Главная · Стоматит · Растворимость твердых веществ в воде. Растворимость различных веществ в воде

Растворимость твердых веществ в воде. Растворимость различных веществ в воде

Растворимость - это способность веществ растворяться в воде. Одни вещества очень хорошо растворяются в воде, некоторые даже в неограниченных количествах. Другие - лишь в небольших количествах, а третьи - вообще почти не растворяются. Поэтому вещества делят на растворимые, малорастворимые и практически нерастворимые.

К растворимым относятся такие вещества, которые в 100 г воды растворяются в количестве больше 1 г (NaCl, сахар, HCl, KNO 3). Малорастворимые вещества растворяются в количестве от 0,01 г до 1 г в 100 г воды (Ca(OH) 2 , CaSO 4). Практически нерастворимые вещества не могут раствориться в 100 г воды в количестве больше 0,01 г (металлы, CaCO 3 , BaSO 4).

При протекании химических реакций в водных растворах могут образовываться нерастворимые вещества, которые выпадают в осадок или находятся во взвешенном состоянии, делая раствор мутным.

Существует таблица растворимости в воде кислот, оснований и солей, где отражено является ли соединение растворимым. Все соли калия и натрия, а также все нитраты (соли азотной кислоты) хорошо растворимы в воде. Из сульфатов (солей серной кислоты) малорастворим сульфат кальция, нерастворимы сульфаты бария и свинца. Хлорид свинца малорастворим, а хлорид серебра нерастворим.

Если в клетках таблицы растворимости стоит черточка, это значит, что соединение реагирует с водой, в результате чего образуются другие вещества, т. е. соединение в воде не существует (например, карбонат алюминия).

Все твердые вещества, даже хорошо растворимые в воде, растворяются лишь в определенных количествах. Растворимость веществ выражают числом, которое показывает наибольшую массу вещества, которая может раствориться в 100 г воды при определенных условиях (обычно имеется в виду температура). Так при 20 °C в воде растворяется 36 г поваренной соли (хлорида натрия NaCl), более 200 г сахара.

С другой стороны, вообще нерастворимых веществ нет. Любое практически нерастворимое вещество хотя бы в очень незначительных количествах, но растворяется в воде. Например, мел растворяется в 100 г воды при комнатной температуре в количестве 0,007 г.

Большинство веществ с повышением температуры лучше растворяются в воде. Однако NaCl почти одинаково растворим при любой температуре, а Ca(OH)2 (известь) лучше растворяется при более низкой температуре. На основе зависимости растворимости веществ от температуры строят кривые растворимости.

Если в растворе при данной температуре еще можно растворить какое-то количество вещества, то такой раствор называют ненасыщенным. Если же достигнут придел растворимости, и больше вещества растворить нельзя, то говорят, что раствор насыщенный.

Когда охлаждают насыщенный раствор, то растворимость вещества понижается, и, следовательно, оно начинает выпадать в осадок. Часто вещество выделяется в виде кристаллов. Для разных солей кристаллы имеют свою форму. Так кристаллы поваренной соли имеют кубическую форму, у калийной селитры они похожи на иголки.

Способность данного вещества растворяться в данном растворителе называется растворимостью.

С количественной стороны растворимость твердого вещества характеризует коэффициент растворимости или просто растворимость - это максимальное количество вещества, которое способно раствориться в 100 г или 1000 г воды при данных условиях с образованием насыщенного раствора.

Так как большинство твердых веществ при растворении в воде поглощают энергию, то в соответствии с принципом Ле-Шателье, растворимость многих твердых веществ увеличивается с повышением температуры.

Растворимость газов в жидкости характеризует коэффициент абсорбции - максимальный объем газа, который может раствориться при н.у. в одном объеме растворителя. При растворении газов выделяется тепло, поэтому с повышением температуры растворимость их понижается (например, растворимость NH 3 при 0°С равна 1100 дм 3 /1 дм 3 воды, а при 25°С - 700 дм 3 /1 дм 3 воды). Зависимость растворимости газов от давления подчиняется закону Генри: масса растворенного газа при неизменной температуре прямо пропорциональна давлению.

Выражение количественного состава растворов

Наряду с температурой и давлением основным параметром состояния раствора является концентрация в нем растворенного вещества.

