Главная · Зубная боль · Нейропластичность мозга. Жить с одним полушарием: что такое пластичность мозга

Нейропластичность мозга. Жить с одним полушарием: что такое пластичность мозга



В предыдущей статье мы определили несколько областей мозга, которые являются ключевыми для наших когнитивных способностей, и нанесли их на карту мозга. Когнитивная нейробиология достигла пика своего развития в 1990-е годы, когда были изобретены приборы, позволяющие получить изображения мозга, и сосредоточилась на картографии мозга. Разные области мозга отвечают за разные функции.

Противники картографии мозга в шутку называют ее современной френологией. Френологи, эти шарлатаны XIX века, судили о способностях людей по строению и форме черепа. Придавая решающее значение форме головы и черепа, они не просто культивировали лженауку, но и лили воду на мельницу расово-биологических учений начала XX века.

И все же сравнение с френологией несколько упрощает проблему. Верной Маунткастл, один из выдающихся неврологов XX века, сам не занимаясь изображением мозга, отчасти выступил в защиту френологов 86 . По его мнению, френология опирается на два основных постулата. Первый из них: различные функции локализованы в различных областях мозга. И второй: функции мозга отражаются на форме черепа. Второй постулат - абсолютный нонсенс, но первый постулат можно считать корректным и теоретически очень важным.

Одно из первых исследований, показавших, как локализованы функции мозга, провел французский невролог Поль Брока. Ему попался пациент, который внезапно лишился дара речи. После смерти пациента Брока обследовал его мозг и обнаружил кровотечение - в нижней части лобной доли. Эта часть мозга сейчас известна как «зона Брока». Однако в то время Поль Брока еще полагал, согласно традиционным представлениям, что эта зона является симметричной для обоих полушарий. Но затем, опираясь на данные многочисленных наблюдений, он решительно заявил о том, что функция речи принадлежит левому полушарию. Открытие моторного центра речи было первым анатомическим доказательством локализации функции мозга.

В начале XX века Корбиниан Бродман на основании огромного сравнительно-анатомического материала разделил поверхность мозговых полушарий на множество более или менее автономных участков, отличающихся один от другого по клеточному строению и, следовательно, по функциям. Он составил одну из первых карт мозга, разделив его на 52 области. Кстати, эту карту используют и поныне 87 .

Методики позитронно-эмиссионной томографии (ПЭТ) и функциональной магнитно-резонансной томографии (ФМРТ) обеспечили прорыв в картировании мозга. Опираясь на новые знания, ученые со временем отказались от упрощенного представления о том, что одна область мозга отвечает за определенную функцию. Наоборот, каждая функция соотносится с сетью областей, а одна и та же область может входить во множество разных сетей. Но фиксация на картах осталась, и так или иначе в таком системном описании проявляются следы статичного мышления. Карты изображают нечто неизменное. Горы и реки находятся там, где они находятся. И только в последнее время наука обратила внимание на то, что карты могут меняться, притом самым существенным образом.

Как перекраиваются карты мозга

Мозг изменяется - и это не новость, а бесспорный научный факт. Если, допустим, школьник к среде не выучил урок, но пришел домой и позанимался, а к четвергу он уже знает, что представляют собой семенные растения, то его мозг изменился. Больше информацию хранить негде (за исключением шпаргалок). Нас же прежде всего интересует, когда, где и как изменяется мозг.

Мы уже говорили о том, что функциональные карты мозга перекраиваются, когда мозг лишается притока информации.

Если человек, к примеру, потерял какой-то орган или часть тела, и сенсорная область мозга больше не получает оттуда информацию, окружающие области мозга начинают посягать на этот участок. Если сигналы от указательного пальца перестают поступать в мозг, то эта область соответственно сужается. Зато соседняя область, которая получает сигналы от среднего пальца, наоборот, расширяется.

Речь идет не о нейронах, которые мигрируют из одной области мозга в другую. Большое количество новых нейронов отмирает вскоре после окончания миграции. В долгосрочной перспективе около 50 процентов оставшихся клеток также отмирают. Считается, что судьба новых клеток зависит от характера образованных ими связей и их отсев служит механизмом поддержания постоянства численности нейронов.

Конечно, новообразование нейронов в определенных областях мозга возможно, но нет доказательств того, что они будут наделены какими-либо функциями в определенных зонах коры головного мозга. Изменения в первую очередь наблюдаются в структуре нейронов, где одни маленькие отростки отмирают, и их замещают другие. На отростках находятся синапсы, которые контактируют с другими нейронами. Изменения отростков и синапсов приводят, в свою очередь, к изменению функции нейронов. Если мы взглянем на мозг сверху, то увидим, что сенсорная зона мозга, которая сначала принимала сигналы от указательного пальца, затем стала получать сигналы от среднего пальца. Таким образом, карта мозга перекраивается 88 .

