Главная · Стоматит · Костная ткань - основы гистологии. Скелетные ткани Костная ткань кратко гистология

Костная ткань - основы гистологии. Скелетные ткани Костная ткань кратко гистология

Различают две разновидности костных тканей:

    ретикулофиброзную (грубоволокнистую);

    пластинчатую (параллельно волокнистую).

В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты.Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей они находятся в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидный шов чешуи лобной кости).

При изучении костной ткани следует дифференцировать понятия костная ткань и кость.

3. Кость - это анатомический орган, основным структурным компонентом которого являетсякостная ткань . Кость как орган состоит изследующих элементов :

    костная ткань;

    надкостница;

    костный мозг (красный, желтый);

    сосуды и нервы.

Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение сходное с надхрящницей. В надкостнице выделяют наружный фиброзный и внутренний клеточный или камбиальный слои. Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуются выраженная сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань. Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.

Костная ткань в сформированных костях представлена только пластинчатой формой, однако в разных костях, в разном участке одной кости она имеет разное строение. В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины(трабекулы) , составляющие губчатое вещество кости. В диафизах трубчатых костей пластинки прилежат друг к другу и образуют компактное вещество. Однако и в компактном веществе одни пластинки образуют остеоны, другие пластинки являются общими.

Строение диафиза трубчатой кости

На поперечном срезе диафиза трубчатой кости различают следующие слои :

    надкостница (периост);

    наружный слой общих или генеральных пластин;

    слой остеонов;

    внутренний слой общих или генеральных пластин;

    внутренняя фиброзная пластинкаэндост.

Наружные общие пластинки располагаются под надкостницей в несколько слоев, не образуя однако полные кольца. Между пластинками располагаются в лакунах остеоциты. Через наружные пластинки проходят прободающие каналы, через которые из надкостницы в костную ткань проникают прободающие волокна и сосуды. С помощью прободающих сосудов в костной ткани обеспечивается трофика, а прободающие волокна связывают надкостницу с костной тканью.

Слой остеонов состоит из двух компонентов: остеонов и вставочных пластин между ними.Остеон - является структурной единицей компактного вещества трубчатой кости. Каждый остеонсостоит из :

    5-20 концентрически наслоенных пластин;

    канала остеона, в котором проходят сосуды (артериолы, капилляры, венулы).

Между каналами соседних остеонов имеются анастомозы. Остеоны составляют основную массу костной ткани диафиза трубчатой кости. Они располагаются продольно по трубчатой кости соответственно силовым и гравитационным линиям и обеспечивают выполнение опорной функции. При изменении направления силовых линий в результате перелома или искривления костей остеоны не несущие нагрузку разрушаются остеокластами. Однако такие остеоны разрушаются не полностью, а часть костных пластин остеона по его длине сохраняется и такие оставшиеся части остеонов называютсявставочными пластинками . На протяжении постнатального онтогенеза постоянно происходит перестройка костной ткани - одни остеоны разрушаются (резорбируются), другие образуются и потому всегда между остеонами находятся вставочные пластины, как остатки предшествующих остеонов.

Внутренний слой общих пластинок имеет строение аналогичное наружному, но он менее выражен, а в области перехода диафиза в эпифизы общие пластинки продолжаются в трабекулы.

Эндост - тонкая соединительно-тканная пластинка , выстилающая полость канала диафиза. Слои в эндосте четко не выражены, но среди клеточных элементов содержатся остеобласты и остеокласты.

4. Развитие костной ткани и костей (остеогистогенез)

Все разновидности костной ткани развиваются из одного источника - из мезенхимы, но развитие разных костей осуществляется неодинаково. Различают два способа остеогистогенеза :

    развитие непосредственно из мезенхимы - прямой остеогистогенез;

    развитие из мезенхимы через стадию хряща - непрямой остеогистогенез.

Посредством прямого остеогистогенеза развиваются небольшое количество костей (покровные кости черепа). При этом вначале образуется ретикулофиброзная костная ткань, которая вскоре разрушается и замещается пластинчатой.

Прямой остеогистогенез протекает в IV стадии :

    I стадия образования скелетогенных островков в мезенхиме;

    II стадия образования оссеоидной ткани - органического матрикса;

    III стадия минерализации (кальцификации) оссеоидной ткани и образование ретикулофиброзной костной ткани;

    IV стадия преобразования ретикулофиброзной костной ткани в пластинчатую костную ткань.

Непрямой остеогистогенез начинается со 2-го месяца эмбриогенеза. Вначале в мезенхиме за счет деятельности хондробластов закладывается хрящевая модель будущей кости из гиалиновой хрящевой ткани, покрытая надхрящницей. Затем происходит замена хрящевой ткани костной, вначале в диафизах, а затем в эпифизах. Окостенение в диафизе осуществляется двумя способами:перихондрально илиэнхондрально.