Концентрацией раствора называется содержание растворенного вещества в определенной массе или в определенном объеме раствора или растворителя. Концентрацию раствора можно выражать по-разному. В химической практике наиболее употребительны следующие способы выражения концентраций:

а) массовая доля растворенного вещества показывает число граммов (единиц массы) растворенного вещества, содержащееся в 100 г (единиц массы) раствора (ω, %)

б) мольно-объемная концентрация, или молярность , показывает число молей (количество) растворенного вещества, содержащихся в 1 дм 3 раствора (с или М, моль/дм 3)

в) эквивалентная концентрация, или нормальность , показывает число эквивалентов растворенного вещества, содержащихся в 1 дм 3 раствора (с э или н, моль/дм 3)

г) мольно-массовая концентрация, или моляльность , показывает число молей растворенного вещества, содержащихся в 1000 г растворителя (с m , моль / 1000 г)

д) титром раствора называется число граммов растворенного вещества в 1 см 3 раствора (Т, г/см 3)

T = m р.в. /V.

Кроме того состав раствора выражается через безразмерные относительные величины -доли. Объемная доля - отношение объема растворенного вещества к объему раствора; массовая доля - отношение массы растворенного вещества к объему раствора; мольная доля отношение количества растворенного вещества (число молей) к суммарному количеству всех компонентов раствора. Наиболее употребительной величиной является мольная доля (N) – отношение количества растворенного вещества (ν 1) к суммарному количеству всех компонентов раствора, то есть ν 1 + ν 2 (где ν 2 –количество растворителя)

N р.в. = ν 1 /(ν 1 + ν 2) = m р.в. /М р.в. /(m р.в. /М р.в + m р-ля. /М р-ля).

Разбавленные растворы неэлектролитов и их свойства

При образовании растворов характер взаимодействия компонентов определяется их химической природой, что затрудняет выявление общих закономерностей. Поэтому удобно прибегнуть к некоторой идеализированной модели раствора, так называемому идеальному раствору. Раствор, образование которого не связано с изменением объема и тепловым эффектом, называют идеальным раствором. Однако, большинство растворов не обладает в полной мере свойствами идеальности и общие закономерности могут быть описаны на примерах так называемых разбавленных растворов, то есть растворов, в которых содержание растворенного вещества очень мало по сравнению с содержанием растворителя и взаимодействием молекул растворенного вещества с растворителем можно пренебречь. Растворы обладают коллигативными свойствами - это свойства растворов, зависящие от числа частиц растворенного вещества. К коллигативным свойствам растворов относят:

    осмотическое давление;

    давление насыщенного пара. Закон Рауля;

    повышение температуры кипения;

    понижениетемпературы замерзания.

Осмос. Осмотическое давление.

Пусть имеется сосуд, разделенный полупроницаемой перегородкой (пунктир на рисунке) на две части, заполненные до одинакового уровня О-О. В левой части помещается растворитель, в правой - раствор

растворитель раствор

К понятию явления осмоса

Вследствие различия концентраций растворителя по обе стороны перегородки растворитель самопроизвольно (в соответствии с принципом Ле-Шателье) проникает через полупроницаемую перегородку в раствор, разбавляя его. Движущей силой преимущественной диффузии растворителя в раствор является разность свободных энергий чистого растворителя и растворителя в растворе. При разбавлении раствора за счет самопроизвольной диффузии растворителя объем раствора увеличивается и уровень перемещается из положения О в положение II. Односторонняя диффузия определенного сорта частиц в растворе через полупроницаемую перегородку называется осмосом.

Количественно охарактеризовать осмотические свойства раствора (по отношению к чистому растворителю) можно, введя понятие об осмотическом давлении . Последнее представляет собой меру стремления растворителя к переходу сквозь полупроницаемую перегородку в данный раствор. Оно равно тому дополнительному давлению, которое необходимо приложить к раствору, чтобы осмос прекратился (действие давления сводится к увеличению выхода молекул растворителя из раствора).

Растворы, характеризующиеся одинаковым осмотическим давлением, называются изотоническими. В биологии растворы с осмотическим давлением, большим, чем у внутриклеточного содержимого, называются гипертоническими , с меньшим – гипотоническими . Один и тот же раствор для одного типа клеток гипертонический, для другого – изотонический, для третьего – гипотонический.