Возможно, за счет этих же механизмов зрительные области мозга у слепых активизируются при чтении текстов, набранных по методу Брайля. Но тот факт, что зрительные области активизируются, не обязательно свидетельствует о том, что слепые с их помощью анализируют сенсорную информацию. До конца не ясно, какие процессы происходят в этих зонах. Возможно, зрительные области активируются за счет механизма бессознательной визуализации.

Основополагающий вопрос заключается в том, как изменяются различные участки мозга. Или они изначально запрограммированы на выполнение специальной задачи, или их функции зависят от характера получаемых стимулов. Какой фактор играет первостепенную роль в этом процессе - наследственность или среда, природа или воспитание?

Весомый вклад в изучение этих механизмов внесла научная группа исследователей из Массачусетско- го технологического института под руководством Мри- ганки Сура (штат Массачусетс, США). Ученые делали хорькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору 89 . Цель эксперимента - выяснить, какие структурные и функциональные изменения происходят в слуховой зоне при передаче ей зрительной информации. Это привело к перестройке слуховой области, и по своей структуре она стала больше напоминать зрительную. Функция сигналов также переориентировалась. Оказалось, что животные, передвигаясь, использовали слуховую область для того, чтобы видеть. Никто из ученых не считает, что в этом «виноваты» только природа или только воспитание, но результаты Мриганки Сура подтверждают важность сенсорной стимуляции для организации мозга, что в свою очередь подчеркивает неоценимую роль окружающей среды 90 .

Эффект стимуляции

Приведенный выше пример показывает, как перекраивается карта мозга, когда в организме происходят структурные изменения, например какая-либо функция прекращает свою работу и мозг перестает получать информацию от того или иного органа. Другой тип изменений вызван дополнительной стимуляцией, например при тренировке специальной функции. О феномене пластичности нам известно не так много. Первые работы в этом направлении проводились в 1990-е годы.

Например, тренировали обезьян - у них развивали способность различать тональность звука. Обезьяны осваивают этот навык. Последовательно услышав два звука, они определяют, одной ли они тональности, а затем нажимают на кнопку. Исследование показало, что поначалу, когда звуки сильно отличались друг от друга, обезьяны успешно справлялись с тестом. Зато они почти не различали звуки, близкие по тональности. Через несколько недель после сотен тренировок обезьяны начали различать и звуки, очень близкие по тональности. Когда ученые решили выяснить, какие нейроны слуховой области активируются при выполнении этой задачи, оказалось, что после нескольких недель тренировок количество активированных нейронов возросло. То есть область, которая активировалась в процессе тестов, после тренировок расширилась 91 .

Похожий эксперимент проводился на обезьянах, когда они отрабатывали определенное движение пальца. После нескольких недель тренировок моторная область, ответственная за движение этого пальца, увеличилась. Эти эксперименты показывают, что карта мозга в высшей степени подвержена изменениям 92 .

Музыка и жонглирование

Наиболее существенные изменения ученые обнаружили в связи с совершенствованием моторных навыков. Исследователи изучали изменения, происходящие в мозге в процессе длительных упражнений на музыкальных инструментах. У музыкантов, играющих на смычковых инструментах, область, принимающая сенсорный импульс от левой руки, больше, чем та же область у не музыкантов 93 .

Сара Бенгтссон и Фредрик Уллен (Каролинский институт, Стокгольм) также обнаружили, что проводящие пути в белом веществе мозга, по которым передаются моторные сигналы, у пианистов более развиты. Причем различия оказались тем существеннее, чем дольше упражнялись музыканты 94 .

Но при упражнениях на музыкальном инструменте речь идет об очень длительном воздействии на мозг. А как действуют на людей более короткие тренировки? В одном исследовании испытуемые тренировали специфический навык - они сгибали пальцы в определенной последовательности: средний палец - мизинец - безымянный палец - средний палец - указательный палец и так далее 95 . Поначалу они совершали много ошибок. Через десять дней они уже освоили это упражнение и начали выполнять его в хорошем темпе и почти без ошибок. Одновременно наблюдался рост активности в основной двигательной зоне коры головного мозга, то есть в той области, которая управляет мускулатурой.

В научной литературе часто ссылаются на результаты экспериментов с жонглерами (о чем уже упоминалось во вступлении) 96 . Согласно этим исследованиям, область затылочной доли увеличивалась уже через три месяца после начала тренировок. Это исследование также демонстрирует, что непродолжительные тренировки могут привести к столь серьезным изменениям, что их видно даже при магнитно-резонансном сканировании, которое дает не слишком точные показания. Впрочем, тот факт, что изменения не всегда можно зафиксировать, также демонстрирует, что пластичность - это обоюдоострый меч; пассивность тоже оказывает влияние на мозг.

Что такое use и что такое it?