Вначале в области диафиза хрящевой закладки кости из надхрящницы выселяются остеобласты и образуют ретикулофиброзную костную ткань, которая в виде манжетки охватывает по периферии хрящевую ткань. В результате этого надхрящница превращается в надкостницу. Такой способ образования костной ткани называется перихондральным . После образования костной манжетки нарушается трофика глубоких частей гиалинового хряща, в области диафиза, в результате чего здесь происходит отложение солей кальция - омеление хряща. Затем, под индуктивным влиянием обызвествленного хряща, в эту зону из надкостницы через отверстие в костной манжетке прорастают кровеносные сосуды, в адвентиции которых содержатся остеокласты и остеобласты. Остеокласты разрушают омелевший хрящ, за счет деятельности остеобластов, формируется пластинчатая костная ткань в виде первичных остеонов, которые характеризуются широким просветом (каналом) в центре и нечеткими границами между пластинками. Такой способ образования костной ткани в глубине хрящевой ткани и носит названиеэнхондрального . Одновременно с энхондральным окостенением происходит перестройка грубоволокнистой костной манжетки в пластинчатую костную ткань, составляющую наружный слой генеральных пластин. В результате перихондрального и энхондрального окостенения хрящевая ткань в области диафиза замещается костной. При этом формируется полость диафиза, заполняющаяся вначале красным костным мозгом, сменяющимся затем на желтый костный мозг.

Эпифизы трубчатых костей и губчатые кости развиваются только энхондрально. Вначале в глубоких частях хрящевой ткани эпифиза отмечается омеление. Затем туда проникают сосуды с остекластами и остеобластами и за счет их деятельности происходит замена хрящевой ткани пластинчатой в виде трабекул. Периферическая часть хрящевой ткани сохраняется в виде суставного хряща. Между диафизом и эпифизом длительное время сохраняется хрящевая ткань - метаэпифизарная пластинка , за счет постоянного размножения клеток метафизарной пластинки происходит рост костей в длину. В метафизарной пластинке выделяюттри зоны клеток :

    пограничная зона;

    зона столбчатых клеток;

    зона пузырчатых клеток.

Примерно к 20-ти годам метаэпифизарные пластинки редуцируются, происходит синостозирование эпифизов и диафиза, после чего рост костей в длину прекращается. В процессе развития костей за счет деятельности остеобластов надкостницы происходит рост костей в толщину.

Регенерация костей после их повреждения и переломов осуществляется за счет деятельности остеобластов надкостницы. Перестройка костной ткани осуществляется постоянно на протяжении всего онтогенеза - одни остеоны или их части разрушаются, другие образуются.

Факторы, влияющие на процесс остеогистогенеза и состояние костной ткани:

    содержание витаминов С, D, А. Недостаток в пище витамина С приводит к нарушению синтеза коллагеновых волокон и к распаду уже существующих, что проявляется хрупкостью и усиленной ломкостью костей. Недостаточное образование витамина D в коже приводит к нарушению кальцинации костной ткани и сопровождается недостаточностью костей, их гибкостью (при рахите). Избыточное содержание витамина А активирует деятельность остеокластов, что сопровождается резорбцией костной ткани;

    искривление костей приводит к развитию пьезоэлектрического эффекта, стимуляции остекластов и резорбции костной ткани;

    социальные факторы - питание, освещение и другие;

    факторы окружающей среды - экология.

Костные ткани (textus ossei) -- это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.

Органическое вещество -- матрикс костной ткани -- представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости.

Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время - хрупкость.

Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани -- способность сопротивляться растяжению и сжатию.

Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптивные перестройки к изменяющимся условиям функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, физических нагрузок, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и других факторов.

Классификация

Существует два основных типа костной ткани:

  • · ретикулофиброзная (грубоволокнистая),
  • · пластинчатая.

Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. В грубоволокнистой ткани коллагеновые волокна образуют толстые пучки, идущие в разных направлениях, а в пластинчатой ткани костное вещество (клетки, волокна, матрикс) образуют системы пластинок.

К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции.

Клетки костной ткани: остеобласты, остеоциты и остеокласты. Все они развиваются из мезенхимы, как и клетки хрящевой ткани. Точнее - из мезенхимных клеток склеротома мезодермы. Однако остеобласты и остеоциты связаны в своём диффероне так же, как фибробласты и фиброциты (или хондробласты и ходроциты). А остеокласты имеют иное, - гематогенное происхождение.

Костный дифферон и остеогистогенез

Развитие костной ткани у эмбриона осуществляется двумя способами:

  • 1) непосредственно из мезенхимы, - прямой остеогенез;
  • 2) из мезенхимы на месте ранее развившейся хрящевой модели кости, - это непрямой остеогенез.

Постэмбриональное развитие костной ткани происходит при ее физиологической и репаративной регенерации.

В процессе развития костной ткани образуется костный дифферон:

  • · стволовые клетки,
  • · полустволовые клетки (преостеобласты),
  • · остеобласты (разновидность фибробластов),
  • · остеоциты.

Вторым структурным элементом являются остеокласты (разновидность макрофагов), развивающиеся из стволовых клеток крови.

Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.

Остеобласты (от греч. osteon -- кость, blastos -- зачаток), -- это молодые клетки, создающие костную ткань. В кости они встречаются только в надкостнице. Они способны к пролиферации. В образующейся кости остеобласты покрывают почти непрерывным слоем всю поверхность развивающейся костной балки.

Форма остеобластов бывает различной: кубической, пирамидальной или угловатой. Размер их тела около 15--20 мкм. Ядро округлой или овальной формы, часто располагается эксцентрично, содержит одно или несколько ядрышек. В цитоплазме остеобластов хорошо развиты гранулярная эндоплазматическая сеть, митохондрии и аппарат Гольджи. В ней выявляются в значительных количествах РНК и высокая активность щелочной фосфатазы.

Остеоциты (от греч. osteon -- кость, cytus -- клетка) -- это преобладающие по количеству зрелые (дефинитивные) клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму, компактное, относительно крупное ядро и слабобазофильную цитоплазму. Органеллы развиты слабо. Наличие центриолей в остеоцитах не установлено.