Свойствами полупроницаемости обладает большинство тканей организмов. Поэтому осмотические явления имеют громадное значение для жизнедеятельности животных и растительных организмов. Процессы усвоения пищи, обмена веществ и т.д. тесно связаны с различной проницаемостью тканей для воды и тех или иных растворенных веществ. Явления осмоса объясняют некоторые вопросы, связанные с отношением организма к среде. Например, ими обусловлено то, что пресноводные рыбы не могут жить в морской воде, а морские в речной.

Вант-Гофф показал, что осмотическое давление в растворе неэлектролита пропорционально молярной концентрации растворенного вещества

Р осм = с R Т,

где Р осм - осмотическое давление, кПа; с - молярная концентрация, моль/дм 3 ; R - газовая постоянная, равная 8,314 Дж/моль∙К; Т - температура, К.

Это выражение по форме аналогично уравнению Менделеева-Клапейрона для идеальных газов, однако эти уравнения описывают разные процессы. Осмотическое давление возникает в растворе при проникновении в него дополнительного количества растворителя через полупроницаемую перегородку. Это давление - сила, препятствующая дальнейшему выравниванию концентраций.

Вант-Гофф сформулировал закон осмотического давления : осмотическое давление равно тому давлению, которое производило бы растворенное вещество, если бы оно в виде идеального газа занимало тот же объем, который занимает раствор, при той же температуре.

Давление насыщенного пара. Закон Рауля.

Рассмотрим разбавленный раствор нелетучего (твердого) вещества А в летучем жидком растворителе В. При этом общее давление насыщенного пара над раствором определяется парциальным давлением пара растворителя, поскольку давлением пара растворенного вещества можно пренебречь.

Рауль показал, что давление насыщенного пара растворителя над раствором Р меньше, чем над чистым растворителем Р°. Разность Р° - Р = Р называется абсолютным понижением давления пара над раствором. Эта величина, отнесенная к давлению пара чистого растворителя, то есть (Р°-Р)/Р° =Р/Р°,называется относительным понижением давления пара.

Согласно закону Рауля, относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного нелетучего вещества

(Р°-Р)/Р° = N = ν 1 /(ν 1 + ν 2) = m р.в. /М р.в. /(m р.в. /М р.в + m р-ля. /М р-ля) = X A

где X A - мольная доля растворенного вещества. А так как ν 1 = m р.в. /М р.в, то используя этот закон можно определить мольную массу растворенного вещества.

Следствие закона Рауля. Понижение давления пара над раствором нелетучего вещества, например в воде, можно пояснить с привлечением принципа смещения равновесия Ле-Шателье. Действительно, при увеличении концентрации нелетучего компонента в растворе равновесие в системе вода - насыщенный пар сдвигается в сторону конденсации части пара (реакция системы на уменьшение концентрации воды при растворении вещества), что и вызывает уменьшение давления пара.

Понижение давления пара над раствором по сравнению с чистым растворителем вызывает повышение температуры кипения и понижение температуры замерзания растворов по сравнению с чистым растворителем (t). Эти величины пропорциональны моляльной концентрации растворенного вещества - неэлектролита, то есть:

t = К∙с т = К∙т∙1000/М∙а,

где с m - моляльная концентрация раствора; а - масса растворителя. Коэффициент пропорциональности К , в случае повышения температуры кипения, называется эбуллиоскопической константой для данного растворителя (Е ), а для понижения температуры замерзания - криоскопической константой (К ). Эти константы, численно различные для одного и того же растворителя, характеризуют повышение температуры кипения и понижение температуры замерзания одномоляльного раствора, т.е. при растворении 1 моль нелетучего неэлектролита в 1000 г растворителя. Поэтому их часто называют моляльным повышением температуры кипения и моляльным понижением температуры замерзания раствора.

Крископическая и эбуллиоскопическая постоянные не зависят от концентрации и природы растворенного вещества, а зависят лишь от природы растворителя и характеризуются размерностью кг∙град/моль.

Растворы играют очень важную роль в природе, науке и технике. Вода, столь широко распространённая в природе, всегда содержит растворённые вещества. В пресной воде рек и озёр их мало, в то время как в морской воде содержится около 3,5% растворённых солей.

В первичном океане (во время появления жизни на Земле) массовая доля солей, по предположениям, была низка, около 1%.