Данные экспериментов с жонглерами и музыкантами убеждают нейрофизиологов и психологов в непреложности тривиальной истины «use it or lose it» («используй, иначе потеряешь»). Даже если мы согласимся с тем, что изменения в мозге зависят от того, чем мы занимаемся, этот факт не следует чересчур переоценивать. Надо в первую очередь задаться вопросом, что означает «используй» в данном контексте? Все ли виды активной деятельности равноценны? Ведь никто не усомнится в пользе активного образа жизни, все знают, что тренировки и упражнения очень благотворны для физического здоровья. Когда после перелома на ногу накладывают гипс, нам очень трудно вернуться к здоровому образу жизни - неподвижность и гипс атрофируют наши мышцы. В разных ситуациях мы даем разную нагрузку на опорно-двигательный аппарат. Одно дело - ходить на работу и проводить весь день в офисе, и другое дело - тренироваться в гимнастическом зале, давая полную нагрузку на все мышцы.

Насколько интенсивной и продолжительной должна быть интеллектуальная тренировка, чтобы мы почувствовали результаты? Ведь между занятиями в фит- нес-клубе и профессиональной силовой тренировкой есть большая разница.

Следует также помнить о том, что «it» относится не ко всему мозгу. « It» в данном случае апеллирует к специфическим функциям и специфическим областям мозга. Если мы начнем тренироваться, чтобы различать тональность звуков, то изменения произойдут в слуховых областях, а не в лобной или затылочной долях. И снова можно провести параллель с физической тренировкой. Если сгибать и разгибать правую руку, с тяжелой гантелью, то у нас разовьются бицепсы именно правой руки при условии, что гантель достаточно тяжелая, что упражнения проводятся регулярно и что тренировка длится несколько недель. Но мы не можем обобщить, что «упражнение с гантелями развивает мускулатуру» или «полезно для физического здоровья». Это будет не вполне корректно.

У музыкантов, играющих на смычковых инструментах, увеличена сенсорная область, отвечающая за сигналы от левой, а не от правой руки. Упражнения с жонглированием развивают координацию движений и визуально-пространственную ориентацию.

Итак, фразу « use it or lose it» можно истолковать предельно упрощенно. Например, «для мозга полезно делать то-то и то-то…». Если определенный тип деятельности оказывает воздействие на мозг, это не обязательно означает, что мы тренируем мозг и улучшаем показатели интеллекта. Специфические функции помогают развиваться специфическим областям.

В предыдущей главе мы пытались объяснить парадокс: каким образом интеллект каменного века справляется с информационным потоком. Возможное объяснение этого феномена заключается в том, что мозг, вероятно, приспосабливается к среде и к тем требованиям, которые она выдвигает. В этой же главе мы привели немало примеров того, как мозг может приспосабливаться к среде и меняться в процессе тренировок и упражнений. Пластичность может быть присуща и лобной, и теменной долям, включая те ключевые области, которые связаны с объемом рабочей памяти. Так что теоретически тренировать рабочую память можно. Возможно, пластичность - это результат адаптации к той определенной среде, в которой мы находимся. И в то же время феномен пластичности можно использовать вполне целенаправленно, развивая определенные функции.

Итак, если мы хотим тренировать свой мозг, нам придется выбрать функцию и область. Умение жонглировать едва ли пригодится в повседневной жизни, и, наверное, не имеет особого смысла развивать этот навык. Лучше потратить время на области, отвечающие за общие функции. Мы уже знаем, что определенные области в теменной и лобной долях носят полимодальный характер, то есть не связаны с какой-либо специфической сенсорной стимуляцией, а активируются при выполнении задач как на слух, так и на зрение. Тренировка полимодальной области принесла бы больше пользы, чем тренировка области, отвечающей, например, только за слух. Эти ключевые области также имеют отношение к тому, что наша рабочая память ограниченна.

Если тренировать и развивать эти области, это пошло бы на благо нашим интеллектуальным функциям. Но реально ли это? Если бы мы могли путем упражнений повлиять на эту область, являющуюся «узким местом», достигли бы мы серьезных результатов? В каких жизненных ситуациях нас чаще всего подводит память?

