет за собой неминуемые негативные последствия. Основой жизни организма является . Процесс ее образования (гемопоэз) подчинен множеству факторов и регулируется на разных уровнях. Эта система очень хрупкая, но важная, поэтому даже малейшие изменения хотя бы одного компонента могут послужить причиной серьезных проблем со здоровьем.

Что представляет собой процесс кроветворения и где он происходит

Сам по себе гемопоэз — это многоэтапная последовательность получения взрослых кровяных клеток из клеток, которые являются их предшественниками и не встречаются в циркулирующей по сосудам крови. Зрелыми называются клетки, которые обычно обнаруживаются в нормальном анализе крови человека.

Где же происходят все эти сложные процессы? Клетки предшественницы образуются в ряде органных структур человеческого тела.

  1. Основным коллектором кроветворных процессов является костный мозг. Все действо идет в полостях костей, где находится стромальное микроокружение. К частичкам такого окружения относятся клетки, выстилающие сосуды, фибробласты, костные клетки, жировые и многие другие. Все, что их окружает, состоит из белков, различных волокон, между которыми находится основное костное вещество. В строме есть адгезивная составляющая, которая как бы притягивает основные кроветворящие клетки. Самые «первые» структуры схемы гемопоэза находятся в костном мозге. Родоначальники лимфоцитов образуются здесь же, а дозревают потом в вилочковой железе и селезенке, а также в лимфоузлах.
  2. – еще один немаловажный орган. Она состоит из красной и белой зон. В красной зоне складируются и разрушаются эритроциты, в белой зоне обитают т-лимфоциты. Склады в-лимфоцитов находятся по окружности от красной зоны.
  3. Вилочковая железа – основной «завод» по производству лимфоцитов. Туда попадают из костного мозга недозрелые клетки. В тимусе они очень быстро преобразуются, большая часть из них гибнет, а выжившие превращаются в хелперов и супрессоров и направляются к селезенке и лимфоузлам. Чем старше человек, тем меньше его вилочковая железа. Со временем она полностью редуцируется, становясь комком жира.
  4. – это так называемые иммунные ответчики, которые за счет предоставления антигена первые реагируют на изменения в иммунитете. По периферии узла находятся Т-лимфоциты, а в сердцевине – зрелые клетки.
  5. Пейеровы бляшки – аналог узлов, только расположены они по ходу кишечника.

Вот так, пройдя множество преобразований, стволовая клетка становится одной из клеток кровяного русла.

Назначение схемы гемопоэза

Все выше сказанное можно объединить в единую схему.

Назначение такой схемы трудно переоценить. Она имеет огромное количество плюсов и несомненную значимость.

  • При помощи такой схемы можно отчетливо отследить все этапы образования интересующей клетки.
  • Если нужная клетка не образовалась, можно отследить на каком этапе произошла ошибка и цепочка действий прервалась.
  • Найдя ошибку в системе, врач может воздействовать на интересующее звено кроветворения, чтобы его простимулировать.

Всем известно, что многие , особенно кроветворной системы, характеризуются присутствием в крови незрелых форм клеток. Исходя из этого, применив подобную схему, можно отчетливо понять суть процесса, правильно поставить диагноз и своевременно начать лечение.

Таким образом, схема гемопоэза ясно представляет структуру периферической крови по компонентам, что также немаловажно в диагностике патологических процессов.

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ГОРОДА СЕМЕЙ

На тему: " ТЕОРИЯ И СХЕМА КРОВЕТВОРЕНИЯ. МОРФОЛОГИЯ КЛЕТОК КОСТНОГО МОЗГА"

Выполнила:

Проверила:

СЕМЕЙ 2012г.

План

Введение

Теории кроветворения

Список литературы

Введение

КРОВЬ - самая удивительная ткань нашего организма, которая состоит из жидкой части (плазмы) и взвешенных в ней клеточных (форменных) элементов (глобулярной массы).

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ) - это процесс образования и развития клеток крови.

Различают эмбриональный гемопоэз, начинающийся на ранних стадиях эмбрионального развития и ведущий к образованию крови как ткани, и постэмбриональный, который можно рассматривать как процесс физиологической регенерации крови.

