Главная · Зубной камень · Радон — невидимый убийца. Радон и защита дома от радона Продукты распада радона 222

Радон — невидимый убийца. Радон и защита дома от радона Продукты распада радона 222

    Радиоактивный хим. элемент VIII гр. периодической системы, порядковый номер 86. Массовое число 222. Назв. элемента дано по наиболее долгоживущему изотопу Rn (Т = 3825 дням). В настоящее время известно 19 изотопов Р. с массовыми числами 204 и 206… … Геологическая энциклопедия

    Таблица нуклидов Общие сведения Название, символ Радон 220, 220Rn Альтернативные названия торон, Tn, эманация тория, ThEm Нейтронов 134 Протонов 86 Свойства нуклида Атомная м … Википедия

    Таблица нуклидов Общие сведения Название, символ Радон 219, 219Rn Альтернативные названия эманация актиния, актинон, An Нейтронов 133 Протонов 86 Свойства нуклида Атомная масса … Википедия

    Современная энциклопедия

    Радон - (Radon), Rn, радиоактивный химический элемент VIII группы периодической системы, атомный номер 86, атомная масса 222,0176; относится к благородным газам. Радон вносит основной вклад в естественную радиоактивность атмосферного воздуха и окружающей … Иллюстрированный энциклопедический словарь

    РАДОН - радиоактивный хим. элемент из группы благородных (см.), символ Rn (лат. Radon), ат. н. 86, ат. м. наиболее долгоживущего изотопа 222 (период полураспада 3,8 сут). Образуется при распаде (см.); чаще всего встречается там, где много радиоактивных… … Большая политехническая энциклопедия

Радон (222 Rn) представляет собой не имеющий запаха бесцветный инертный газ, образующийся в процессе радиоактивного распада урана (238U), а точнее радия (226Ra). Считается, что как элемент, вносящий свой вклад в общий естественный радиационный фон, радон обусловливает появление от 1000 до 20 000 случаев заболевания раком легких в Соединенных Штатах ежегодно.

а) Источники радона . В атмосфере радон появляется благодаря расщеплению радия, повсеместно распространенного в каменистых породах и почве. Серия распадов начинается с атома урана-238 и проходит 4 промежуточных этапа до образования радия-226 с периодом полураспада последнего, равным 1600 лет. Радий-226 расщепляется с выделением радона-222.

Период полураспада радона составляет 3,8 сут, что позволяет ему проникать через почву в дома людей, где дальнейшая дезинтеграция элемента приводит к образованию химически и радиологически активных дочерних атомов. Последние, к которым относится 4 изотопа с периодом полураспада менее 30 мин, представляют максимальную опасность для человека, так как испускают альфа-частицы (частицы с большой энергией и массой, состоящие из 2 протонов и 2 нейтронов).
Такое альфа-излучение способно вызвать клеточную трансформацию в респираторном тракте и привести к развитию рака легких, т. е. рака, фактически индуцированного радоном.

Подземные урановые рудники есть на всех континентах, в том числе в западной части Соединенных Штатов и в Канаде. Работа в них связана с колоссальной опасностью радиоактивного поражения, так как в них присутствует радон в больших концентрациях.

Было обнаружено, что и железорудные шахты , и копи, где добываются поташ, плавиковый шпат, золотоносные, цинковые и свинцовые руды, также содержат большое количество радона, в основном это обусловлено присутствием в окружающей породе радия. В прошлом отвалы шахт нередко использовались в качестве строительного материала при возведении домов, школ и других строений.

б) Определения . Почти всегда уровни радона, определяемые в помещениях или на улице, выражают в пикокюри на 1 л воздуха (пКи/л) или в единицах СИ - в беккерелях на 1 м3 воздуха (Бк/м3), а дочерние элементы - в рабочих уровнях (РУ). Месячный рабочий уровень (МРУ) определяется из расчета 170 ч (21,25 рабочих дней/мес х 8 ч/дней), проведенных на рабочем месте при одном РУ.

Таким образом, 12 ч/день контакта с радиоактивным веществом в доме при одном РУ соответствует примерно 26 месячным рабочим уровням в год, т. е. 2,1, умноженные на величину, которая характеризует профессиональный контакт. Подразумевается, что концентрации в доме и на рабочем месте одинаковы при прочих равных условиях.

Интенсивность облучения обычно определяется как число месячных рабочих уровней в год (МРУ/год).

С точки зрения дозиметрии это соответствует дозе, рождающей в 1 л воздуха 1,3 х 10s эВ потенциальной альфа-энергии. Согласно данным NCRP No. 78, в типичном случае уровни радона вне помещения в Соединенных Штатах составляют 0,2 пКи/л.