ПРИМЕЧАНИЯ

86 О френологии см.: Mountcastle,V. The evolution of ideas concerning the function of the neocortex’, Cerebral Cortex, 1995, 5:289-295.
87 Brodmann, K. Vergleichende Lokalisationslehre der Gros- shirnrinde. Leipzig: Barth. 1909.
88 О пластичности в сенсорных областях см.: Kaas, J.H., Merzenich, М.М. & Killackey, Н.Р. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals, Annual Review of Neuroscience, 1983, 6:325-356; Kaas, J.H. Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience. 1991, 14:137-167.
89 О трансплантации зрительного нерва см.: Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature. 2000, 404:841-847.
90 О поведенческих эффектах см.: von Melchner, L., Pallas, S.L. & Sur, M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature. 2000, 404: 871-876.
91 0 тренинге и его воздействии на слуховую зону см.: Recanzone, G.H., Schreiner, С. Е. & Merzenich, М.М. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience. 1993,13:87-103.
92 О двигательном тренинге и его воздействии на кору головного мозга см.: Nudo , R.J., Milliken, G. W., Jenkins, W. M., & Merzenich, М.М. Use- dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience. 1996,16, 785-807.
93 См. исследование о музыкантах, играющих на смыч ковых инструментах: Elbert, Т., Pantev, С., Wienbruch, С., Rockstroh, В. & Taub, Е. Increased cortical representation of the fingers of the left hand in string players. Science. 1995, 270.
94 Об исследовании белого вещества у пианистов см.: Bengtsson, S.L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H. & Ullen, F. Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience. 2005,8.
95 О функциональном магнитно-резонансном исследовании заучивания движений пальцев см.: Kami, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R. & Ungerleider, L.G. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995, 377:155-158.
96 О жонглировании см.: Draganski, В., Gaser, С., Busch, V., Schuierer, G., Bogdahn, U. & May, A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004, 427: 311-312.

Торкель Клингберг

Доктор биологических наук Е. П. Харченко, М. Н. Клименко

Уровни пластичности

В начале нынешнего столетия исследователи мозга отказались от традиционных представлений о структурной стабильности мозга взрослого человека и невозможности образования в нём новых нейронов. Стало ясно, что пластичность взрослого мозга в ограниченной степени использует и процессы нейроногенеза.

Говоря о пластичности мозга, чаще всего подразумевают его способность изменяться под влиянием обучения или повреждения. Механизмы, ответственные за пластичность, различны, и наиболее совершенное её проявление при повреждении мозга - регенерация. Мозг представляет собой чрезвычайно сложную сеть нейронов, которые контактируют друг с другом посредством специальных образований - синапсов. Поэтому мы можем выделить два уровня пластичности: макро- и микроуровень. Макроуровень связан с изменением сетевой структуры мозга, обеспечивающей сообщение между полушариями и между различными областями в пределах каждого полушария. На микроуровне происходят молекулярные изменения в самих нейронах и в синапсах. На том и другом уровне пластичность мозга может проявляться как быстро, так и медленно. В данной статье речь пойдёт в основном о пластичности на макроуровне и о перспективах исследований регенерации мозга.

Существуют три простых сценария пластичности мозга. При первом происходит повреждение самого мозга: например, инсульт моторной коры, в результате которого мышцы туловища и конечностей лишаются контроля со стороны коры и оказываются парализованными. Второй сценарий противоположен первому: мозг цел, но повреждён орган или отдел нервной системы на периферии: сенсорный орган - ухо или глаз, спинной мозг, ампутирована конечность. А поскольку при этом в соответствующие отделы мозга перестаёт поступать информация, эти отделы становятся „безработными“, они функционально не задействованы. В том и другом сценарии мозг реорганизуется, пытаясь восполнить функцию повреждённых областей с помощью неповреждённых либо вовлечь „безработные“ области в обслуживание других функций. Что касается третьего сценария, то он отличен от первых двух и связан с психическими расстройствами, вызванными различными факторами.

Немного анатомии

На рис. 1 представлена упрощённая схема расположения на наружной коре левого полушария полей, описанных и пронумерованных в порядке их изучения немецким анатомом Корбинианом Бродманом.

Каждое поле Бродмана характеризуется особым составом нейронов, их расположением (нейроны коры образуют слои) и связями между ними. К примеру, поля сенсорной коры, в которых происходит первичная переработка информации от сенсорных органов, резко отличаются по своей архитектуре от первичной моторной коры, ответственной за формирование команд для произвольных движений мышц. В первичной моторной коре преобладают нейроны, по форме напоминающие пирамиды, а сенсорная кора представлена преимущественно нейронами, форма тел которых напоминает зерна, или гранулы, почему их и называют гранулярными.

Обычно мозг подразделяют на передний и задний (рис. 1). Области коры, прилегающие в заднем мозге к первичным сенсорным полям, называют ассоциативными зонами. Они перерабатывают информацию, поступающую от первичных сенсорных полей. Чем сильнее удалена от них ассоциативная зона, тем больше она способна интегрировать информацию от разных областей мозга. Наивысшая интегративная способность в заднем мозге свойственна ассоциативной зоне в теменной доле (на рис. 1 не окрашена).