«Именно в этом растворе впервые развились живые организмы, и из этого раствора они получили ионы и молекулы, необходимые для их роста и жизни... С течением времени живые организмы развивались и изменялись, что позволило им покинуть водную среду и перейти на сушу и затем подняться в воздух. Они приобрели эту способность, сохранив в своих организмах водный раствор в виде жидкостей, содержащих необходимый запас ионов и молекул» - вот так оценивает роль растворов в возникновении и развитии жизни на Земле известный американский химик, лауреат Нобелевской премии Лайнус Полинг. Внутри нас, в каждой нашей клеточке - напоминание о первичном океане, в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.

В каждом живом организме бесконечно течёт по сосудам - артериям, венам и капиллярам - волшебный раствор, составляющий основу крови, массовая доля солей в нём такая же, как в первичном океане, - 0,9%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение пищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например получение соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке. Так что же такое раствор?

Отличие раствора от других смесей в том, что частицы составных частей распределяются в нём равномерно, и в любом микрообъёме такой смеси состав одинаков.

Поэтому под растворами понимали однородные смеси, состоящие из двух или более однородных частей. Это представление исходило из физической теории растворов.

Сторонники физической теории растворов, которую развивали Вант-Гофф, Аррениус и Оствальд, считали, что процесс растворения является результатом диффузии, т. е. проникновения растворённого вещества в промежутки между молекулами воды.

В противоположность представлениям физической теории растворов Д. И. Менделеев и сторонники химической теории растворов доказывали, что растворение является результатом химического взаимодействия растворённого вещества с молекулами воды. Поэтому правильнее (точнее) определять раствор как однородную систему, состоящую из частиц растворённого вещества, растворителя и продуктов их взаимодействия.

В результате химического взаимодействия растворённого вещества с водой образуются соединения - гидраты. О химическом взаимодействии говорят такие признаки химических реакций, как тепловые явления при растворении. Например, вспомните, что растворение серной кислоты в воде протекает с выделением такого большого количества теплоты, что раствор может закипеть, а потому льют кислоту в воду (а не наоборот).

Растворение других веществ, например хлорида натрия, нитрата аммония, сопровождается поглощением теплоты.

М. В. Ломоносов установил, что растворы замерзают при более низкой температуре, чем растворитель. В 1764 г. он писал: «Морозы солёного рассолу не могут в лёд превратить удобно, как одолевают пресного».

Гидраты - это непрочные соединения веществ с водой, существующие в растворе. Косвенным доказательством гидратации является существование твёрдых кристаллогидратов - солей, в состав которых входит вода. Её в этом случае называют кристаллизационной. Например, к кристаллогидратам относится хорошо известная соль голубого цвета - медный купорос CuSО 4 5Н 2 О. Безводный сульфат меди (II) - кристаллы белого цвета. Изменение цвета сульфата меди (II) на голубой при растворении его в воде и существование голубых кристаллов медного купороса является ещё одним доказательством гидратной теории Д. И. Менделеева.

В настоящее время принята теория, которая объединяет обе точки зрения, - физико-химическая теория растворов. Её предсказывал ещё в 1906 г. Д. И. Менделеев в своём замечательном учебнике «Основы химии»: «Две указанные стороны растворения и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, но без всякого сомнения, по всей вероятности, приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями».

Растворимость веществ в воде зависит от температуры. Как правило, растворимость твёрдых веществ в воде увеличивается с повышением температуры (рис. 126), а растворимость газов - уменьшается, поэтому воду можно почти полностью освободить от растворённых в ней газов кипячением.

Рис. 126.
Растворимость веществ в зависимости от температуры

Если растворять в воде хлорид калия КСl, применяющийся как удобрение, то при комнатной температуре (20 °С) может раствориться только 34,4 г соли в 100 г воды; сколько бы ни перемешивали раствор с остатком нерастворившейся соли, больше соли не растворится - раствор будет насыщен этой солью при данной температуре.

Если же при этой температуре в 100 г воды растворить хлорида калия меньше чем 34,4 г, то раствор будет ненасыщенным.

Из некоторых веществ сравнительно легко получить пересыщенные растворы. К ним относятся, например, кристаллогидраты - глауберова соль (Na 2 SO 4 10Н 2 O) и медный купорос (CuSO 4 5Н 2 O).

