Главная · Боль в деснах · В окрестностях солнечной системы найден коричневый карлик. Темные светила: коричневые карлики. Непредвиденная проблема в изучение коричневых карликов

В окрестностях солнечной системы найден коричневый карлик. Темные светила: коричневые карлики. Непредвиденная проблема в изучение коричневых карликов

Дмитрий Вибе,
докт. физ.-мат. наук, зав. отделом физики и эволюции звезд Института астрономии РАН Величайший астроном-наблюдатель Вильям Гершель, создавая в XVIII веке первую карту нашей Галактики, предполагал, что все звезды одинаковы, а различия в их видимом блеске связаны исключительно с разной удаленностью от Солнца. В полной мере осознать несправедливость этого предположения удалось лишь к концу XIX — началу XX века, когда начались массовые определения расстояний до звезд. Современные же представления о звездах сформировались лишь к середине XX века. Конкретно, в 1920 — 1930-е годы выяснилось, что звезды состоят главным образом из водорода и что наиболее подходящим механизмом энерговыделения в звездах являются термоядерные реакции превращения водорода в гелий.

Термоядерные реакции, как следует из самого их названия, требуют высокой температуры, а температура в ядре звезды, где располагается «термоядерный реактор», обеспечивается массой: чем сильнее звезда сжимается под собственным весом, тем сильнее разогреваются ее недра.

Скорость термоядерных реакций очень сильно зависит от температуры, поэтому массивные звезды стремительно расходуют запасы водорода и живут недолго (миллионы или десятки миллионов лет). Звезды же малых масс (порядка солнечной и ниже) относительно холодны и снаружи, и внутри, и потому превращение водорода в гелий в них идет весьма унылыми темпами и может продолжаться десятки и сотни миллиардов лет.

Ответы на очень многие астрономические вопросы зависят от того, как звезды распределены по массам, точнее, по начальным массам, поскольку в процессе эволюции масса звезды так или иначе меняется (чаще в сторону убывания). По современным представлениям, распределение звезд по начальным массам — начальная функция масс (НФМ) — описывается убывающим степенным законом для звезд с массой порядка солнечной и выше и чем-то логнормальным в области меньших масс. У НФМ есть верхний предел (максимальная масса звезд), равный, по-видимому, 100−200 солнечным массам и связанный с тем, что массивные звезды раздувают сами себя собственным излучением.

Ситуация с нижним пределом (минимальная масса) более сложная. Во-первых, маломассивные объекты сложнее обнаруживать и потому существенно сложнее достоверно пересчитать. Во-вторых, переходя в область малых масс, мы рано или поздно сталкиваемся с объектами, массы (= температуры) которых слишком малы для загорания термоядерных реакций. Ничто не запрещает таким объектам образовываться и существовать; они просто не будут звездами.

Отправной точкой в изучении таких субзвездных объектов считаются работы Шива Кумара (Shiv S. Kumar), опубликованные в 1962—1963 годах. В них он указал, что сжатие газового сгустка заканчивается формированием устойчивой конфигурации без загорания термоядерных реакций, если масса сгустка не превосходит 0,07- 0,09 массы Солнца. Сам Кумар называл такие «недозвезды» черными карликами, однако с 1975 года за ними закрепилось другое название — коричневые (или бурые) карлики.

Коричневые карлики оставались гипотетическими объектами до середины 1990-х годов, когда развитие наблюдательной техники наконец достигло уровня, необходимого для обнаружения столь тусклых объектов. Дело в том, что коричневые карлики, так и не обзаведшиеся внутренним источником энергии, светятся лишь за счет накопленного при сжатии тепла. Один из первых открытых коричневых карликов — спутник звезды Gliese 229. S. Kulkarni (Caltech), D. Golimowski (JHU) and NASA. С сайта hubblesite.org Невысокая температура (примерно от 2500 К до сотен К) в сочетании с небольшим размером приводят к очень низкой светимости, да и то только пока карлик находится в относительно юном возрасте. Неудивительно, что первое сообщение о подтвержденном открытии коричневого карлика (Teide 1), опубликованное в сентябре 1995 года, относилось к объекту в молодом звездном скоплении Плеяды.