В переднем мозге к моторной коре прилегает премоторная, где находятся дополнительные центры регуляции движения. На лобном полюсе расположена другая обширная ассоциативная зона - префронтальная кора. У приматов это наиболее развитая часть мозга, ответственная за самые сложные психические процессы. Именно в ассоциативных зонах лобной, теменной и височной долей у взрослых обезьян выявлено включение новых гранулярных нейронов с непродолжительным временем жизни - до двух недель. Данное явление объясняют участием этих зон в процессах обучения и памяти.

В пределах каждого полушария близлежащие и отдалённые области взаимодействуют между собой, но сенсорные области в пределах полушария не сообщаются друг с другом напрямую. Между собой связаны гомотопические, то есть симметричные, области разных полушарий. Полушария связаны также с нижележащими, эволюционно более древними подкорковыми областями мозга.

Резервы мозга

Впечатляющие свидетельства пластичности мозга нам доставляет неврология, особенно в последние годы, с появлением визуальных методов исследования мозга: компьютерной, магнитно-резонансной и позитронно-эмиссионной томографии, магнитоэнцефалографии. Полученные с их помощью изображения мозга позволили убедиться, что в некоторых случаях человек способен работать и учиться, быть социально и биологически полноценным, даже утратив весьма значительную часть мозга.

Пожалуй, наиболее парадоксальный пример пластичности мозга - случай гидроцефалии у математика, приведшей к утрате почти 95% коры и не повлиявшей на его высокие интеллектуальные способности. Журнал „Science“ опубликовал по этому поводу статью с ироничным названием „Действительно ли нам нужен мозг?“.

Однако чаще значительное повреждение мозга ведёт к глубокой пожизненной инвалидности - его способность восстанавливать утраченные функции не беспредельна. Распространённые причины поражения мозга у взрослых - нарушения мозгового кровообращения (в наиболее тяжёлом проявлении - инсульт), реже - травмы и опухоли мозга, инфекции и интоксикации. У детей нередки случаи нарушения развития мозга, связанные как с генетическими факторами, так и с патологией внутриутробного развития.

Среди факторов, определяющих восстановительные способности мозга, прежде всего следует выделить возраст пациента. В отличие от взрослых, у детей после удалений одного из полушарий другое полушарие компенсирует функции удалённого, в том числе и языковые. (Хорошо известно, что у взрослых людей утрата функций одного из полушарий сопровождается нарушениями речи.) Не у всех детей компенсация происходит одинаково быстро и полно, однако треть детей в возрасте 1 года с парезом рук и ног к 7 годам избавляются от нарушений двигательной активности. До 90% детей с неврологическими нарушениями в неонатальном периоде впоследствии развиваются нормально. Следовательно, незрелый мозг лучше справляется с повреждениями.

Второй фактор - длительность воздействия повреждающего агента. Медленно растущая опухоль деформирует ближайшие к ней отделы мозга, но может достигать внушительных размеров, не нарушая функций мозга: в нём успевают включиться компенсаторные механизмы. Однако острое нарушение такого же масштаба чаще всего бывает несовместимо с жизнью.

Третий фактор - локализация повреждения мозга. Небольшое по размеру, повреждение может затронуть область плотного скопления нервных волокон, идущих к различным отделам организма, и стать причиной тяжкого недуга. К примеру, через небольшие участки мозга, именуемые внутренними капсулами (их две, по одной в каждом полушарии), от мотонейронов коры мозга проходят волокна так называемого пирамидного тракта (рис. 2), идущего в спинной мозг и передающего команды для всех мышц туловища и конечностей. Так вот, кровоизлияние в области внутренней капсулы может привести к параличу мышц всей половины тела.

Четвёртый фактор - обширность поражения. В целом чем больше очаг поражения, тем больше выпадений функций мозга. А поскольку основу структурной организации мозга составляет сеть из нейронов, выпадение одного участка сети может затронуть работу других, удалённых участков. Вот почему нарушения речи нередко отмечаются при поражении областей мозга, расположенных далеко от специализированных областей речи, например центра Брока (поля 44–45 на рис. 1).

Наконец, помимо этих четырёх факторов, важны индивидуальные вариации в анатомических и функциональных связях мозга.

Как реорганизуется кора

Мы уже говорили о том, что функциональная специализация разных областей коры мозга определяется их архитектурой. Эта сложившаяся в эволюции специализация служит одним из барьеров для проявления пластичности мозга. Например, при повреждении первичной моторной коры у взрослого человека её функции не могут взять на себя сенсорные области, расположенные с ней по соседству, но прилежащая к ней премоторная зона того же полушария - может.

У правшей при нарушении в левом полушарии центра Брока, связанного с речью, активируются не только прилежащие к нему области, но и гомотопическая центру Брока область в правом полушарии. Однако такой сдвиг функций из одного полушария в другое не проходит бесследно: перегрузка участка коры, помогающего повреждённому участку, приводит к ухудшению выполнения его собственных задач. В описанном случае передача речевых функций правому полушарию сопровождается ослаблением у пациента пространственно-зрительного внимания - например, такой человек может частично игнорировать (не воспринимать) левую часть пространства.