В образовании и развитии клеток крови важную роль играют строма и микроокружение кроветворных органов.

Постоянство состава клеток крови и костного мозга обеспечивается регуляторными механизмами, благодаря которым процессы пролиферации и дифференциации клеток связаны друг с другом.

Теории кроветворения

üунитарная теория (А.А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественника стволовой клетки;

üдуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;

üполифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В настоящее время общепринятой является унитарная теория кроветворения , на основании которой разработана схема кроветворения (И.Л. Чертков и А.И. Воробьев, 1973 г.).

Выделяют два вида кроветворения:

а) миелопоэз - образование всех форменных элементов крови, кроме лимфоцитов, т.е.

Øэритроцитов,

Øгранулоцитов,

Øмоноцитов и

Øтромбоцитов;

б) лимфопоэз - образование лимфоцитов (Т - и В-клеток).

Схема - постэмбриональный гемоцитопоэз

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

1 класс - стволовые клетки;

класс - полустволовые клетки;

класс - унипотентные клетки;

класс - бластные клетки;

класс - созревающие клетки;

класс - зрелые форменные элементы.

Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту, является полипотентной, то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются клон-образующие единицы - КОЕ.

2 класс - полустволовые, ограниченно полипотентные (или частично коммитированные) клетки - предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки - предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток , так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2-4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови. Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги. Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

кроветворение костный мозг клетка

Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд .

Морфология клеток костного мозга

Костный мозг - важнейший орган кроветворной системы, осуществляющий гемопоэз, или кроветворение - процесс создания новых клеток крови взамен погибающих и отмирающих. Он также является одним из органов иммунопоэза.

Среди клеток костного мозга различают клетки ретикулярной стромы и миелокариоциты - клетки кроветворной ткани костного мозга (паренхимы) с их производными - зрелыми клетками крови .

Ретикулярные клетки стромы костного мозга не принимают непосредственного участия в кроветворении, однако они имеют большое значение, так как создают необходимое микроокружение для кроветворных клеток.

К ним относятся клетки эндотелия , выстилающего костномозговые синусы, фибробласты , остеобласты , жировые клетки .

Морфология их ничем не отличается от описанной ранее.

При подсчете миелограммы они расцениваются как ретикулярные.

Мазки пунктата костного мозга сначала тщательно просматриваются при малом увеличении для определения качества приготовления мазков и окраски миелокариоцитов. При этом увеличении можно обнаружить комплексы раковых клеток при метастазах злокачественных опухолей, клетки Березовского-Штернберга, Пирогова-Лангханса, скопления миеломных клеток, клетки Гоше и др. Обращается внимание на количество мегакариоцитов.

Все клетки костного мозга (не менее 500) подсчитываются подряд в нескольких участках мазка, и определяется процентное содержание каждого вида клеток (см. таблицу).

При оценке пунктата костного мозга наряду с процентным содержанием в нем миелокариоцитов учитывается отношение количества клеток лейкопо - этического ряда к числу клеток эритробластического ряда.

У здоровых людей лейкоэритроидное соотношение равно 4: 1 или 3: 1.

Клеточный состав костного мозга здоровых взрослых людей, %ПоказателиСреднее значениеПределы колебаний в нормеРетикулярные клетки0,90,1-1,6Бласты0,60,1-1,1Миелобласты1,00,2-1,7Нейтрофильные гранулоцитыПромиелоциты2.51,0-4,1Миелоциты9,67,0-12,2Метамиелоциты11,58,0-15,0Палочкоядерные18,212,8-23,7Сегментоядерные18,613,1-24,1Все нейрофильные элементы60,852,7-68,9Эозинофильные гранулоциты (всех генераций) 3,20,5-5,8Базофильные гранулоциты 0,20-0,5Эритробласты0,60,2-1,1Пронормоциты0,60,1-1,2НормоцитыБазофильные3,01,4-4,6Полихроматофильные12,98,9-16,9Оксифильные3,20,8-5,6Все эритроидные элементы20,514,5-26,5Лимфоциты9,04,3-13,7Моноциты 1,90,7-3,1Плазматические клетки 0,90,1-1,8Количество мегакариоцитов (клеток в 1 мкл) 0-0,450-150 (В норме возможно более низкое содержание при разбавлении костного мозга кровью) Лейкоэритроидное соотношение3,32,1-4,5Индекс созреванияЭритрокариоцитов0,80,7-0,9Нейтрофильных гранулоцитов0,70,5-0,9Количество миелокариоцитов (тыс. клеток в 1 мкл) 118,441,6-195,0