Костные клетки лежат в костных лакунах, которые повторяют контуры остеоцита. Длина полостей колеблется от 22 до 55 мкм, ширина -- от 6 до 14 мкм. Канальцы костных лакун заполнены тканевой жидкостью, анастомозируют между собой и с периваскулярными пространствами сосудов, заходящих внутрь кости. Обмен веществ между остеоцитами и кровью осуществляется через тканевую жидкость этих канальцев.

Остеокласты (от греч. osteon -- кость и clastos -- раздробленный), - это клетки гематогенной природы, способные разрушать обызвествленный хрящ и кость. Диаметр их достигает 90 мкм и более, и они содержат от 3 до нескольких десятков ядер. Цитоплазма слабобазофильна, иногда оксифильна. Остеокласты располагаются обычно на поверхности костных перекладин. Та сторона остеокласта, которая прилежит к разрушаемой поверхности, богата цитоплазматическими выростами (гофрированная каемка); она является областью синтеза и секреции гидролитических ферментов. По периферии остеокласта находится зона плотного прилегания клетки к костной поверхности, которая как бы герметизирует область действия ферментов. Эта зона цитоплазмы светлая, содержит мало органелл, за исключением микрофиламентов, состоящих из актина.

Периферический слой цитоплазмы над гофрированным краем содержит многочисленные мелкие пузырьки и более крупные -- вакуоли.

Полагают, что остеокласты выделяют СО2 в окружающую среду, а фермент карбоангидраза способствует образованию угольной кислоты (Н2СО3) и растворению кальциевых соединений. Остеокласт богат митохондриями и лизосомами, ферменты которых (коллагеназа и другие протеазы) расщепляют коллаген и протеогликаны матрикса костной ткани.

Считается, что один остеокласт может разрушить столько кости, сколько создают 100 остеобластов за это же время. Функции остеобластов и остеокластов взаимосвязаны и регулируются гормонами, простагландинами, функциональной нагрузкой, витаминами и др.

Межклеточное вещество (substantia intercellularis) состоит из основного аморфного вещества, импрегнированного неорганическими солями, в котором располагаются коллагеновые волокна, образующие небольшие пучки. Они содержат в основном белок -- коллаген I и V типов. Волокна могут иметь беспорядочное направление - в ретикулофиброзной костной ткани, или строго ориентированное направление - в пластинчатой костной ткани.

костный ткань остеогистогенез кровь клетка

15. Скелетные соединительные ткани. Костные ткани (кость, надкостница, красный костный мозг)

Кость – это орган, основным структурным КПМРП-нентом которого являются костная ткань.

Вместе с суставами и связками, соединяющими кости скелета между собой, и мышцами, приклепле

ными к кости сухожилиями, кости образуют опорно-двигательный аппарат. По форме и строени кости бывают длинные или трубчатые, плоские, или широкие, и короткие (например позвонки).

Кость как орган состоит из таких элементов, как:

1) костная ткань;

2) надкостница;

3) костный мозг (красный, желтый);

4) сосуды и нервы.

Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение, сходное с надхрящницей.

Надкостница – тонкая прояная соединительнотканная пластинка, которая богата кровеносными и лимфатическими сосудами, нервами.

Таким образом, вследствие костеобразующихсвойств надкостницы кость растет в толщину. С костью надкостница прочно сращена при помощи проюодающих волокон, уходящих в глубь кости.

Красный костный мозг рассматривается как самостоятельный орган и относится корганам кроветворения и иммуногенеза.

Костная ткань в сформированных костях представлена в основном пластинчатой формой, однако в разных костях, в разных участках одной кости она имеет разное строение. В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины (трабекулы), составляющие губчатое вещество кости.

Строение диафиза трубчатой кости. На поперечном срезе диафиза трубчатой кости различают следующие слои:

1) надкостницу (периост);

2) наружный слой общих, или генеральных, пластин;

3) слой остеонов;

4) внутренний слой общих, или генеральных, пластин;

5) внутреннюю фиброзную пластинку (эндост). Классификация костных тканей. Различают две разновидности костных тканей:

1) ретикулофиброзную (грубоволокнистую);

2) пластинчатую (параллельно волокнистую).

В основе классификации лежит характер расположения коллагеновых волокон. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагено-вые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретику-лофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных).

Занятие № 10

Движение. Структура опорно-двигательной системы. Профилактика её заболеваний

II. Скелет

III. Мышечный аппарат

Строение мышц

2) Группы мышц

I. Функциональная структура опорно-двигательной системы

1) Опора тела

2) Перемещение тела или его частей в пространстве

3) Защитная (защита внутренних органов, головного и спинного мозга и др.)

Основные принципы функционирования системы

1) Основные принципы функционирования скелета: работает в соответствии с законами механики

2) Основные принципы функционирования мышечного аппарата:

А) произвольный (сознательный) характер сокращения

Б) большинство мышц сгруппировано в функциональные комплексы - агонисты (осуществляют перемещение организма или его части в одном направлении) и антагонисты (осуществляют перемещение организма или его части в противоположных направлениях); согласованная работа этих мышечных комплексов достигается благодаря координации процессов возбуждения и торможения в нейронах соответствующих соматических дуг)

В) при чрезмерных нагрузках на мышцы в них развивается состояние утомления; возникающие при этом мышечные боли и чувство утомления связывают с относительным дефицитом кислорода в ткани мышц (доставка отстает от потребления), активацией гликолиза, образованием избыточных количеств молочной кислоты и ее выходом в общий кровоток

3) Регуляторные механизмы

А) нервная регуляция опорно-двигательной системы осуществляется соматическим отделом нервной системы

Б) основной принцип регуляции - рефлекторный (соматические рефлекторные дуги замыкаются на уровне спинного мозга и ствола головного мозга)

В) важную роль в деятельности соматической нервной системы играет средний мозг

В) высшим звеном системы регуляции движений является кора больших полушарий конечного мозга (кожно-мышечные зоны, локализованные по обе стороны от центральной борозды)

Г) наряду с вышеперечисленными нервными структурами важную роль в регуляции двигательной активности играют мозжечок, базальные ядра конечного мозга, лимбическая система.