Сейчас количество известных коричневых карликов перевалило уже за тысячу, а полное их количество в Галактике как минимум сопоставимо с количеством «нормальных» звезд. Причем, если массы первых обнаруженных коричневых карликов были лишь незначительно ниже предела Кумара, то теперь известны субзвездные объекты, по массе уступающие Юпитеру.

Коричневые карлики и экзопланеты

Практически одновременно с открытием коричневых карликов в том же 1995 году было представлено еще одно значимое открытие — первая экзопланета у «нормальной» звезды. Теперь количество известных (и подтвержденных) экзопланет приближается к двум тысячам, и их массы тоже весьма разнообразны. В частности, среди них нередки планеты, массы которых в разы превосходят массу Юпитера. Иными словами, диапазоны масс планет и коричневых карликов существенно перекрываются.

Возникает естественный вопрос: а чем вообще планеты и коричневые карлики отличаются друг от друга? И те и другие имеют сходные (по крайней мере, перекрывающиеся) массы, и те и другие состоят главным образом из водорода, в спектрах атмосфер и тех и других обнаруживаются признаки значительного количества молекул…

Сейчас для разделения субзвездных объектов на планеты и коричневые карлики принят условный массовый порог — 13 масс Юпитера. При массе выше этого предела в объекте на самом раннем этапе его существования все-таки могут короткое время идти термоядерные реакции, но с участием не водорода, а дейтерия. В двойной системе Oph 162 225−240 515 оба компаньона
являются коричневыми карликами,
причем очень маломассивными,
с массами около 7 и 14 масс
Юпитера. С сайта www.eso.org Дело в том, что первый, самый медленный шаг в стандартной протон-протонной цепочке превращения водорода в гелий представляет собой именно формирование дейтерия. Если дейтерий в газе уже есть (а он есть, остался после Большого взрыва), для его превращения в гелий достаточно и менее высокой температуры, поэтому дейтерий способен гореть в объектах существенно меньшей массы. Но, увы, дейтерия мало, и потому эти реакции быстро заканчиваются. Так вот, предельно малое значение массы для загорания дейтерия — именно 13 масс Юпитера. Но понятно, что это разделение ничего не говорит о том, по какому сценарию — «звездному» или «планетному» — образовался объект.

На первый взгляд вопрос о сценарии выглядит надуманным. Казалось бы, разница очевидна: планеты обращаются вокруг звезд, тогда как коричневые карлики представляют собой самостоятельные объекты, по сути, продолжение звездной НФМ в субзвездную область. Однако где гарантия, что «планета» с массой, скажем, 20 масс Юпитера (такие есть) образовалась именно как планета, а не как компонент двойной системы?

С другой стороны, есть и сценарии эволюции планетных систем, в которых некоторые планеты в результате взаимодействия со своими компаньонами выбрасываются из системы и отправляются в свободный полет. То есть теперешняя изоляция «коричневого карлика» с массой порядка массы Юпитера (и такие есть) вовсе не означает, что и родился он тоже в одиночестве.

С образованием коричневых карликов есть еще одна проблема: современные модели звездообразования зачастую предсказывают существенно меньшее количество коричневых карликов, чем их реально наблюдается. Образовать в турбулентном молекулярном облаке очень маломассивный сгусток оказывается не так-то просто. Поэтому в литературе время от времени появляются предположения о «третьем сценарии» формирования коричневых карликов, специфическом только для них.

Согласно одному из предлагаемых вариантов, коричневый карлик начинает свою жизнь как газовый сгусток в молекулярном облаке, но не успевает вырасти до звездного размера, потому что выбрасывается из облака из-за гравитационного взаимодействия с другими сгустками, которые по каким-то причинам росли (набирали массу) быстрее.

Важным признаком того, что коричневые карлики образуются именно по стандартному звездному сценарию, может стать их способность самим быть центрами планетных систем. В настоящее время планеты у коричневых карликов действительно обнаружены — около десятка. Самые массовые методы обнаружения экзопланет (лучевых скоростей и транзитный) с коричневыми карликами не работают; половина планет из этого десятка найдена при помощи микролинзирования, и еще половина была замечена на прямых изображениях.