Допустимые нормы, относящиеся к общей популяции (и составляющие <0,02 РУ, или <4 пКи/л), намного ниже, чем распространяющиеся на профессиональную деятельность (в Соединеных Штатах - 4,0 МРУ в год). В среднем контакт человека с радоном вне помещений оценивается в 0,005 РУ (1,0 пКи/л). Считается, что воздействие радона с уровнем радиации в 2 пКи/л/год делает риск рака легких эквивалентным таковому при выполнении 100 рентгенограмм грудной клетки; воздействие радона при уровне лучевой нагрузки в 4 пКи/л в год приравнивает риск рака легких риску при выкуривании полпачки сигарет в день.

Если те же самые 100 человек подвергаются воздействию в среднем 1,0 РУ (200 пКи/л) в течение 70 лет, то у 14-42 человек из 100 разовьется рак легких в результате воздействия радона.

в) Механизм действия радона . Внешнее облучение за счет воздействия 222Rn и его производных, присутствующих в воздухе, составляет лишь малую долю от общей дозы, получаемой человеком за счет естественного фона. Ингаляция радона и его дочерних элементов может привести к поглощению тканями потенциально большого количества энергии, т. е. значительной общей дозы, воздействующей на эпителий трахеи и бронхов (ЭТБ) за счет короткоживущих продуктов распада, выделяющих альфа- и бета-частицы (в основном это 2,8Ро, 2,4Pb, 2,4Bi и 214Ро).

Доза облучения ЭТБ в результате воздействия радона сама по себе является мизерной, поскольку время его пребывания в легких невелико, если сравнивать его с периодом полураспада. Доза оказывается высокой благодаря распаду дочерних элементов радона, контактирующих с ЭТБ. Более 85 % дозы, поражающей ЭТБ, - это облучение альфа-частицами. Оно проникает на глубину 30 мкм от участка распада.

г) Факторы риска отравления радоном . К факторам, усиливающим действие радона на человека, относятся курение сигарет, контакт с радиацией такого рода на производстве, высокие концентрации радона из естественных источников, слишком длительный контакт с газом и большой минутный объем вентиляции (например, у детей).

д) Радон в жилом помещении . Иногда радон попадает в дом по системе водоснабжения. Что касается муниципального водопровода и открытых источников, большая часть радона успевает улетучиться или разложиться до того момента, когда вода попадает к человеку. Однако этого нельзя сказать о воде из частных колодцев. Грунтовые воды, которые поступают из глубоких горизонтов и проходят сквозь каменистые слои, обогащаются радием (такое явление наблюдается в северной части Новой Англии) за счет растворения газа, образуемого в результате распада радия.

При разбрызгивании воды в душе , смывании туалета, мойке посуды и стирке радон попадает в воздух и действует на органы дыхания. Радон может также присутствовать в природном газе.

Количество радона , поднимающегося из почвы и концентрирующегося в жилище человека, в значительной мере варьирует в зависимости от региона и места. Практически в каждом штате в США выявляются дома с концентрациями радона, превышающими установленные нормы. Согласно данным ЕРА, в 6 % американских домов (в которых проживают примерно 6 млн человек) концентрация радона выше 4 пКи/л. В Клинтоне, Нью-Джерси, около богатой радием геологической формации, называемой Ридинг Пронг, во всех из 105 проверенных домов были обнаружены концентрации этого газа, превышающие норму; в 40 домах уровень радиации оказался выше 200 пКи/л.

К территориям, где в зданиях непременно будут выявляться повышенные уровни радона, относятся те, на которых строительство велось из материалов, взятых из отвалов переработки гранита, урановой руды, глинистых сланцев и фосфатов, - все они содержат значительное количество радия и являются в связи с этим потенциальными источниками радона. Впрочем, некоторые дома в указанных местностях могут быть вполне благополучными.

Из-за многочисленности факторов , детерминирующих уровни радона внутри помещений, одни лишь геологические особенности данной местности не позволяют достаточно точно прогнозировать риск.

е) Радон как причина рака . По самым скромным оценкам на основе имеющейся информации, радон является одним из самых значимых экологических факторов, определяющих смертность. По мнению ЕРА, в Соединенных Штатах примерно 14 000 смертных случаев ежегодно обусловлено раком легких из-за действия радона на человека в его собственном жилище. Удалось также выяснить, что примерно 14 % от числа всех зарегистрированных на текущий момент случаев рака легких связано с облучением за счет распада радона. Согласно данным ЕРА, при пожизненном контакте с этим газом в концентрации 4 пКи/л риск развития рака легких составляет от 1 до 5 %.