II. Скелет

Насчитывает более 200 костей. Строение костей.

1) Классификация костей:

Плоские кости (пр.: лобные и теменные кости черепа, лопатка, грудина)

Трубчатые кости (пр.: бедренная, плечевая)

Анатомическое строение костей

Плоских костей: состоят из двух тонких пластинок, между которыми находится губчатое вещество

Трубчатых костей: в трубчатой кости различают два эпифиза, образованные губчатым веществом, и диафиз, построенный из компактного вещества. Эпифизы снаружи покрыты гиалиновым хрящом (часть суставного аппарата)

Диафиз снаружи покрыт надкостницей, изнутри, со стороны костномозговой полости - эндостом; надкостница выполняет защитную и трофическую функции, а также обеспечивает рост (в толщину) и регенерацию кости.

Гистологическое строение костей

Кости взрослого человека состоят из пластинчатой костной ткани; грубоволокнистая костная ткань встречается только в черепных швах и местах прикрепления сухожилий к костям. Общий план микроскопического строения костной ткани: элементарным структурным блоком пластинчатой костной ткани является костная пластинка, состоящая из множества параллельно ориентированных коллагеновых волокон, пропитанным фосфорнокислым кальцием, и клеток (в основном, остеоцитов). Из костных пластинок формируются структуры более высокого порядка - остеоны, генеральные пластинки и костные пакеты. Остеон представляет собой систему концентрических цилиндров, стенка которых образована костной пластинкой, в центре которой проходит канал, содержащий сосуды и нервные волокна. Важно отметить, что направления волокон в соседних цилиндрах не совпадает, что обеспечивает высокую механическую прочность конструкции в целом. Остеоны составляют основу компактного вещества трубчатых костей. Генеральные пластинки представляют собой множество (как правило, до десяти) протяженных костных пластинок, расположенных по внешнему и внутреннему периметрам диафиза трубчатых костей. Костный пакет представляют собой комплекс из нескольких костных пластинок. Множество костных пакетов формируют губчатое вещество плоских костей и эпифизов трубчатых костей, необходимо подчеркнуть, что внутренняя архитектура костей такова, что все их структурные элементы организованы в пространстве в соответствии с направлением силовых линий, благодаря чему достигается значительная прочность при относительно малой толщине костей.

Соединения костей

А) Непрерывные: характеризуются наличием прокладки между костями, состоящей из соединительной ткани (пр.: связки позвоночника), хряща (пр.: межпозвоночные диски), костной ткани (пр.: соединения лобных и теменных костей черепа),

Б) Прерывные: характеризуются следующим строением: между костями имеется полость, содержащая жидкость, которая уменьшает трение суставных поверхностей (последние, как указывалось выше, покрыты гиалиновым хрящём). Суставной аппарат включает в себя вспомогательные структуры, в частности, суставную сумку из соединительной ткани. Разновидности прерывных суставов: цилиндрический (пр.: сустав между I и II шейными позвонками), блоковидный (пр.: межфаланговый сустав), эллипсоидный (пр.: лучезапястный сустав), седловидный (пр.: запястно-пястный сустав большого пальца), плоский (пр.: сустав между плоскими отростками позвонков), шаровидный (пр.: тазобедренный сустав)

Отделы скелета

А) Скелет головы (череп) включает: мозговой отдел состоит из шести костей - одной лобной, двух теменных, двух височных, одной затылочной), лицевой отдел образован пятью основными костями - одной верхней челюстью, одной нижней челюстью, двумя скуловыми костями, одной небной костью.

Б) Скелет туловища представлен:

· позвоночником, построенным из отдельных позвонков, соединенных с помощью межпозвоночных дисков (состоят из волокнистого хряща, обеспечивают гибкость позвоночника, выполняют амортизирующую функцию). Отдельный позвонок представляет собой костное кольцо. Позвоночник состоит из пяти отделов: шейного (7 позвонков), грудного (12 позвонков), поясничного (5 позвонков), крестцового (5 сросшихся позвонков), копчикового (4-5 сросшихся позвонков). Позвоночник характеризуется S-образной формой, имеет четыре изгиба: два назад (кифозы) и два вперед (лордозы).

· грудной клеткой, включающей в себя грудной отдел позвоночника, грудину, 12 пар ребер (10 из них соединяются с грудиной, 2 - колеблющиеся)

В) скелет конечностей представленный верхними конечностями, состоящими из пояса верхних конечностей: 2 лопатки, 2 ключицы. Скелет свободной конечности: плечо (плечевая кость), предплечье (локтевая и лучевая кости), кисть (кости запястья, пястья, пальцев). Нижние конечности представлены поясом нижних конечностей, состоящих из таза (костное кольцо, состоящее из двух тазовых костей и крестца). Скелет свободной конечности: бедро (бедренная кость), голень (большая и малая берцовые кости), стопа (кости предплюсны, плюсны, пальцев).