Пересыщенные растворы готовят так. Приготавливают насыщенный раствор соли при высокой температуре, например при температуре кипения. Избыток соли отфильтровывают, накрывают колбу с горячим фильтратом ватой и осторожно, избегая сотрясений, медленно охлаждают при комнатной температуре. Приготовленный таким образом раствор, предохраняемый от толчков и попадания пыли, может храниться довольно долго. Но стоит только в такой пересыщенный раствор внести стеклянную палочку, на кончике которой имеется несколько крупинок этой соли, как немедленно начнётся её кристаллизация из раствора (рис. 127).

Рис. 127.
Мгновенная кристаллизация вещества из пересыщенного раствора

Глауберова соль широко используется в качестве сырья на химических заводах. Добывают её зимой в заливе Кара-Богаз-Гол, который сравнительно изолирован от Каспийского моря. Летом из-за высокой скорости испарения воды залив заполняется сильно концентрированным раствором соли. Зимой, в связи с понижением температуры, растворимость её уменьшается и соль кристаллизуется, что и лежит в основе её добычи. Летом кристаллы соли растворяются, и добыча её прекращается.

В самом солёном из морей мира - Мёртвом море - концентрация солей так велика, что на любом помещённом в воду этого моря предмете нарастают причудливые кристаллы (рис. 128).

Рис. 128.
В воде Мёртвого моря из растворённых в ней солей вырастают красивые причудливые кристаллы

При работе с веществами важно знать их растворимость в воде. Вещество считают хорошо растворимым, если при комнатной температуре в 100 г воды растворяется больше 1 г этого вещества. Если при таких условиях растворяется меньше 1 г вещества в 100 г воды, то такое вещество считается малорастворимым. К практически нерастворимым веществам относятся такие, растворимость которых меньше 0,01 г в 100 г воды (табл. 9).

Таблица 9
Растворимость некоторых солей в воде при 20 °С



Совершенно нерастворимых веществ в природе не существует. Например, даже атомы серебра чуть-чуть переходят в раствор из изделий, помещённых в воду. Как известно, раствор серебра в воде убивает микробов.

Ключевые слова и словосочетания

  1. Растворы.
  2. Физическая и химическая теории растворов.
  3. Тепловые явления при растворении.
  4. Гидраты и кристаллогидраты; кристаллизационная вода.
  5. Насыщенные, ненасыщенные и пересыщенные растворы.
  6. Хорошо растворимые, малорастворимые и практически нерастворимые вещества.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Почему в горячем чае кусочек сахара растворяется быстрее, чем в холодном?
  2. Приведите примеры хорошо растворимых, малорастворимых и практически нерастворимых в воде веществ различных классов, пользуясь таблицей растворимости.
  3. Почему аквариумы нельзя заполнять быстро охлаждённой прокипячённой водой (она должна постоять несколько дней)?
  4. Почему ранки, промытые водой, в которую были помещены серебряные изделия, заживают быстрее?
  5. Пользуясь рисунком 126, определите массовую долю хлорида калия, содержащегося в насыщенном растворе при 20 °С.
  6. Может ли разбавленный раствор быть одновременно и насыщенным?
  7. К 500 г насыщенного при 20 °С раствора сульфата магния (см. рис. 126) прилили достаточный для проведения реакции объём раствора хлорида бария. Найдите массу выпавшего осадка.

РАСТВОРИМОСТЬЮ называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе. Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым . Если растворяется менее 1 г вещества – вещество малорастворимо . Наконец, вещество считают практически нерастворимым , если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает. Даже когда мы наливаем воду в стеклянный сосуд, очень небольшая часть молекул стекла неизбежно переходит в раствор.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости .

Растворимость некоторых веществ в воде при комнатной температуре.

Растворимость большинства (но не всех!) твердых веществ с увеличением температуры увеличивается, а растворимость газов, наоборот, уменьшается. Это связано прежде всего с тем, что молекулы газов при тепловом движении способны покидать раствор гораздо легче, чем молекулы твердых веществ.

Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества заметно меняют свою растворимость в зависимости от температуры, другие – не очень сильно

При растворение тверд тел в воде объем системы обычно изменяется незначительно.Поэтому растворимость веществ, находящихся в тверд состоянии, практически не зависит от давления.