Исследование протопланетных дисков

Статистика, прямо сказать, не очень богатая, поэтому более прогрессивным представляется другой способ — исследование протопланетных дисков у коричневых карликов. Конечно, не только планеты, но и диски у субзвездных объектов обнаруживать гораздо сложнее, чем у обычных звезд, но это все-таки возможно. Вообще, протопланетные диски у звезд с массой выше предела Кумара -объекты существенно более крупные, чем сами звезды, и потому их довольно часто удается наблюдать как протяженные объекты. Однако косвенные признаки наличия диска можно получить даже в тех случаях, когда разглядеть собственно диск по каким-то причинам невозможно. Во-первых, на существование диска указывает избыточное инфракрасное (ИК) излучение в спектре звезды: это светится не сама звезда, а пыль в диске, нагретая звездным излучением. Во-вторых, признаком наличия диска могут быть эмиссионные линии в спектре звезды (главным образом линии водорода), а также избыточное излучение в ультрафиолетовом диапазоне.

И линии, и ультрафиолетовый избыток указывают на присутствие очень горячего газа, существенно более горячего, чем поверхность звезды. Предполагается, что так проявляет себя газ, падающий на звезду — опять же из диска. По сути, аккреция вещества на звезду в данном случае является признаком ее молодости, точнее, признаком того, что формирование звезды еще не завершилось, а формирование планетной системы либо вовсе еще не началось, либо началось совсем недавно.

Нужно признать, что слово «протопланетный», прилагаемое к диску, есть некоторое забегание вперед: явных признаков образования планет в этих дисках пока никто не видел. Но косвенные свидетельства есть и в этом случае. Например, наблюдения указывают, что пыль в дисках крупнее, чем в родительских молекулярных облаках, а рост пыли как раз и есть первый шаг к образованию планет.

Все эти критерии применимы и к исследованиям коричневых карликов. Правда, находить у них диски по инфракрасному избытку сложнее, поскольку коричневые карлики, более холодные, чем звезды, обладают заметным собственным излучением в инфракрасном диапазоне. В то же самое время их диски, наоборот, более холодны. Иными словами, собственный инфракрасный спектр центрального объекта более ярок, а добавка от диска — менее значительна. Поэтому при выявлении предполагаемых дисков у коричневых карликов наблюдатели стараются по возможности не ограничиваться только обнаружением ИК-избытка, но и дополнять его наблюдениями эмиссионных линий. Таким образом, ИК-избыток указывает на наличие диска, а эмиссионные линии — на то, что этот диск является аккреционным, то есть поставляет вещество на центральный объект.

Конечно, лучше всего наблюдать протопланетные диски и у звезд, и у коричневых карликов на длинных волнах. В инфракрасном диапазоне светится только центральная горячая часть диска, а его более значительная холодная часть излучает в субмиллиметровом и миллиметровом диапазонах. Поэтому достоверно оценить массу и размер диска можно только по длинноволновым данным.

Однако такие наблюдения существенно более сложны, чем наблюдения в оптическом и инфракрасном диапазонах, и даже для дисков у звезд выполнены лишь для нескольких объектов. У коричневых карликов же пространственно разрешенные наблюдения дисков проведены лишь для трех объектов, и делать это на сегодняшний день можно при помощи считаных инструментов, которые к тому же не жалуются на недостаток желающих на них наблюдать.

Тем не менее имеющиеся данные позволяют сделать важные выводы. Определив по инфракрасному избытку количество объектов с дисками, по ультрафиолетовому избытку и интенсивности эмиссионных линий — темп аккреции (выпадения вещества из диска на центральный объект), по наблюдениям в миллиметровом и субмиллиметровом диапазонах — массы и размеры дисков, можно определить место коричневых карликов в общей картине звездо- и планетообразования. И это место оказывается рядом со звездами.

Начнем с того, что доля коричневых карликов с дисками такая же, как и доля звезд с дисками: примерно половина. Далее, массы дисков коричневых карликов вписываются (хотя и с большим разбросом) в общую закономерность, ранее выведенную для звезд, — масса диска составляет примерно 1% от массы центрального объекта.