III. Мышечный аппарат

Насчитывает более 400 мышц

Строение мышц

А) анатомическое строение. Мышца - орган, в котором различают сократительную часть (или тело, состоящее из головки, брюшка и хвоста) и сухожилия (построенное из плотной оформленной соединительной ткани), с помощью которых он прикрепляется к костям и др. структурам; снаружи мышца покрыта фасцией. Разновидности мышц:

· в зависимости от числа головок (двуглавые, например, двуглавая мышца плеча), трехглавые, например, трехглавая мышца плеча, четырехглавые, например, четырехглавая мышца бедра)

· по форме (длинные, например, двуглавая мышца плеча, короткие, например, короткие сгибатели пальцев кисти, широкие, например, диафрагма)

Гистологическое строение мышц:

Основу скелетных мышц составляет поперечнополосатая скелетная мышечная ткань, структурной единицей которой является мышечное волокно (симпласт)

Мышечное волокно покрыто тонкой соединительнотканной оболочкой, в которой проходят сосуды и нервы

Группы мышечных волокон формируют пучки различного ранга, разделенные прослойками соединительной ткани

В центре мышечного волокна находится его сократительный аппарат - множество параллельно ориентированных миофибрилл (органеллы специального значения)

Ядра и большинство органелл общего значения располагаются на периферии мышечного волокна

Миофибриллы характеризуются поперечной исчерченностью - регулярным чередованием светлых (I) и темных (A) дисков

Темные диски образованы миозиновыми фибриллами, светлые - актиновыми (последние крепятся к пластинке, проходящей посередине I-диска - Z-полоске)

Наименьшей повторяющейся единицей миофибриллы, способной к сокращению, является саркомер, включающий в себя половину I-диска, А-диск и половину I-диска (формула его имеет следующий вид: 1/2 I + A + 1/2

Механизм сокращения: тонкие актиновые фибриллы втягиваются толстыми миозиновыми фибриллами вглубь А-диска (теория скольжения); процесс нуждается в АТФ и ионах Са

Группы мыш

А) мышцы головы

I группа - мимические мышцы: лобные, круговые мышцы глаз и рта

II группа - жевательные мышцы: височные, жевательные, внутренние и наружные крыловидные

Б) мышцы шеи

Подкожная мышца (платизма), грудино-ключично-сосцевидные мышцы, подъязычные мышцы.

В) мышцы спины

Различают поверхностные (трапециевидная мышца, широчайшая мышца спины, ромбовидная мышца, зубчатые мышцы и мышцв, поднимающие лопатки) и глубокие (мышцы-выпрямители позвоночника и др.)

Г) мышцы живота

Прямая, поперечная и косые мышцы живота (все эти мышцы имеют широкие и плоские сухожилия, которые соединяясь между собой, формируют белую линию живота).

Мышцы брюшной стенки в совокупности образуют брюшной пресс, играющий важную роль в актах дефекации и мочеиспускания, а также в родовой деятельности

Д) мышцы груди

Большие и малые грудные мышцы, наружные и внутренние межреберные мышцы, диафрагма (с отверстиями для пищевода и сопровождающих его блуждающих нервов, трахеи, аорты, нижней полой вены, симпатического нервного ствола и некоторых других нервов и сосудов)

Е) мышцы плечевого пояса

Дельтовидные мышцы.

Ж) мышцы плеча

Двуглавая мышца плеча, плечевая мышца, трехглавая мышца плеча.

З) мышцы предплечья

Плечелучевая мышца, сгибатели кисти и пальцев, разгибатели кисти и пальцев.

И) мышцы кисти

Мышцы I -го пальца, V -го пальца, средняя группа мышц, обеспечивающая сгибание, разгибание и отведение фаланг.

К) мышцы тазового пояса

Большие, средние и малые ягодичные мышцы

Л) мышцы бедра

Четырехглавая мышца бедра, портняжная мышца, двуглавая мышца бедра, полусухожильная мышца, полуперепончатая мышца.

М) мышцы голени

Большеберцовая мышца, малоберцовые мышцы, трехглавая мышца голени (состоит из двух мышц: икроножной и камбаловидной).

Н) мышцы стопы.

Короткие разгибатели пальцев, внутренние, средние и наружные мышцы, обеспечивающие сгибание и боковые движения пальцев.


Похожая информация.


Костная ткань - важнейшая ткань в нашем организме. Она выполняет множество функций. Костную ткань в гистологии относят к разновидности скелетной соединительной ткани, к которой относится также хрящевая ткань. Клетки скелетных соединительных тканей, в том числе и костной, развиваются из мезенхимы.

Скелетные соединительные ткани

Скелетные соединительные ткани выполняют множество функций:

  1. Кости - это опора всего организма. Скелет позволяет человеку, состоящему целиком и полностью из мягких тканей, уверенно чувствовать себя в пространстве.
  2. Благодаря скелету мы можем двигаться. Мышцы крепятся к костям, которые, в свою очередь, образуют рычаги движения, позволяющие выполнять любые действия.
  3. Депо многих минеральных веществ находится именно в костной ткани. Костная ткань участвует в метаболизме фосфатов и кальция.
  4. В костях, а именно в красном костном мозге, происходит кроветворение.

Функции костной ткани в гистологии определяют как совпадающие с функциями всех скелетных соединительных тканей, однако у этой ткани есть ряд уникальных свойств.