Национальный научно-исследовательский совет (National Research Council) оценил степень риска в 0,8-1,4 %.

ж) Клиника облучения радоном . Воздействие радона, присутствующего в норме в окружающей среде, не проявляет себя никакими острыми или подострыми симптомами, если говорить о влиянии на здоровье: не бывает ни раздражения, ни каких-либо других признаков патологии. Единственный критерий оценки влияния этого элемента на здоровье человека, контактирующего с радоном, - это число случаев рака легких.

Эпидемиологические исследования среди горняков продемонстрировали возрастание частоты хронических незлокачественных заболеваний , таких как эмфизема, пневмосклероз и хроническая интерстициальная пневмония. Данный показатель повышается пропорционально увеличению суммарной дозы облучения и курению сигарет.

Эпидемиологические исследования и недавние работы по выявлению радона в грунтовых водах, а также анализ уровня смертности от опухолей показали отсутствие влияния данного фактора на заболеваемость злокачественными новообразованиями внелегочной локализации, например лейкозами и опухолями желудочно-кишечного тракта. Не найдено также доказательств того, что наличие радона во внешней среде отрицательно влияет на детородную функцию.

В ряде исследований не обнаружено существенной взаимосвязи между очень низкими концентрациями радона в домах (1,25 пКи/л) и раком легких. Однако такая взаимосвязь продолжает оставаться актуальной при уровнях радоновой радиоактивности, равной 4 пКи/л и выше.

з) Минимизация бытовой экспозиции радона . Агентство по защите окружающей среды США (U. S. Environmental Protection Agency - ЕРА) признает необходимым проводить обследование жилых домов на предмет выявления радона. Если уровень радиации, обусловленной радоном, достигает 4 пКи/л или превышает этот показатель, можно рекомендовать реконструкцию дома. Уровни радиации меньше 4 пКи/л также представляют определенную опасность, и во многих случаях можно найти возможность их снизить.

Радон проникает в помещения через трещины в заливных полах; через стыки в конструкциях; трещины в стенах; отверстия, присутствующие в подвесных полах и вокруг коммуникационных труб; полости в стенах и систему водоснабжения.


и) Быстрое обследование . Самый короткий путь к выяснению ситуации - быстрое обследование. При его проведении тестирующую систему оставляют в помещении на 2-90 дней в зависимости от используемого устройства. Для этих целей чаще всего прибегают к детекторам "Charcoal canister", "alpha track", "electret ion chamber", "continuous monitor" и "charcoal liquid scintillation".

Поскольку концентрация радона имеет тенденцию изменяться день ото дня и со сменой сезонов, по результатам кратковременного обследования установить среднегодовой уровень вряд ли возможно.
Если необходимо максимально быстро собрать данные , то за одним быстрым исследованием можно провести второе и на основании этого установить, нуждается ли дом в ремонте.

к) Долгое обследование . Теститующие приборы для долговременного обследования остаются в доме на срок, превышающий 90 дней. В этом случае обычно применяют детекторы "alpha track" и "electret". Такой вид обследования дает более надежные результаты в отношении среднегодового уровня радоновой радиации, чем упомянутый ранее.

Рис. 1. Упрощенная схема распада радия-226 и дочерних изотопов. Указаны периоды полураспадов, доля конкретного распада и тип распада. В кружке распад радия показан более детально. Часть распада идет на возбужденное состояние 222 Ra , при распаде которого, практически одновременно с альфа-частицей, вылетает гамма-квант.

Рассмотрим распад радия-226 подробнее. У 226 Ra период полураспада 1600 лет. Следовательно, только через 1600 лет его активность, т.е. количество распадов уменьшится в два раза. Можно смело считать, что его активность за годы и даже столетие заметно не измениться, т.е. он будет распадаться практически с постоянной скоростью. Соответственно радон-222 тоже будет образовываться с постоянной скоростью, но образовавшись он будет и распадаться. Его активность со временем t будет меняться по закону

(1)

где I Ra –активность радия, T 1/2 – период полураспада радона-222 (~3.8 дня). Через время равное периоду полураспада радона, его активность будет равно половине активности радия, через два периода полураспада 3/4 и т.д. На рис. 2 показана зависимость активности радона от времени.


Рис. 2. Зависимость активности радона-222 от времени – синяя линия , активность радия-226 (74кБк) – красная линия.