Жидкости так же могут растворятся жидкостях . Некоторые из них неограниченно растворимы одна в другой, т.е смешиваются друг с другом в любых пропорциях, как например, спирт и вода, другие –взаимно растворяются лишь до известного предела. Так если взболтать диэтиловый эфир с водой то образуется два слоя: верхний представляет собой насыщенный раствор воды в эфире, а нижний – насыщенный раствор эфира в воде. В большинстве подобных случаев с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа-это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух.

Раствором называется термодинамически устойчивая гомогенная (однофазная) система переменного состава, состоящая из двух или более компонентов (химических веществ). Компонентами, составляющими раствор, являются растворитель и растворенное вещество. Обычно растворителем считается тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем является, конечно, вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Растворы бывают жидкими, твердыми и газообразными.

Жидкие растворы – это растворы солей, сахара, спирта в воде. Жидкие растворы могут быть водными и неводными. Водные растворы – это растворы, в которых растворителем является вода. Неводные растворы – это растворы, в которых растворителями являются органические жидкости (бензол, спирт, эфир и т.д.). Твёрдые растворы – сплавы металлов. Газообразные растворы – воздух и другие смеси газов.

Процесс растворения . Растворение – это сложный физико-химический процесс. При физическом процессе происходит разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя. Химический процесс – это взаимодействие молекул растворителя с частицами растворенного вещества. В результате этого взаимодействия образуются сольваты. Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией, процесс образования гидратов – гидратацией. При упаривании водных растворов образуются кристаллогидраты – это кристаллические вещества, в состав которых входит определенное число молекул воды (кристаллизационная вода). Примеры кристаллогидратов: CuSO 4 . 5H 2 O – пентагидрат сульфата меди (II); FeSO 4 . 7H 2 O – гептагидрат сульфата железа (II).

Физический процесс растворения идёт с поглощением энергии, химический – с выделением . Если в результате гидратации (сольватации) выделяется больше энергии, чем ее поглощается при разрушении структуры вещества, то растворение – экзотермический процесс. Выделение энергии происходит при растворении NaOH, H 2 SO 4 , Na 2 CO 3 , ZnSO 4 и других веществ. Если для разрушения структуры вещества надо больше энергии, чем её выделяется при гидратации, то растворение – эндотермический процесс. Поглощение энергии происходит при растворении в воде NaNO 3 , KCl, NH 4 NO 3 , K 2 SO 4 , NH 4 Cl и некоторых других веществ.

Количество энергии, которое выделяется или поглощается при растворении, называется тепловым эффектом растворения .

Растворимостью вещества называется его способность распределяться в другом веществе в виде атомов, ионов или молекул с образованием термодинамически устойчивой системы переменного состава. Количественной характеристикой растворимости является коэффициент растворимости , который показывает, какая максимальная масса вещества может раствориться в 1000 или 100 г воды при данной температуре. Растворимость вещества зависит от природы растворителя и вещества, от температуры и давления (для газов). Растворимость твердых веществ в основном увеличивается при повышении температуры. Растворимость газов с повышением температуры уменьшается, но при повышении давления увеличивается.

По растворимости в воде вещества делят на три группы:

1. Хорошо растворимые (р.). Растворимость веществ больше 10 г в 1000г воды. Например, 2000 г сахара растворяется в 1000 г воды, или в 1 л воды.

2. Малорастворимые (м.). Растворимость веществ от 0,01 г до 10 г в 1000 г воды. Например, 2 г гипса (CaSO 4 . 2 H 2 O) растворяется в 1000 г воды.

3. Практически нерастворимые (н.). Растворимость веществ меньше 0,01 г в 1000 г воды. Например, в 1000 г воды растворяется 1,5 . 10 -3 г AgCl.

При растворении веществ могут образоваться насыщенные, ненасыщенные и пересыщенные растворы.

Насыщенный раствор – это раствор, который содержит максимальное количество растворяемого вещества при данных условиях. При добавлении вещества в такой раствор вещество больше не растворяется.

Ненасыщенный раствор – это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данных условиях. При добавлении вещества в такой раствор вещество еще растворяется.

Иногда удается получить раствор, в котором растворенного вещества содержится больше, чем в насыщенном растворе при данной температуре. Такой раствор называется пересыщенным. Этот раствор получают при осторожном охлаждении насыщенного раствора до комнатной температуры. Пересыщенные растворы очень неустойчивы. Кристаллизацию вещества в таком растворе можно вызвать путем потирания стеклянной палочкой стенок сосуда, в котором находится данный раствор. Этот способ применяется при выполнении некоторых качественных реакций.