Основной чертой и отличием костной ткани от других соединительных является высокое содержание в ней минеральных веществ, которое составляет 70 %. Этим объясняется прочность костей, ведь межклеточное вещество костной соединительной ткани находится в твердом состоянии.

Костные ткани. Химический состав костной ткани

Костную ткань нужно начать с изучения ее химического состава. Это позволит понять ее особенные свойства. Содержание органических веществ в ткани составляет от 10 до 20 %. Воды содержится от 6 % до 20 %, минеральных веществ, как было сказано выше, больше всего - до 70 %. Основные элементы минерального вещества кости - это фосфат кальция и гидроксиапатиты. Также высоко содержание минеральных солей.

Сочетание органических и неорганических веществ костной ткани объясняет прочность, упругость костей, их способность выдерживать большие нагрузки. В то же время слишком высокое содержание минеральных веществ придает костям значительную хрупкость.

Межклеточное вещество образовано на 95 % коллагеном I типа. На волокнах белка скапливаются органические вещества. Фосфопротеины способствуют накоплению ионов кальция в костях. Протеогликаны способствуют связыванию коллагена с минеральными соединениями, образованию которых, в свою очередь, помогает щелочная фосфатаза и остеонектин, стимулирующий дальнейший рост кристаллов неорганических соединений.

Клеточные компоненты

Клетки костной ткани в гистологии делят на три вида: остеобласты, остеоциты и остеокласты. Клеточные компоненты взаимодействуют между собой, образуя целостную систему.

Остеобласты

Остеобласты - это клетки кубической, овальной формы с эксцентрично расположенным ядром. Размер таких клеток составляет приблизительно 15-20 мкм. Органеллы развиты хорошо, выражена гранулярная ЭПС и комплекс Гольджи, что может объяснить активный синтез экспортируемых белков. В гистологии на препарате костной ткани цитоплазма клеток окрашивается базофильно.

Остеобласты локализуются на поверхности костных балок в образующейся кости, там же они остаются у зрелых костей в губчатом веществе. В сформированных костях остеобласты можно обнаружить в надкостнице, в эндосте, покрывающем костномозговой канал, в периваскулярном пространстве остеонов.

Остеобласты принимают участие в остеогенезе. Благодаря активному синтезу и экспорту белков образуется матрикс кости. Благодаря щелочной фосфатазе, которая активна в клетке, идет накопление минеральных веществ. Не стоит забывать о том, что остеобласты - это предшественники остеоцитов. Остеобласты выделяют матриксные пузырьки, содержимое которых запускает процесс образования кристаллов из минеральных веществ в костном матриксе.

Остеобласты делятся на активные и покоящиеся. Активные участвуют в остеогенезе и продуцируют компоненты матрикса. Покоящиеся остеобласты с эндостальной мембраной защищают костное вещество от остеокластов. Покоящиеся остеобласты могут активироваться при перестройки кости.

Остеоциты

Остеоциты - это зрелые, хорошо дифференцированные клетки костной ткани, располагающиеся по одной в лакунах, называемых еще костными полостями. Клетки овальной формы с многочисленными отростками. Размер остеоцитов составляет примерно 30 мкм в длину и до 12 в ширину. Ядро вытянутое, расположено по центру. Хроматин конденсирован, образует крупные глыбки. Органеллы развиты слабо, чем может объясняться малая синтетическая активность остеоцитов. Клетки соединяются друг с другом отростками посредством клеточных контактов нексусов, образуя синцитий. По отросткам происходит обмен веществами между тканью кости и кровеносными сосудами.

Остеокласты

Остеокласты, в отличие от остеобластов и остеоцитов, происходят из клеток крови. Остеоциты образуются при слиянии нескольких промоноцитов, поэтому некоторые авторы не считают их клетками и причисляют к симпластам.

По строению остеокласты представляют собой крупные чуть вытянутые клетки. Размер клеток может варьировать от 60 до 100 мкм. Цитоплазма может окрашиваться как оксифильно, так и базофильно, все зависит от возраста клеток.

В клетке можно выделить несколько зон:

  1. Базальная, содержащая основные органеллы и ядра.
  2. Гофрированная каемка из микроворсинок, проникающих в кость.
  3. Везикулярная зона, в которой содержатся разрушающие кость ферменты.
  4. Светлая зона прилипания, способствующая фиксированию клетки.
  5. Зона резорбции

Остеокласты разрушают костную ткань, участвуют в перестройке кости. Разрушение костного вещества, или, по-другому, резорбция, - важный этап перестройки, за которым следует образование нового вещества с помощью остеобластов. Локализация остеокластов совпадает с нахождением остеобластов, в углублениях на поверхностях костных балок, в эндосте и надкостнице.

Надкостница

Надкостница состоит из остеобластов, остеокластов и остеогенных клеток, которые участвуют в росте и восстановлении кости. Надкостница богата кровеносными сосудами, ветви которых обвивают кость, проникая в ее вещество.

В гистологии классификация костных тканей не очень обширна. Ткани делят на грубоволокнистую и пластинчатую.

Грубоволокнистая костная ткань

Грубоволокнистая костная ткань встречается в основном у ребенка до его рождения. У взрослого она остается в швах черепа, в зубных альвеолах, во внутреннем ухе, в местах прикрепления сухожилий к костям. Грубоволокнистая костная ткань в гистологии определяется предшественницей пластинчатой.

Ткань состоит из хаотично расположенных толстых пучков коллагеновых волокон, которые располагаются в матриксе, состоящем из неорганических веществ. В также находятся кровеносные сосуды, которые развиты достаточно слабо. Остеоциты расположены в межклеточном веществе в системах лакун и каналов.