Темп дисковой аккреции и на звезды, и на коричневые карлики также подчиняется общей закономерности, будучи пропорциональным квадрату массы центрального объекта. Структура и размеры дисков коричневых карликов в тех редких случаях, когда их удается определить, также не выглядят чем-то из ряда вон выходящим. Диск у коричневого карлика OTS 44 в представлении художника. NASA/JPL-Caltech/T. Pyle (SSC). С сайта www.spitzer.caltech.edu Заключение

В общем, по крайней мере в отношении параметров дисков звёзды и коричневые карлики кажутся представителями единого населения с общей историей образования. Причем этот вывод подтверждается не только для более массивных карликов, но и для карликов планетных масс, порядка 10 масс Юпитера. Это указывает, что даже самые мелкие коричневые карлики рождаются самостоятельно.

Со сценарием выброса из области звездообразования всё не так ясно. С одной стороны, кажется, что такое драматическое событие должно было бы оставить коричневый карлик без диска. С другой стороны, модели показывают, что маленький диск при этом может уцелеть. Правда, у всех трех дисков, размеры которых были оценены при помощи ALMA, эти размеры оказались вполне солидными, от 66 до 139 а.е., поболе даже и Солнечной системы. Но, может быть, эти диски нетипичны?

Что мы сами пытаемся сделать: поскольку умеем моделировать структуру дисков и их молекулярный состав, логично попробовать найти между дисками коричневых карликов и дисками «нормальных» звезд какие-то обнаружимые отличия. Правда, проверить эти отличия в наблюдениях будет нелегко… Даже в «больших» дисках количество обнаруженных молекул пока едва перевалило за десяток, а в дисках у коричневых карликов и вовсе найдены только вода, ацетилен, углекислый газ и изомеры HCN и HNC. Однако есть надежда, что будущие наблюдения на ALMA позволят существенно расширить этот список.

Чем обширнее становятся теоретические знания и технические возможности ученых, тем больше открытий они совершают. Казалось бы, уже все объекты космоса известны и необходимо только объяснить их особенности. Однако Вселенная каждый раз при возникновении такой мысли у астрофизиков преподносит им очередной сюрприз. Часто, впрочем, такие новшества бывают предсказаны теоретически. В число подобных объектов входят коричневые карлики. До 1995 года они существовали только «на кончике пера».

Давайте знакомиться

Коричневые карлики — звезды довольно необычные. Все основные их параметры сильно отличны от характеристик привычных для нас светил, впрочем, есть и сходство. Строго говоря, коричневый карлик — субзвездный объект, он занимает промежуточное положение между собственно светилами и планетами. Эти имеют сравнительно небольшую массу — от 12,57 до 80,35 от аналогичного параметра Юпитера. В их недрах, как и в центрах других звезд, осуществляются термоядерные реакции. Отличие коричневых карликов в крайне незначительной роли водорода в этом процессе. В качестве топлива такие звезды используют дейтерий, бор, литий и бериллий. «Горючее» сравнительно быстро заканчивается, и коричневый карлик начинает остывать. После завершения этого процесса он становится планетоподобным объектом. Таким образом, коричневые карлики — звезды, никогда не попадающие на главную последовательность диаграммы Герцшпрунга—Рассела.

Невидимые странники

Эти интересные объекты отличаются еще несколькими примечательными характеристиками. Они представляют собой блуждающие звезды, не связанные с какой-либо галактикой. Теоретически подобные космические тела могут бороздить просторы космоса на протяжении многих миллионов лет. Однако одно из самых их значительных свойств — практически полное отсутствие излучения. Заметить такой объект без использования специальной аппаратуры невозможно. Подходящего оборудования у астрофизиков не было на протяжении достаточно длительного периода.

Первые открытия

Наиболее сильное излучение коричневых карликов приходится на инфракрасную спектральную область. Поиски таких следов увенчались успехом в 1995 году, когда был открыт первый подобный объект, Тейде 1. Он относится к спектральному классу М8 и располагается в скоплении Плеяд. В этом же году на расстоянии 20 от Солнца была обнаружена еще одна такая звезда, Gliese 229B. Она вращается вокруг красного карлика Gliese 229А. Открытия начали следовать одно за другим. На сегодняшний день известно более сотни коричневых карликов.