"Под пластичностью мозга подразумевается способность нервной системы изменять свою структуру и функции на протяжении всей жизни в ответ на многообразие окружающей среды. Этому термину не так просто дать определение даже несмотря на то, что в настоящее время он широко применяется в психологии и нейронауке. Он используется для обозначения изменений, происходящих на различных уровнях нервной системы: в молекулярных структурах, изменения экспрессии генов и поведения".

Нейропластичность позволяет нейронам восстанавливаться как анатомически, так и функционально, а также создавать новые синаптические связи. Нейронная пластичность - это способность мозга к восстановлению и реструктуризации . Этот адаптивный потенциал нервной системы позволяет мозгу восстановиться после травм и нарушений , а также может уменьшить последствия структурных изменений, вызванных такими патологиями, как рассеянный склероз, болезнь Паркинсона, когнитивное расстройство, бессонница у детей и т.д.

Различные группы неврологов и когнитивных психологов, изучающих процессы синаптической пластичности и нейрогенеза, пришли к выводу, что батарея когнитивных клинических упражнений для стимуляции и тренировки мозга CogniFit ("КогниФит") способствует созданию новых синапсов и нейронных цепей, помогающих реорганизовать и восстановить функцию повреждённой зоны и передачу компенсанционных способностей . Проведённые исследования свидетельствуют о том, что пластичность мозга активируется и укрепляется при использовании данной программы клинических упражнений. На рисунке ниже вы можете увидеть как развивается нейронная сеть в результате постоянной и соответствующей требованиям когнитивной стимуляции.

Нейронные сети до тренировок Нейронные сети после 2-х недель когнитивной стимуляции Нейронные сети после 2-х месяцев когнитивной стимуляции

Синаптическая пластичность

Когда мы учимся или получаем новый опыт, мозг устанавливает серию нейронных связей. Эти нейронные сети представляют собой пути, по которым нейроны обмениваются между собой информацией. Эти пути формируются в мозге при обучении и практике, как, например, в горах образуется тропа, если по ней ежедневно ходит пастух со своим стадом. Нейроны взаимодействуют между собой посредством соединений, называемых синапсом, и эти коммуникационные пути могут восстанавливаться в течение всей жизни. Каждый раз, когда мы приобретаем новые знания (путем постоянной практики), коммуникация или синаптическая трансмиссия между участвующими в процессе нейронами усиливается. Улучшение коммуникации между нейронами означает, что электрические сигналы более эффективно передаются на протяжении всего нового пути. Например, когда вы пытаетесь распознать что за птица поёт, между некоторыми нейронами образуются новые связи. Так, нейроны зрительной коры определяют цвет птицы, слуховой коры - её пение, а другие нейроны - название птицы. Таким образом, чтобы идентифицировать птицу, нужно многократно сопоставить её цвет, голос, название. С каждой новой попыткой, при возвращении к нейронной цепи и восстановлении нейронной передачи между вовлечёнными в процесс нейронами, эффективность синаптической трансмиссии повышается. Таким образом, коммуникация между соответствующими нейронами улучшается, и процесс познания с каждым разом происходит быстрее. Синаптическая пластичность является основой пластичности человеческого мозга.

Нейрогенез

С учётом того, что синаптическая пластичность достигается путём улучшения коммуникаций в синапсе между существующими нейронами, под нейрогенезом подразумевается рождение и размножение новых нейронов в мозге. В течение длительного времени идея о регенерации нейронов в мозге взрослого человека считалась чуть ли не ересью. Учёные верили, что нервные клетки умирают и не восстанавливаются. После 1944 г., и особенно в последние годы, научным путём было доказано существование нейрогенеза, и сегодня мы знаем, что происходит, когда стволовые клетки (особый вид клеток, расположенных в зубчатой извилине, гиппокампе и, возможно, в префронтальной коре) делятся на две клетки: стволовую и клетку, которая превратится в полноценный нейрон, с аксонами и дендритами. После этого новые нейроны мигрируют в различные области (включая удалённые друг от друга) мозга, туда, где они нужны, поддерживая тем самым нейронную дееспособность мозга. Известно, что как у животных, так и у людей внезапная гибель нейронов (например, после кровоизлияния) является мощным стимулом для запуска процесса нейрогенеза.