Пластинчатая костная ткань

Все кости организма взрослого, за исключением мест прикрепления сухожилий и участков черепных швов, состоят из пластинчатой костной соединительной ткани.

В отличие от грубоволокнистой костной ткани, все компоненты пластинчатой структурированы и образуют костные пластинки. в пределах одной пластинки имеют одно направление.

Существует две разновидности пластинчатой костной ткани в гистологии - губчатая и компактная.

Губчатое вещество

В губчатом веществе пластинки объединяются в трабекулы, структурные единицы вещества. Дугообразные пластинки лежат параллельно друг другу, образуя бессосудистые костные балки. Пластинки ориентированы вдоль направления самих трабекул.

Трабекулы соединяются друг с другом под разными углами, образуя объемную структуру. В промежутках между костными балками располагаются костные ячейки, что делает это вещество пористым, объясняя название ткани. В ячейках находится красный костный мозг и сосуды, питающие кость.

Губчатое вещество находится во внутренней части плоских и губчатых костей, в эпифизах и внутренних слоях диафиза трубчатых.

Компактное костное вещество

Гистология пластинчатой костной ткани должна быть хорошо изучена, т. к. именно эта разновидность костной ткани является наиболее сложноустроенной и содержит множество разнообразных элементов.

Костные пластинки в компактном веществе расположены по окружности, они вкладываются друг в друга, образуя плотную стопку, где практически нет промежутков. Структурной единицей является остеон, образованный костными пластинами. Пластинки можно разделить на несколько видов.

  1. Наружные генеральные пластинки. Располагаются прямо под надкостницей, опоясывая всю кость. В губчатых и плоских костях компактное вещество может быть выражено только такими пластинками.
  2. Остеонные пластинки. Такой тип пластинок образует остеоны, концентрические пластины, лежащие вокруг сосудов. Остеон - основной элемент компактного вещества диафизов в трубчатых костях.
  3. Вставочные пластинки, являющиеся остатками разрушающихся пластинок.
  4. Внутренние генеральные пластинки окружают костномозговой канал с желтым костным мозгом.

Компактное вещество локализуется в поверхностном слое плоских и губчатых костей, в диафизе и поверхностных слоях эпифиза трубчатых костей.

Кость покрыта надкостницей, содержащий камбиальные клетки, благодаря которым кость растет в толщину. Также в надкостнице содержатся остеобласты и остеокласты.

Под накостницей лежит слой наружных генеральных пластинок.

В самом центре трубчатой кости располагается костномозговая полость, покрытая эндостом. Эндост покрывают внутренние генеральные пластинки, заключая его в кольцо. К костномозговой полости могут примыкать трабекулы губчатого вещества, поэтому в некоторых местах пластинки могут становиться менее выраженными.

Между наружным и внутренним слоями генеральных пластинок располагается остеонный слой кости. В центре каждого остеона находится Гаверсов канал с кровеносным сосудом. Гаверсовы каналы сообщаются между собой поперечными каналами Фолькмана. Пространство между пластинками и сосудом называется периваскулярным, сосуд покрывает рыхлая соединительная ткань, а в периваскулярном пространстве содержатся клетки, сходные с клетками надкостницы. Канал окружают слои остеонных пластинок. В свою очередь остеоны отделяются друг от друга резорбционной линией, которую нередко называют спайной. Также между остеонами находятся вставочные пластинки, представляющие собой остаточный материал остеонов.

Между пластинками остеона располагаются костные лакуны с заключенными в них остеоцитами. Отростки остеоцитов образуют канальцы, по которым перпендикулярно пластинам происходит транспорт питательных веществ в кости.

Волокна коллагена позволяют видеть в микроскоп костные каналы и полости, т. к. выстланные коллагеном участки прокрашиваются коричневым цветом.

В гистологии на препарате пластинчатая костная ткань окрашивается по Шморлю.

Остеогенез

Остеогенез бывает прямой и непрямой. Прямое развитие осуществляется из мезенхимы, из клеток соединительной ткани. Непрямое - из клеток хрящевой. В гистологии прямой остеогенез костной ткани рассматривается перед непрямым, т. к. является более простым и древним механизмом.

Прямой остеогенез

Из соединительной ткани развиваются кости черепа, мелкие кости кисти и другие плоские кости. В образовании костей таким способом можно выделить четыре стадии

  1. Образование скелетогенного зачатка. В первый месяц из сомитов в мезенхиму попадают стромальные стволовые клетки. Происходит размножение клеток, обогащение ткани сосудами. Под влиянием факторов роста клетки формируют скопления до 50 штук. Клетки секретируют белки, размножаются и растут. В стволовых стромальных клетках запускается процесс дифференцировки, они превращаются в остеогенные клетки-предшественницы.
  2. Остеоидная стадия. В остеогенных клетках происходит синтез белков и накопление гликогена, органелл становится больше, они активнее функционируют. Остеогенные клетки синтезируют коллаген и другие белки, например костный морфогенетический белок. Со временем клетки начинают реже размножаться и дифференцируются в остеобласты. Остеобласты участвуют в формировании межклеточного вещества, бедного минералами и богатого органическим веществом, остеоида. Именно на этой стадии появляются остеоциты и остеокласты.
  3. Минерализация остеоида. В этом процессе также участвуют остеобласты. В них начинает работать щелочная фосфатаза, активность которой способствует накоплению минеральных веществ. В цитоплазме появляются матриксные пузырьки, заполненные белком остеокальцином и фосфатом кальция. Минеральные вещества приклеиваются к коллагену благодаря остеокальцину. Трабекулы увеличиваются и, соединяясь друг с другом, образуют сеть, где еще остается мезенхима и сосуды. Получившаяся ткань называется первичной перепончатой тканью. Костная ткань является грубоволокнистой, формирует первичную губчатую кость. В эту стадию из мезенхимы образуется надкостница. Вблизи кровеносных сосудов надкостницы возникают клетки, которые затем будут участвовать в росте и регенерации кости.
  4. Образование костных пластинок. На этой стадии происходит замещение первичной перепончатой костной ткани на пластинчатую. Остеоны начинают заполнять промежутки между трабекулами. Из кровеносных сосудов в кость поступают остеокласты, которые образуют в ней полости. Именно остеокласты создают полость для костного мозга, влияют на форму кости.