Растворимость вещества может выражаться и молярной концентрацией его насыщенного раствора (п.2.2).

Константа растворимости. Рассмотрим процессы, возникающие при взаимодействии малорастворимого, но сильного электролита сульфата бария BaSO 4 с водой. Под действием диполей воды ионы Ba 2+ и SO 4 2 - из кристаллической решетки BaSO 4 будут переходить в жидкую фазу. Одновременно с этим процессом под влиянием электростатического поля кристаллической решетки часть ионов Ba 2+ и SO 4 2 - вновь будет осаждаться (рис.3). При данной температуре в гетерогенной системе, наконец, установится равновесие: скорость процесса растворения (V 1) будет равна скорости процесса осаждения (V 2), т.е.

BaSO 4 ⇄ Ba 2+ + SO 4 2 -

твёрдая раствор

Рис. 3. Насыщенный раствор сульфата бария

Раствор, находящийся в равновесии с твердой фазой BaSO 4 , называется насыщенным относительно сульфата бария.

Насыщенный раствор представляет собой равновесную гетерогенную систему, которая характеризуется константой химического равновесия:

, (1)

где a (Ba 2+) – активность ионов бария; a(SO 4 2-) – активность сульфат-ионов;

a (BaSO 4) – активность молекул сульфата бария.

Знаменатель этой дроби – активность кристаллического BaSO 4 – является постоянной величиной, равной единице. Произведение двух констант дает новую постоянную величину, которую называют термодинамической константой растворимости и обозначают К s °:

К s ° = a(Ba 2+) . a(SO 4 2-). (2)

Эту величину раньше называли произведением растворимости и обозначали ПР.

Таким образом, в насыщенном растворе малорастворимого сильного электролита произведение равновесных активностей его ионов есть величина постоянная при данной температуре.

Если принять, что в насыщенном растворе малорастворимого электролита коэффициент активности f ~1, то активность ионов в таком случае можно заменить их концентрациями, так как а(X ) = f (X ) . С(X ). Термодинамическая константа растворимости К s ° перейдет в концентрационную константу растворимости К s:

К s = С(Ba 2+) . С(SO 4 2-), (3)

где С(Ba 2+) и С(SO 4 2 -) – равновесные концентрации ионов Ba 2+ и SO 4 2 - (моль/л) в насыщенном растворе сульфата бария.

Для упрощения расчётов обычно пользуются концентрационной константой растворимости К s , принимая f (Х ) = 1 (приложение 2).

Если малорастворимый сильный электролит образует при диссоциации несколько ионов, то в выражение К s (или К s °) входят соответствующие степени, равные стехиометрическим коэффициентам:

PbCl 2 ⇄ Pb 2+ + 2 Cl - ; K s = С (Pb 2+) . С 2 (Cl -);

Ag 3 PO 4 ⇄ 3 Ag + + PO 4 3 - ; K s = С 3 (Ag +) . С (PO 4 3 -).

В общем виде выражение концентрационной константы растворимости для электролита A m B n ⇄ m A n+ + n B m - имеет вид

K s = С m (A n+) . С n (B m -),

где С - концентрации ионов A n+ и B m - в насыщенном растворе электролита в моль/л.

Величиной K s принято пользоваться только в отношении электролитов, растворимость которых в воде не превышает 0,01 моль/л.

Условия образования осадков

Предположим, с - фактическая концентрация ионов трудно растворимого электролита в растворе.

Если С m (A n +) . С n (B m -) > K s , то произойдет образование осадка, т.к. раствор становится пересыщенным.

Если С m (A n +) . С n (B m -) < K s , то раствор является ненасыщенным и осадок не образуется.

Свойства растворов . Ниже рассмотрим свойства растворов неэлектролитов. В случае электролитов в приведённые формулы вводится поправочный изотонический коэффициент.

Если в жидкости растворено нелетучее вещество, то давление насыщенного пара над раствором меньше давления насыщенного пара над чистым растворителем. Одновременно с понижением давления пара над раствором наблюдается изменение его температуры кипения и замерзания; температуры кипения растворов повышаются, а температуры замерзания понижаются по сравнению с температурами, характеризующими чистые растворители.

Относительное понижение температуры замерзания или относительное повышение температуры кипения раствора пропорционально его концентрации.