Морфология клеток гранулоцитарного ростка

Миелобласт имеет диаметр 15-20 мкм. Ядро округлой формы занимает большую часть клетки, окрашено в красно-фиолетовый цвет, имеет нежно-сетчатую структуру хроматина, содержит от 2 до 5 ядрышек сине-голубого цвета. Ядро окружено узким пояском ярко-синей (базофильной) цитоплазмы, в которой содержится в небольшом количестве красная (азурофильная) зернистость.

Промиелоцит - крупная клетка диаметром 25 мкм. Ядро овальной формы занимает большую часть клетки, окрашено в светло-фиолетовый цвет, имеет тонкую сетчатую структуру, в которой различимы ядрышки. Цитоплазма широкая, голубого цвета, содержит обильную красную, фиолетовую или коричневую зернистость. По особенностям зернистости можно определить видовую направленность промиелоцита: нейтрофильную, эозинофильную или базофильную.

Миелоцит является более зрелой клеткой гранулоцитарного ряда диаметром 12-16 мкм. Ядро овальной формы, расположено эксцентрично, светло-фиолетового цвета. Его структура более грубая, чем у промиелоцита, ядрышки не выявляются. Цитоплазма окружает ядро широким поясом, окрашена в светло-голубой цвет, содержит зернистость. В зависимости от характера зернистости различают миелоциты нейтрофильные, эозинофильные и базофильные. Нейтрофильная зернистость мелкая, сине-фиолетового цвета, эозинофильная - крупная, желтовато-красного цвета, базофильная - темно-синего цвета.

Метамиелоцит - клетка диаметром 12-13 мкм с бобовидным эксцентрично расположенным ядром бледно-фиолетового цвета, структура его компактна. Ядро окружено по периферии широкой цитоплазмой розового цвета, содержащей нейтрофильную, эозинофильную или базофильную зернистость.

Палочкоядерный гранулоцит имеет диаметр 10-12 мкм. Ядро изогнуто в виде палочки или подковы, фиолетового цвета, с грубой структурой. Цитоплазма имеет розовую окраску, занимает большую часть клетки, содержит фиолетовую зернистость. У эозинофильного палочкоядерного гранулоцита цитоплазма практически не видна из-за обильной крупной желтовато-красного цвета зернистости. Палочкоядерная стадия базофильного гранулоцита обычно не встречается.

Сегментоядерный гранулоцит такого же размера, как и палочкоядерный. Ядро разделено на отдельные сегменты, соединенные тонкими перемычками. Количество сегментов колеблется от 2 до 5. Ядро фиолетовое, расположено в центре клетки. Сегментоядерный нейтрофил имеет розовую (оксифильную) цитоплазму, в которой содержится мелкая фиолетовая зернистость. Ядро эозинофила состоит обычно из двух сегментов, занимая меньшую часть клетки. Большая часть клетки заполнена крупной, густо расположенной желтовато-красной зернистостью. Ядро базофила состоит, как правило, из 3 сегментов. Светло-фиолетовая цитоплазма содержит крупную синего или темно-фиолетового цвета зернистость, которая местами наложена на ядро, в связи с чем его контуры нечеткие.

Морфология клеток лимфатического ростка

К клеткам лимфатического ряда относят лимфобласт и плазмобласт (4-й класс), пролимфоцит и проплазмоцит (5-й класс), лимфоцит и плазмоцит (6-й класс).

Лимфобласт имеет диаметр 15-20 мкм. Ядро округлое с нежно-сетчатой структурой хроматина, бледно-фиолетового цвета, расположено в центре. В ядре четко виды 1-2 ядрышка. Цитоплазма светло-синяя, окружает ядро узким ободком, не содержит зернистости. Участок цитоплазмы вблизи ядра имеет более светлую окраску (перинуклеарная зона).