Видно, что приблизительно через месяц активность радона станет практически такой же, как и активность радия. Периоды полураспадов всех последующих изотопов вплоть до свинца-210 заметно меньше, чем у радона-222 и их активности будут меняться практически так же, как и активность радона. Через месяц активности 222 Rn, 218 Po (полоний), 214 Pb, 214 Bi (висмут), 214 Po будут одинаковыми и такими же как у 226 Ra. Их активности дальше будут меняться очень медленно, так же как у 226 Ra.
Что касается 210 Pb, то через месяц он будет образовываться с постоянной скоростью, но количество его и, соответственно, активность будет расти по такому же закону (1), только период полураспада в (1) в этом случае будет "свинцовый", т.е. 22.3 года. На рис. 3. показана зависимость активности свинца-210 от времени. Видно, что активность свинца-210 набирается гораздо медленнее, чем у его "предшественников".


Рис. 3. Зависимость активности свинца-210 от времени.

В "Официальном отчете о радоне" Международной комиссии по радиологической защите указано, что годовая эффективная индивидуальная доза облучения от радона не должна превышать 10 мЗв/год. По данным Федеральной службы России по надзору в сфере защиты прав потребителей и благополучия человека в 2010 году были выявлены критические группы населения, дозы облучения которых значительно превышают средние по Российской Федерации. Такие группы населения были выявлены в Республике Тыва, в Алтайском крае, в Воронежской и Кемеровской областях. Причиной повышенного облучения является высокое содержание изотопов радона в воздухе жилых помещений. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе. Наибольшие значения средних годовых эффективных доз облучения населения природными источниками ионизирующего излучения по данным исследований 2001-2010 гг. зарегистрированы в Республике Алтай (9,54 мЗв/год) и Еврейской АО (7,20 мЗв/год), средние годовые дозы природного облучения жителей Республики Тыва, Иркутской области, Ставропольского и Забайкальского краев превышают 5 мЗв/год. Высокие показатели годовых эффективных доз облучения населения также отмечаются в республиках Бурятия, Ингушетия, Калмыкия, Северная Осетия, Тыва, в Кабардино-Балкарской и Карачаево-Черкесской республике, в Ставропольском крае, в Ивановской, Иркутской, Калужской, Кемеровской, Липецкой, Новосибирской, Ростовской, Свердловской. Смотрите таблицу со средними годовыми эффективными дозами облучения населения России по данным Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Средняя индивидуальная годовая эффективная доза облучения на одного жителя Российской Федерации, оцененная по данным за весь период наблюдений с 2001 по 2010 год, составляет 3,38 мЗв/год. Вклад дозы внутреннего облучения населения за счет ингаляции изотопов радона (222 Rn и 220 Rn) и их короткоживущих дочерних продуктов распада составляет 1,98 мЗв/год или около 59 % суммарной дозы за счет всех природных источников излучения. При этом вклад внешнего облучения составляет около 19 % суммарной дозы, космического излучения - чуть менее 12 %, вклад широко распространенного в природе 40К - 5 %, а доза облучения за счет содержания природных и техногенных (137 Cs и 90 Sr) радионуклидов в продуктах питания - около 4 %. Средняя доза за счет потребления питьевой воды составляет менее 1 % от суммарной дозы облучения, а за счет ингаляции долгоживущих природных радионуклидов с атмосферным воздухом - менее 0,2 % от суммарной дозы. Около 90 % дозы ингаляционного облучения обусловлено вдыханием дочерних продуктов изотопов радона, находящихся в воздухе помещений и атмосферном воздухе. При этом, радон является единственным природным источником излучения, который можно регулировать с экономически оправданными затратами.
Хотя в 1994 году постановлением Правительства РФ № 809 от 06.07.94 г. была принята Федеральная целевая программа «Снижение уровня облучения населения России и производственного персонала от природных радиоактивных источников», в отечественной популярной строительной литературе опасности, связанные с постоянным проникновением радона в жилое помещение, чаще всего обходятся молчанием. Чтобы понять актуальность радоновой проблемы читайте . Современные исследования показали, что радон является причиной центрального рака легких, и риск заболевания повышается при увеличении концентрации радона в помещении при длительном проживании на радоноопасных территориях. Однако несмотря на многочисленные пути поступления радона в дом , защитить его от повышенной концентрации радона можно при помощи простых и недорогих технических решений для защиты малоэтажного дома от радона .

Alberg AJ., Samet JM. Epidemiology of Lung Cancer. Chest. 2003; 123:21-49
U.S. National Institutes of Health. National Cancer Institute. Factsheet; Radon and Cancer: Questions and Answers. July 13, 2004. Accessed on November 17, 2009
Steindorf K., Lubin J., Wichmann H.E., Becher H. Lung Cancer Deaths Attributable to Indoor Radon Exposure in West Germany. // Intern. J. Epidemiol. 1995. V. 24. № 3. P. 485-492.
Тихонов М.Н. Радон: источники, дозы и нерешенные вопросы//Атомная стратегия. -2006.- №23, июль
Дозы облучения населения Российской Федерации в 2010 году. - СПб: Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П.В. Рамзаева, 2011. - С. 17.
Дозы облучения населения Российской Федерации в 2010 году. - СПб: Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П.В. Рамзаева, 2011. - C.18
Крисюк Э.М. Уровни и последствия облучения населения // АНРИ. - 2002. - N 1(28). - С.4-12.