Отличия

Коричневые карлики непросто идентифицировать из-за их схожести по разным параметрам с планетами и легкими звездами. По своему радиусу они приближаются в той или иной степени к Юпитеру. Примерно одинаковая величина этого параметра сохраняется для всего диапазона масс коричневых карликов. В таких условиях становится крайне непросто отличить их от планет.

Кроме того, далеко не все карлики этого типа способны поддерживать Самые легкие из них (до 13 настолько холодны, что в их недрах невозможны даже процессы с использованием дейтерия. Наиболее массивные очень быстро (в масштабах космоса — за 10 млн лет) остывают и также становятся неспособными к поддержанию термоядерных реакций. Ученые для отличия коричневых карликов используют два основных способа. Первый из них — это измерение плотности. Коричневые карлики характеризуются примерно одинаковыми значениями радиуса и объема, а потому космическое тело с массой 10 Юпитеров и выше, вероятнее всего, относится к этому типу объектов.

Второй способ — обнаружение рентгеновского и Наличием такой заметной характеристики не могут похвастаться только коричневые карлики, температура которых опустилась до планетарного уровня (до 1000 К).

Способ отличия от легких звезд

Светило с небольшой массой — еще один объект, от которого бывает непросто отличить коричневый карлик. Что такое звезда? Это термоядерный котел, где постепенно сгорают все легкие элементы. Один из них — литий. С одной стороны, в недрах большинства звезд он достаточно быстро заканчивается. С другой — для реакции с его участием требуется сравнительно низкая температура. Получается, что объект с литиевыми линиями в спектре, вероятно, принадлежит к классу коричневых карликов. У этого метода есть свои ограничения. Литий часто присутствует в спектре молодых звезд. Кроме того, коричневые карлики могут за период в полмиллиарда лет исчерпать все запасы этого элемента.

Отличительным признаком может быть и метан. На заключительных этапах жизненного цикла коричневый карлик — звезда, температура которой позволяет накопить внушительное его количество. Другие светила не могут остыть до такого состояния.

Для различия коричневых карликов и звезд измеряют и их яркость. Светила тускнеют в конце своего существования. Карлики остывают всю «жизнь». На завершающих этапах они становятся настолько темными, что перепутать их со звездами невозможно.

Коричневые карлики: спектральный класс

Температура поверхности описываемых объектов изменяется в зависимости от массы и возраста. Возможные значения находятся в диапазоне от планетарных до характерных для наиболее холодных звезд класса М. По этим причинам для коричневых карликов первоначально было выделено два дополнительных спектральных типа — L и Т. Кроме них, в теории существовал и класс Y. На сегодняшний день его реальность подтверждена. Остановимся на характеристиках объектов каждого из классов.

Класс L

Звезды, относящиеся к первому типу из названных, отличаются от представителей предыдущего класса М присутствием полос поглощения не только оксида титана и ванадия, но и гидридов металла. Именно этот признак позволил выделить новый класс L. Также в спектре некоторых коричневых карликов, относящихся к нему, обнаружили линии щелочных металлов и йода. К 2005 году было открыто 400 подобных объектов.

Класс Т

Т-карлики характеризуются наличием в ближнем инфракрасном диапазоне полос метана. Аналогичные свойства ранее были обнаружены только у а также спутника Сатурна Титана. На смену гидридам FeH и CrH, характерным для L-карликов, в Т-классе приходят щелочные металлы, такие как натрий и калий.

По предположениям ученых подобные объекты должны обладать сравнительно малой массой — не больше 70 масс Юпитера. Коричневые Т-карлики по многим параметрам схожи с газовыми гигантами. Характерная для них температура поверхности изменяется в диапазоне от 700 до 1300 К. Если когда-то в объектив камеры попадут такие коричневые карлики, фото будет демонстрировать объекты розовато-синего цвета. Такой эффект связан с влиянием спектров натрия и калия, а также молекулярных соединений.

Класс Y

Последний спектральный класс долгое время существовал лишь в теории. Температура поверхности подобных объектов должна быть ниже 700 К, то есть 400 ºС. В видимом диапазоне не обнаруживаются такие коричневые карлики (фото сделать не получится совсем).