Пролимфоцит является небольшой клеткой диаметром 11-12 мкм. Ядро округлое, бледно-фиолетового цвета, с нежной сетью хроматина. В некоторых случаях может содержать остатки ядрышек. Цитоплазма голубая, окружает ядро в виде неравномерного ободка, иногда содержит азурофильную (красновато-фиолетовую) зернистость.

Лимфоцит - зрелая клетка диаметром от 7-9 до 12-13 мкм в зависимости от величины цитоплазмы. Ядро округлое, темно-фиолетового цвета, компактное, иногда имеет вдавление. Ядрышек не содержит. Выявляются малые лимфоциты с узким ободком голубой цитоплазмы, которая практически незаметна, средние и большие лимфоциты, цитоплазма которых занимает большую часть клетки, менее интенсивно окрашена и содержит азурофильную зернистость. Вокруг ядра всегда определяется перинуклеарная зона.

Плазмобласт - крупная клетка диаметром 16-20 мкм с округлым центрально или эксцентрично расположенным большим ядром, имеющим нежную структуру и несколько ядрышек. Цитоплазма ярко-синего цвета, окружает ядро широким поясом. Вокруг ядра выражена перинуклеарная зона.

Проплазмоцит - клетка диаметром 10-20 мкм. Ядро округлое, компактное, расположено эксцентрично. В ядре чередуются темно - и светло-фиолетовые участки, которые расположены радиально от центра к периферии, что напоминает расположение спиц в колесе, - колесовидная структура ядра. Ядрышки отсутствуют. Цитоплазма интенсивного синего цвета, широкая, вакуолизированная. Хорошо видна перинуклеарная зона.

Плазмоцит - зрелые плазматические клетки (клетки Унна), разнообразные как по форме, так и по размерам (от 8 до 20 мкм). Ядро имеет почти постоянную величину, а меняется большей частью величина цитоплазмы. Ядро круглое или чаще овальное и расположено эксцентрично, имеет характерную грубую колесовидную структуру. Цитоплазма окрашивается в интенсивный синий цвет с ясным просветлением вокруг ядра, однако встречаются клетки с более светлой цитоплазмой и менее выраженной перинуклеарной зоной. В цитоплазме могут быть различной величины вакуоли, расположенные, как правило, в ее периферической части и придающие ей ячеистое строение. Нередко встречаются многоядерные плазматические клетки, содержащие 2-3 ядра и более одинаковой или различной величины. Плазматические клетки больших размеров могут иметь цитоплазму, окрашенную в серо-голубой цвет с менее отчетливой перинуклеарной зоной или с ее отсутствием.

Миеломные клетки имеют большие размеры, достигающие иногда 40 мкм и более в диаметре. Ядро нежное, содержит 1-2 больших или несколько мелких ядрышек, окрашенных в голубой цвет. Нередко встречаются клетки с 3-5 ядрами. Цитоплазма больших размеров, окрашивается в различные цвета: светло-голубой, светло-фиолетовый, интенсивно фиолетовый, а иногда красноватый, обусловленный присутствием гликопротеидов. Околоядерное просветление выражено нечетко или отсутствует. В редких случаях находят 1-2 гиалиновых включения - тельца Русселя величиной 2-4 мкм. При окраске азур-эозином они приобретают красный цвет.

Морфология клеток моноцитарного ростка

К клеткам моноцитарного ряда относят: монобласт (4-й класс), промоноцит (5-й класс), моноцит (6-й класс).

Монобласт имеет диаметр 12-20 мкм. Ядро округлое, иногда дольчатое, имеет нежную структуру, светло-фиолетовую окраску. Содержит 2-5 ядрышек. Цитоплазма нежно-голубая, занимает меньшую часть клетки.

Промоноцит имеет диаметр 12-20 мкм. Ядро крупное, рыхлое, бледно-фиолетовое, может содержать остатки ядрышек. Цитоплазма широкая серовато-фиолетового цвета.

Моноцит является зрелой клеткой диаметром 12-20 мкм. Ядро рыхлое, светло-фиолетовое. Форма ядра может быть различной: бобовидной, дольчатой, подковообразной. Цитоплазма серовато-фиолетового цвета, широкая, светлая, может содержать обильную мелкую азурофильную зернистость.