Радон (Rn) - это радиоактивный элемент нулевой группы , порядковый номер 86, инертный газ. Наибольшее значение имеют его альфа-излучающие изотопы: Rn 222 (радон, прежнее название эманация радия) с периодом полураспада 3,8 дня и Rn 220 (торон) с периодом полураспада 54,5 сек. Распадаясь, Rn 222 и Rn 220 дают начало группе короткоживущих изотопов (дочерних продуктов радона и торона).

Rn 222 содержится в атмосферном и почвенном воздухе, в природных водах и природных объектах, содержащих . Rn 222 широко используют в лечебной практике (см. Альфа-терапия).

Присутствие Rn 222 и Rn 220 с их дочерними продуктами (последние обычно в виде аэрозолей) в воздухе рабочих помещений (при добыче и переработке урано-радиевых и ториевых руд, приготовлении радоновых ванн и т. д.) создает профессиональную вредность для лиц, находящихся в этих помещениях. Уменьшение этой вредности обеспечивается хорошей вентиляцией.

Предельно допустимые концентрации Rn 222 в воздухе: для профессиональных работников 3·10 -11 кюри/л, для населения - 3·10 -12 кюри/л.

Радон (Radon; Rn) - радиоактивный химический элемент периодической системы Менделеева. Пор. номер 86, ат. вес 222. Название дано по основному, наиболее долгоживущему изотопу - 86 Rn 222 . Элемент радон иногда называют эманацией (86 Ем). Известно 19 изотопов элемента радона; из них, кроме 86 Rn 222 , еще два естественных - торон (86 Rn 220) и актинон (86 Rn 219). 86 Rn 222 образуется из 88 Ra 226 (см. Радий); это инертный радиоактивный газ с периодом полураспада 3,8229 дня. Распадаясь с испусканием α-частиц (энергия 5,49 Мэв, пробег в воздухе 4,0 см, в биологических тканях около 0,04 мм) и очень слабого ү-излучения, он дает начало группе дочерних продуктов 86 Rn 222 (радий А, радий В и т. д.- изотопы свинца, висмута и других металлов), присутствующих в больших или меньших количествах всюду, где имеется 86 Rn 222 . Основной единицей измерения количества 8eRn222 является кюри. Одно кюри соответствует 0,0065 мг 86 Rn 222 и занимает при нормальных температуре и давлении объем 0,65 мм 3 .

В природе 86 Rn 222 содержится в атмосферном и почвенном воздухе, в водах (главным образом минеральных), а также всюду, где имеется 88 Ra 226 в рассеянном состоянии.

Для лечебных целей 86 Rn 222 получают из растворов хлористой или бромистой соли 88 Ra 226 . Эти соли хранят в специальных стеклянных сосудах - барботерах, откуда накапливающийся 86 Rn 222 через определенные промежутки времени переводится путем пропускания воздуха через раствор 88 Ra 226 в нужный объем воды. Как природные, так и приготовленные при помощи растворов 88 Ra 226 радоновые воды, а также воздух, обогащенный 86 Rn 222 , используются для лечения ряда заболеваний (см. Альфа-терапия, Бальнеотерапия).

Длительное вдыхание воздуха, обогащенного 86 Rn 222 и его дочерними продуктами (присутствуют обычно в виде аэрозолей, испускают альфа-, бета- и гамма-излучение), может оказывать вредное действие на организм. Это создает профессиональную вредность для работников, обслуживающих лечебницы с радоновыми ваннами, занятых на добыче и переработке уранорадиевых руд и др. Для уменьшения этого профессионального облучения применяют комплексы гигиенических мероприятий, направленные на снижение содержания 86 Rn 222 и его дочерних продуктов во вдыхаемом воздухе. Предельно допустимая концентрация 86 Rn 222 в воздухе для лиц, по роду своей работы имеющих с ним дело, равна 3·10 -11 кюри/л, для населения - 3·10 -12 кюри/л. Эти концентрации рассчитаны в предположении, что наряду с 86 Rn 222 во вдыхаемом воздухе в 100% равновесии находятся все его короткоживущие дочерние продукты (до RaC"+RaC" включительно).