Функциональная компенсационная пластичность

В научной литературе по нейробиологии широко раскрыта тема снижения когнитивных способностей при старении и объяснено, почему пожилые люди демонстрируют более низкую когнитивную производительность, чем молодёжь. Удивительно, однако далеко не все пожилые люди показывают низкую производительность: у некоторых результаты ничуть не хуже, чем у молодых. Эти неожиданно разные результаты у подгруппы людей одного и того же возраста были исследованы научным путём, в результате чего было обнаружено, что при обработке новой информации пожилые люди с большей когнитивной производительностью используют те же самые области мозга, что и молодёжь, а также другие области мозга, которые не используются ни молодыми, ни другими пожилыми участниками эксперимента. Этот феномен сверхиспользования мозга пожилыми людьми был исследован учёными, которые пришли к выводу о том, что использование новых когнитивных ресурсов происходит в рамках компенсационной стратегии. В результате старения и снижения синаптической пластичности мозг, демонстрируя свою пластичность, начинает реструктурировать свои нейрокогнитивные сети. Исследования показали, что мозг приходит к этому функциональному решению путём активации других нервных путей, чаще задействуя области в обоих полушариях (что обычно характерно только для более молодых людей).

Функционирование и поведение: обучение, опыт и окружение

Мы рассмотрели, что пластичность - это способность мозга изменять свои биологические, химические и физические характеристики. Однако меняется не только мозг - также меняется поведение и функционирование всего организма. За последние годы мы узнали о том, что генетические или синаптические нарушения мозга происходят в результате как старения, так и воздействия огромного количества факторов окружающей среды. Особенно важны открытия о пластичности мозга, а также о его уязвимости в результате различных расстройств. Мозг учится на протяжении всей нашей жизни - в любой момент и по разным причинам мы получаем новые знания. Например, дети приобретают новые знания в огромных количествах, что провоцирует значительные изменения в мозговых структурах в моменты интенсивного обучения. Новые знания можно получить и в результате пережитой неврологической травмы, например, в результате повреждения или кровоизлияния, когда функции повреждённой части мозга нарушаются, и нужно учиться заново. Есть также люди с жаждой знаний, для которых необходимо постоянно учиться. В связи с огромным количеством обстоятельств, при которых может потребоваться новое обучение, мы задаемся вопросом, меняется ли каждый раз при этом мозг? Исследователи полагают, что это не так. По-видимому, мозг приобретает новые знания и демонстрирует свой потенциал пластичности в том случае, если новые знания помогут улучшить поведение. То есть для физиологических изменений мозга необходимо, чтобы следствием обучения были перемены в поведении. Другими словами, новые знания должны быть нужными. Например, знания о еще одном способе выживания. Вероятно, тут играет роль степень полезности. В частности, развить пластичность мозга помогают интерактивные игры. Было доказано, что такая форма обучения повышает активность префронтальной коры головного мозга (ПФК). Кроме того, полезно играть с положительным подкреплением и вознаграждением, что традиционно используется при обучении детей.

Условия реализации пластичности мозга

Когда, в какой момент жизни мозг наиболее подвержен изменениям под воздействием факторов окружающей среды? По-видимому, пластичность мозга зависит от возраста, и предстоит сделать ещё немало открытий о влиянии на неё окружающей среды в зависимости от возраста субъекта. Однако нам известно о том, что умственная деятельность как здоровых пожилых людей, так и пожилых людей, страдающих нейродегенеративным заболеванием, положительно влияет на нейропластичность. Важно то, что мозг подвержен как положительным, так и негативным изменениям ещё до рождения человека. Проведённые на животных исследования показали, что если будущие матери находятся в окружении положительных стимулов, у младенцев образуется больше синапсов в определённых областях мозга. И наоборот, при включении яркого света при беременных, который вводил их в состояние стресса, количество нейронов в префронтальной коре головного мозга (ПФК) плода снижалалось. Кроме того, похоже, что ПФК более чувствительна к воздействию окружающей среды, чем остальные области мозга. Результаты этих экспериментов имеют важное значение в споре "природа против окружения", поскольку демонстрируют, что окружающая среда может менять нейронную экспрессию генов. Как эволюционирует мозговая пластичность со временем и каков результат воздействия на неё окружающей среды? Этот вопрос является важнейшим для терапии. Проведённые генетические исследования животных показали, что некоторые гены меняются даже в результате непродолжительного воздействия, другие - в результате более длительного воздействия, в то время как также существуют гены, на которые не удалось никак повлиять, и даже если удалось, то в результате они всё равно вернулись в своё первоначальное состояние. Несмотря на то, что термин "пластичность" мозга несёт позитивный оттенок, на самом деле, под пластичностью мы также подразумеваем и негативные изменения мозга, связанные с дисфункциями и расстройствами. Когнитивная тренировка очень полезна для стимулирования положительной пластичности мозга. С помощью систематических упражнений можно создать новые нейронные сети и улучшить синаптические связи между нейронами. Однако, как мы отметили ранее, мозг не обучается эффективно если учёба не является полезной. Поэтому при обучении важно ставить и достигать свои личные цели.