Однако в 2011 году американские астрофизики объявили об открытии нескольких подобных холодных объектов с температурой от 300 до 500 К. Один из них, WISE 1541-2250, находится на расстоянии 13,7 световых лет от Солнца. Другой, WISE J1828+2650, характеризуется температурой поверхности в 25 ºС.

Двойник солнца — коричневый карлик

Рассказ о столь интересных будет неполным, если не упомянуть о «Звезде смерти». Так называют гипотетически существующий двойник Солнца, по предположениям некоторых ученых располагающийся на расстоянии 50-100 астрономических единиц от него, за пределами облака Оорта. По мнению астрофизиков, предполагаемый объект составляет пару нашему светилу и проходит мимо Земли каждые 26 млн лет.

Гипотеза связана с предположением палеонтологов Дэвида Раупа и Джека Сепковски о периодическом массовом вымирании биологических видов на нашей планете. Высказано оно было в 1984 году. В целом теория довольно спорная, однако есть и доводы в ее пользу.

«Звезда смерти» — одно из вероятных объяснений таких вымираний. Подобное предположение одновременно возникло у двух разных групп астрономов. Согласно их расчетам, двойник Солнца должен двигаться по сильно вытянутой орбите. При сближении с нашим светилом она возмущает кометы, в большом количестве «населяющие» облако Оорта. В результате увеличивается количество их столкновений с Землей, что и приводит к гибели организмов.

«Звезда смерти», или Немезида, как еще ее называют, может быть коричневым, белым или красным карликом. На сегодняшний день, правда, подходящих на эту роль объектов обнаружено не было. Высказываются предположения, что в зоне облака Оорта располагается пока неизвестная планета-гигант, которая оказывает воздействие на орбиты комет. Она притягивает к себе ледяные глыбы, предотвращая тем самым их возможное столкновение с Землей, то есть действует совсем не так, как гипотетическая «Звезда смерти». Впрочем, доказательств существования планеты Тюхе (то есть сестры Немезиды) пока тоже нет.

Коричневые карлики для астрономов - сравнительно новые объекты. Еще массу сведений о них предстоит получить и проанализировать. Уже сегодня предполагается, что такие объекты могут быть компаньонами многих известных звезд. Трудности исследования и обнаружения карликов этого типа задают новую высокую планку для научного оборудования и теоретического осмысления.

Коричневый карлик

Инфракрасный телескоп WISE обеспечил астрономам во время активной измерительной фазы в 2010 году обширные данные в четырех инфракрасных длинах волн. В настоящее время исследователи заняты тем, чтобы изучить и интерпретировать материал. При этом астрономами было отмечено, что эти объекты гораздо менее распространены в Пространстве, чем предполагалось ранее.

Исследовательская группа во главе с Дэви Киркпатриком (Davy Kirkpatrick) - Калифорнийский технологический институт - искала коричневые карлики в ближайших окрестностях Солнца на расстоянии нескольких десятков световых лет.

Коричневые карлики являются звездами, массы которых слишком малы, чтобы внутри них мог произойти синтез водорода в гелий - источник энергии большинства звезд. Таким образом, они могут только излучать тепловую энергию, которую они получили, и тепло, образующееся при медленном сжатии в течение миллиардов лет. Поэтому большинство из них слабо светится в инфракрасном диапазоне , некоторые из них имеют температуру всего около 25 градусов по Цельсию. При такой же величине, как Юпитер, массы коричневых карликов, превышают массу Юпитера в 13-75 раз.

Ранее астрономы предполагали, что на каждую настоящую звезду с реакцией ядерного синтеза внутри приходится один коричневый карлик . Теперь в непосредственном окружении Солнца выявлено, что это соотношение равно: один карлик к шести звёздам. До сих пор исследователи смогли найти в данных WISE, в общей сложности, 200 коричневых карликов, в том числе 13 самого холодного класса Y, температура поверхности которых ниже 170 градусов по Цельсию. После определения, каково их расстояние от Солнца, методом параллакса, исследовательская группа отметила, что существует 33 коричневых карлика на расстоянии 26 световых лет от нашего светила. В этом же объеме сейчас известно 211 звезд, в результате чего на каждого коричневого карлика приходится 6,4 звезды.