Морфология клеток мегакариоцитарного ростка

К клеткам мегакариоцитарного ростка относят мегакариобласт (4-й класс), промегакариоцит и мегакариоцит (5-й класс), тромбоцит (6-й класс).

Мегакариобласт имеет диаметр 20-25 мкм. Ядро округлое, с нежной структурой, красновато-фиолетового цвета, имеет ядрышки. Цитоплазма небольшая, интенсивно базофильная, не содержит зернистости. Вокруг ядра заметна зона просветления.

Промегакариоцит - значительно более крупная клетка, чем мегакариобласт. Ядро грубой структуры, не содержит ядрышек. Цитоплазма базофильна, занимает большую часть клетки, зернистость в ней отсутствует.

Мегакариоциты - гигантские клетки костного мозга. Мегакариоцит представляет собой гигантскую клетку костного мозга диаметром 60-120 мкм. Ядро имеет грубую структуру, различной, в некоторых случаях причудливой формы. Цитоплазма отличается очень большими размерами, содержит зернистость розовато-фиолетового цвета. От цитоплазмы мегакариоцита отшнуровываются тромбоциты.

Тромбоциты (кровяные пластинки) - зрелые элементы периферической крови, имеющие небольшие размеры (1,5-3 мкм), округлую или овальную форму. Периферическая часть - гиаломер - светлого цвета, центральная часть - грануломер - розовато-фиолетового цвета, содержит мелкие гранулы.

Морфология клеток эритроцитарного ростка

К клеткам эритроцитарного ростка относят эритробласт (4-й класс), пронормоцит , нормоцит , ретикулоцит (5-й класс), эритроцит (6-й класс).

Эритробласт имеет диаметр 20-25 мкм. Ядро нежной структуры, округлое, занимает большую часть клетки, красновато-фиолетового цвета, содержит 1-5 ядрышек. Цитоплазма насыщенного синего цвета, не содержит зернистости. Вокруг ядра определяется зона просветления.

Мегалобласты - большие эмбриональные эритробласты. В костном мозге и в периферической крови появляются в постэмбриональной жизни только при патологических состояниях, связанных с дефицитом гемопоэтического фактора - витамина В12, фолиевой кислоты.

Пронормоцит - клетка диаметром 12-18 мкм. Ядро имеет более грубую структуру, чем у эритробласта, но еще сохраняет нежную сетчатую структуру. Ядрышки отсутствуют. Цитоплазма базофильная, не содержит зернистости.

Нормоцит имеет диаметр 8-12 мкм. В зависимости от степени насыщенности их цитоплазмы гемоглобином различают базофильный, полихроматофильный и оксифильный нормоциты. Самые крупные - базофильные нормоциты, наименьший размер имеют оксифильные нормоциты. Ядра этих клеток имеют грубую структуру, окрашены в темно-фиолетовый цвет. Цитоплазма базофильного нормоцита - синяя, полихроматофильного - серовато-фиолетовая, оксифильного - розовая.

Ретикулоцит - клетка диаметром 9-11 мкм. В зависимости от способа окраски может быть голубого или зеленого цвета. Содержит нитчато-сетчатую субстанцию, которая окрашена в синий цвет.

Эритроцит - зрелая клетка периферической крови диаметром 7-8 мкм, розово-красного цвета. Имеет форму двояковогнутого диска, что ведет к неравномерности в окраске - клетка более светлая в центре и более интенсивно окрашена по периферии.

Список литературы

1. Клиническая лабораторная диагностика: Справочник для врачей. В.В. Медведев, Ю.З. Волчек, "Гиппократ" 2006г.;

Учебное пособие по клиническим лабораторным методам исследования. Л.В. Козловская, А.Ю. Николаев, Москва, Медицина, 1985 г.;

Руководство к практическим занятиям по клинической лабораторной диагностике. Под ред. проф. М.А. Базарновой, проф. В.Т. Морозовой. Киев, "Вища школа", 1988 г.;

Www.nsau.edu.ru;

Www.medkarta.com.