1] Определение взято из: Колб, Б., Мохамед, A., & Гибб, Р., Поиск факторов, лежащих в основе пластичности мозга в нормальном и повреждённом состоянии, Revista de Trastornos de la Comunicación (2010), doi: 10.1016/j.jcomdis.2011.04 0.007 Этот раздел является производным от работы Колба, B., Мохамеда, A., & Гибба, Р., Поиск факторов, лежащих в основе пластичности мозга в нормальном и повреждённом состоянии, Revista de Trastornos de la Comunicación (2010), doi: 10.1016 / j . jcomdis.2011.04.007

Введите e-mail адрес:

Предполагается, что новые программные продукты способны «построить» мозг малыша на заказ. Какую пользу могут извлечь родители из современной науки? Что происходит с мозгом ребенка, когда мы его воспитываем?

Открытие природы и степени пластичности мозга привело к огромному прорыву в нашем понимании того, что происходит с мозгом во время учебного процесса, а также к появлению множества программных продуктов, которые, как заявляют производители, повышают пластичность мозга развивающихся детей. Многие продукты рекламируют использование обширных возможностей пластичности мозга в качестве ключевого преимущества; наряду с этим утверждение, что родители с помощью данных компьютерных программ могут сделать мозг ребенка намного «умнее», чем у других, безусловно, крайне привлекательны. Но что такое «пластичность» и что на самом деле должны делать родители, чтобы использовать этот аспект развития головного мозга своих детей?

Пластичность - это неотъемлемая способность мозга образовывать новые синапсы, связи между нервными клетками, и даже прокладывать новые нервные пути, создавая и укрепляя связи так, что в результате ускоряется обучение, а способность обращаться к информации и применять то, что было изучено, становится все более и более эффективной.

Научные исследования пластичности проследили изменение архитектоники мозга и мозговой «проводки» в тот момент, когда его подвергают воздействию непривычных, нестандартных ситуаций. В данном случае под термином «мозговая проводка» подразумеваются аксоновые взаимосвязи между областями мозга и видами активности, которые эти области осуществляют (т. е. на которых они специализируются). Так же как архитектор чертит схему электропроводки вашего дома с указанием маршрута, по которому провода пойдут на плиту, холодильник, кондиционер и так далее, исследователи чертили электрическую схему для мозга. В результате они установили, что кора головного мозга - это не фиксированная, а непрерывно модифицирующаяся вследствие обучения субстанция. Оказывается, что «провода» коры головного мозга постоянно формируют новые взаимосвязи и продолжают делать это, основываясь на входящих данных, поступающих из внешнего мира.

Давайте взглянем на то, что происходит с пластичностью мозга, когда ребенок в первый раз учится читать. Первоначально ни одна часть мозга не настроена специально на чтение. Когда ребенок учится читать, все больше и больше клеток головного мозга и нервных цепочек вовлекаются в поставленную задачу. Мозг использует пластичность, когда ребенок начинает распознавать слова и понимать то, что читает. Слово «мяч», которое ребенок уже понимает, теперь ассоциируется у него с буквами М-Я-Ч. Таким образом, обучение чтению является одной из форм нейронной пластичности.

Открытие того, что развивающийся мозг может «проложить проводку» для процесса распознавания букв, и другие удивительные открытия о пластичности нейронов часто воплощаются в коммерческих продуктах, рекламирующих пользу усиленного «мозгового фитнеса». Но факт, что научный эксперимент показывает, что определенная деятельность активирует пластичность мозга, не означает, что эта конкретная деятельность, как, например, способность различать буквы на мониторе компьютера, необходима для достижения эффекта, и не означает, что такая деятельность - это единственное средство добиться пластичности.

Занятия на распознавание букв на компьютере действительно активизируют и тренируют центры распознавания символов в зрительном участке коры головного мозга, используя пластичность мозга. Но вы добьетесь того же эффекта, если сядете и почитаете с вашим ребенком книгу . Этот интерактивный подход «родитель-ребенок» называется «диалогическое чтение» (способ чтения, позволяющий детям принять более активное участие в рассказе). Но компьютерный экран и приложения тренируют мозг распознавать только буквы, а не понимать смысл слов, состоящих из этих букв. В отличие от этого диалогическое чтение - интуитивное и интерактивное - естественным образом задействует нейронную пластичность для выстраивания аксоновых взаимосвязей между центрами распознавания букв и языковыми и мыслительными центрами головного мозга.

Исследователи продемонстрировали, что нормально развивающиеся дети учатся различать звуки речи достаточно эффективно как с помощью, так и без помощи специальных упражнений на различие звуков речи или компьютерных игр. Эти игры, развивающие умение различать звуки речи, продаются как особенный продукт, способствующий активизации пластичности нейронов, и были разработаны ведущими неврологами. На самом деле, дети, которых никогда не знакомили с такими упражнениями и играми, успешно развивают прекрасно организованный и гибкий участок коры головного мозга, отвечающий за