Сколько коричневых карликов в окрестностях Солнца вычислили астрономы Фото: NASA/JPL-Caltech

На этой карте показаны ближайшие космические окрестности нашего Солнца на расстоянии 30 световых лет. Она основана на данных измерений и представляет ряд звезд и коричневых карликов на верном удалении друг от друга и от Солнца. Каждая звезда коричневый карлик , находящаяся от Солнечной системы на расстоянии 26 световых лет, отмечена кружком. Синие кружки представляют известные ранее коричневые карлики, красные - открытые с помощью WISE. Красными точками обозначены красные карлики, наименее массивные звезды, в которых есть синтез атомов водорода в гелий. Ни один коричневый карлик в солнечной системе , конечно же не обнаружен.

Астрономы предполагают, что этот результат следует рассматривать как предварительный. Они считают, что в данных WISE ещё, возможно, найдутся коричневые карлики, которые могут привести соотношение к 5:1 или 4:1. Однако паритет исследователи полностью исключают. До сих пор не найдены коричневые карлики, которые находились бы к нам ближе, чем ближайшая к солнечной системе звезда Проксима Центавра, от которой нас отделяют 4,2 светового года. Ближе могут находиться свободно передвигающиеся планеты с массами в несколько масс Юпитера, которые испускают настолько малое инфракрасное излучение, что их не смог уловить, как пишет

> Коричневые карлики

Узнайте, что такое коричневые карлики : описание типа звезды с фото, есть ли в Солнечной системе, масса, промежуточный этап между звездами и газовыми гигантами.

Мы уже знаем, что все звезды формируются из молекулярных облаков. Но бывает так, что разрушенное облако просто не может создать привычный нам объект и появляется коричневый карлик . Такие звезды обладают теми же элементами, но их температура и давление находятся на низком уровне и не в состоянии запустить ядерный синтез, поэтому получили прозвище «Коричневые звезды ».

Непредвиденная проблема в изучение коричневых карликов

Эти небесные тела разделяют стартовую точку с остальными звездами на небе, но им не суждено достигнуть главной стадии. Еще до того, как температура успеет подняться к необходимой отметке плотный материал застынет и не сможет больше трансформироваться.

Коричневые карлики считаются пробелом между газовыми гигантами (Юпитер) и красными карликами.

Особенности и классификация коричневых карликов

Все коричневые карлики отличаются по массе и температуре. Могут достигать 13-90 масс (примерно 1/10 солнечной). Классификация строится на спектральном типе или на излучаемой энергии.

М – это не только наиболее красные звезды во Вселенной, но и самые распространенные. Большинство из них превращаются в красных карликов, но некоторые становятся коричневыми. Классы L и T отличаются по элементам, наблюдаемым в спектрах. Y-карлики – самый холодные. Некоторые достигают температуры человеческого организма.

Из-за того, что коричневые карлики выделяют мало света и энергии, их сложно обнаружить. До 1980-х годов вообще считались теоретическими объектами. Но технологии набирали чувствительность и смогли наконец их увидеть.

С самого начала их называли «черными». Но сейчас этот термин используют для обозначения финальной стадии развития звезды главной последовательности и представляет белый карлик, полностью истративший все тепло.

Почему коричневые карлики не считаются планетами?

Из-за небольшой массы коричневые карлики можно спутать с массивными планетами. На это же намекает и отсутствие слияния. У них также есть атмосфера, сияния, облака и даже штормы. Подобно другим звездам, они могут располагать планетами.

Отличие в том, что коричневые карлики продолжают излучать свет, но это рентгеновские лучи и инфракрасный свет. Они вырабатывают их, пока тело не остынет. Поэтому лучше всего искать в инфракрасном диапазоне. Обычно расположены в пределах 100 световых лет.

Но черта между коричневым карликом и планетой тонкая. Некоторые из них настолько холодные, что им удается поддержать атмосферу, как это делают газовые гиганты. Карлик может приютить планеты, а газовый гигант – спутники. Как же точно определить границу?

Международный астрономический союз постановил, что объекты, чья масса меньше 13 масс Юпитера, считаются планетами. Но коричневые карлики вписываются в этот диапазон, поэтому могут быть одновременно и тем, и другим. Как известно, что в Солнечной системе коричневые карлики не наблюдаются и мы располагаем лишь одной звездой - Солнцем.