Непрямой остеогенез

Непрямой остеогенез протекает при развитии трубчатых и губчатых костей. Для понимания всех механизмов остеогенеза нужно хорошо разбираться в гистологии хрящевой и костной соединительных тканей.

Весь процесс можно разбить на три этапа:

  1. Образование хрящевой модели. В диафизе хондроциты испытывают нехватку питательных веществ и становятся пузырчатыми. Выделяющиеся матриксные пузырьки приводят к обызвествлению В гистологии хрящевая и костная ткани взаимосвязаны. Они начинают заменять друг друга. Надхрящница становится надкостницей. Хондрогенные клетки переходят в остеогенные, которые, в свою очередь, становятся остеобластами.
  2. Образование первичной губчатой кости. На месте хрящевой модели возникает грубая волокнистая соединительная ткань. Также образуется перихондральное костное кольцо, костная манжета, где остеобласты образуют трабекулы прямо в месте диафиза. Из-за возникновения костной манжеты питание хряща становится невозможным, и хондроциты начинают погибать. Хрящевая и костная ткани в гистологии очень взаимосвязаны. Вслед за гибелью хондроцитов остеокласты образуют каналы от периферии кости к глубине диафиза, по которым идет движение остеобластов, остеогенных клеток и кровеносных сосудов. Начинается энхондральное окостенение, со временем переходящее в эпифизарное.
  3. Перестройка ткани. Первичная грубая волокнистая ткань постепенно переходит в пластинчатую.

Рост и развитие костной ткани

Рост кости у человека идет до 20 лет. Кость растет в ширину за счет надкостницы, в длину за счет метаэпифизарной пластинки роста. В метаэпифизарной пластинке можно выделить зону покоящегося хряща, зону столбчатого хряща, зону пузырчатого хряща и зону обызвествленного хряща.

Множество факторов влияет на рост и развитие костей. Это могут быть факторы внутренней среды, факторы внешней среды, недостаток или избыток определенных веществ.

Рост сопровождается резорбцией старой ткани и замещением ее новой молодой. В детском возрасте кости растут очень активно.

На рост костей влияет множество гормонов. Например, соматотропин стимулирует рост костей, но при его избытке может возникать акромегалия, при недостатке - карликовость. Инсулин необходим для правильного развития остеогенных и стволовых стромальных клеток. Половые гормоны также влияют на рост костей. Их повышенное содержание в раннем возрасте может привести к укорочению костей из-за раннего окостенения метаэпифизарной пластинки. Их пониженное содержание в зрелом возрасте может приводить к остеопорозу, повышать хрупкость костей. Гормон щитовидной железы кальцитонин приводит к активации остеобластов, паратирин увеличивает количество остеокластов. Тироксин влияет на центры окостенения, гормоны надпочечников - на процессы регенерации.

На рост костей оказывают влияние также некоторые витамины. Витамин C способствует синтезу коллагена. При гиповитаминозе можно наблюдать замедление регенерации костной ткани, гистология при подобных процессах может помочь выяснить причины заболевания. Витамин A ускоряет остеогенез, следует быть внимательными, потому что при гипервитаминозе наблюдается сужение костных полостей. Витамин D помогает организму усваивать кальций, при авитаминозе происходит искривление костей. При этом образовавшаяся ткань в гистологии сопровождается термином остеомаляция, также такие симптомы характерны для рахита у детей.

Перестройка кости

В процессе перестройки происходит замена грубоволокнистой соединительной ткани на пластинчатую, обновление костного вещества, регуляция содержания минеральных веществ. В среднем за год обновляется 8 % костного вещества, причем губчатая ткань обновляется в 5 раз интенсивнее, чем пластинчатая. В гистологии костной ткани механизмам перестройки костей отводится особое внимание.

Перестройка включает в себя резорбцию, разрушение тканей и остеогенез. С возрастом резорбция может преобладать. Этим объясняется остеопороз у пожилых людей.

Процесс перестройки состоит из четырех этапов: активации, резорбции, реверсии и формирования.

Регенерация костной ткани в гистологии рассматривается как разновидность перестройки костей. Этот процесс очень важен, но самое главное, зная факторы, влияющие на процесс регенерации, мы можем ускорять ее, что очень важно при переломах костей.

Знание гистологии, костных тканей человека полезно как врачам, так и обычным людям. Понимание некоторых механизмов может помочь даже в бытовых вещах, например в лечении переломов, в предотвращении травм. Строение костной ткани в гистологии достаточно хорошо изучено. Но все равно костные ткани далеко не полностью исследованы.