(#Астрономия@science_newworld)

Коричневый карлик – это астрономический объект, являющийся чем-то средним между планетой и звездой. Масса коричневых карликов обычно меньше 0,075 массы Солнца, или примерно 75-ти масс Юпитера. (Эта максимальная масса немного выше для звёзд, содержащих меньшие количества тяжёлых элементов, чем Солнце.) Многие астрономы проводят границу между коричневыми карликами и планетами примерно по массе, равной 13 юпитерианским массам.

Разница между коричневыми карликами и звёздами состоит в том, что в отличие от звёзд коричневые карлики не могут достигнуть уровня стабильной светимости через осуществление термоядерного синтеза обычного водорода. Как звёзды, так и коричневые карлики производят энергию путём синтеза дейтерия (редкого изотопа водорода) в первые несколько миллионов лет своей жизни. Затем ядра звёзд продолжают сжиматься и разогреваться, по мере того как звёзды синтезируют водород. Однако коричневые карлики избегают дальнейшего сжатия, так как их ядра достаточно плотные, чтобы поддерживать своё существование за счёт давления вырождения электронов. Эти коричневые карлики с массами свыше 60 юпитерианских масс начинают синтезировать водород, но затем они стабилизируются и синтез прекращается.

Цвет коричневых карликов на самом деле не коричневый, а, скорее, от тёмно-красного до пурпурного, в зависимости от их температуры. Объекты с температурами ниже примерно 2200 К содержат в своих атмосферах зёрна минералов. Поверхностные температуры коричневых карликов зависят как от их массы, так и от их возраста. Самые массивные и молодые коричневые карлики разогреваются аж до 2800 К, перекрываясь своим температурным диапазоном со звёздами очень малой массы, или красными карликами. (Для сравнения, температура поверхности Солнца достигает 5800 К.) Все коричневые карлики в конце концов охлаждаются ниже минимальной температуры для звёзд главной последовательности в 1800 К. Самые старые и маленькие могут остыть даже до 300 К.

Коричневые карлики впервые были упомянуты в 1963 г. индийским астрономом Шивом Кумаром, который называл их «чёрными карликами». Американский астроном Джилл Тартер предложил название «коричневый карлик» в 1975 г.; хотя коричневые карлики совсем не коричневые, название прижилось, потому что считалось, что в этих объектах содержится большое количество пыли, и более подходящее название «красный карлик» уже описывало другой тип звёзд.

Поиски коричневых карликов в 1980-е и 1990-е гг. привели к обнаружению нескольких кандидатов; однако ни один из них не был подтверждён как коричневый карлик. Для того чтобы отличить коричневые карлики от звёзд такой же температуры, нужно проверить наличие в их спектре линии лития (который звёзды разрушают, когда переходят к синтезу водорода). Или же можно поискать более тусклые объекты, с температурой ниже, чем у звёзд. В 1995 г. оба метода принесли свои плоды. Астрономы из Калифорнийского университета, Беркли, обнаружили присутствие лития в одном из объектов Плеяд, но этот результат был принят научной общественностью не сразу. Этот объект, тем не менее, впоследствии был подтверждён как первый найденный коричневый карлик.

Астрономы из Паломарской обсерватории и Университета Джона Хопкинса обнаружили компаньона звезды малой массы, обозначенного ими как Глизе 229B. Присутствие линий метана в его спектре показало, что его поверхностные температуры не превышают 1200 К. Крайне низкая светимость возможного коричневого карлика, а также возраст его звёздного компаньона указали на то, что масса объекта составляет около 50 масс Юпитера. Поэтому Глизе 229 B стал первым объектом, признанным большинством учёных как коричневый карлик.

Инфракрасные обзоры неба и другие техники в настоящее время позволили обнаружить сотни коричневых карликов. Некоторые из них являются компаньонами звёзд, другие входят в состав двойных систем из коричневых карликов; многие являются изолированными объектами. Предполагается, что они формируются почти так же, как и звёзды, и что число коричневых карликов во Вселенной может составлять от 1 до 10% от числа звёзд.