Главная · Боль в деснах · Строение клетки живого организма. Живая клетка

Строение клетки живого организма. Живая клетка

Клетки разных царств имеют много общих черт, но есть и существенные различия.

Мы рассмотрим клетки 4-х живых организмов - животных, растений, грибов и бактерий.

Опишем их общие органоиды и то, что различает их.

Бактериальная клетка

Отличается от всех остальных как самая просто устроенная.

Клеточная оболочка - основные функции - защита и обмен веществ. Запасное питательное вещество уникально, в других живых клетках его нет - это углевод муреин.

Мембрана - как и у остальных живых клеток, основная функция - защита и обмен веществ.

Цитоплазма

Рибосомы - синтезируют белок.
Мезосомы - осуществление окислительно-восстановительных процессов.
Ядра нет, есть нуклеоид - кольцевая ДНК и РНК.
Жгутитки - обеспечивают движение.

Клетка растений

Клеточная стенка - функции те же, запасное питательное вещество - углевод - крахмал, целлюлоза и т.п.
Мембрана - защита и обмен веществ, небольшое отличие - есть плазмодесмы - что-то вроде мостиков между соседними клетками в многоклеточных растениях.
Цитоплазма - внутренняя полужидкая среда, содержит питательные вещества.
Рибосомы - есть, но немного, синтезируют белок.
Ядро - центр генетической информации клетки.
ЭПС (эндоплазматический ретикулум), гладкий (без рибосом) - обеспечивает транспорт веществ, поддерживает форму клетки, шероховатый - рибосомы на нем обеспечивают синтез белка.
Цитоплазма - внутренняя полужидкая среда, содержит питательные вещества.
Хлоропласт - обязательный органойд исключительно растительной клетки. Функция - фотосинтез.
Вакуоль - тоже именно растительный органойд - запас клеточного сока.
Митохондрия - синтез АТФ - обеспечение клетки энергией.
Лизосомы - пищеварительные органеллы.
Аппарат Гольджи - производит лизосомы и хранит питательные вещества.
Микрофиламенты - белковые нити - “рельсы” для передвижения некоторых органелл, участвуют в делении клетки.
Микротрубочки - примерно то же самое, что микрофиламенты, только толще.

Клетка животных

Клеточной стенки нет, нет хлоропластов, нет вакуолей.

Остальные органеллы те же, что и у растительной клетки, есть одно “добавление” - компонент ТОЛЬКО животной клетки - центриоли - участвуют в делении клетки, отвечая за правильное расхождение хромосом.

Клетка грибов

Рисунки животной клетки никогда не встречаются в ЕГЭ, да и строение клетки рассматривается только в сравнении с животной и растительной.

По строению она очень похожа на животную, только нет центриолей и есть клеточная стенка, запасное питательное вещество которой - гликоген.

Расскажи друзьям!

Расскажите
друзьям!

Во времена Дарвина считалось, что клетка - это просто мешочек с раствором химических веществ и свободно плавающих в нем простых компонент. Такой она виделась в окуляре существовавших тогда микроскопов. Поэтому не составляло особого труда представить, как такой несложный объект мог спонтанно возникнуть в «первичном бульоне» путем небольших последовательных изменений.

Сегодня понятно, что клетку, по сложности структуры и происходящих в ней процессов, можно без преувеличения сравнить с большим мегаполисом. А как многого о мы ещё не знаем и не понимаем!

В дальнейшем, с совершенствованием технологий, развивалось и понимание строения и организации клетки. Известная нам структура усложнялась, но принципиально на веру в возможность самозарождения до некоторых пор не влияла. Даже сейчас многие люди слабо представляют степень сложности устройства обыкновенной живой клетки.

Однако за последние десятилетия наше понимание внутреннего мира клетки возросло взрывоподобно. И новые исследования одно за другим продолжают открывать невероятно сложные и эффективные механизмы и устройства внутри клетки. Этот удивительно устроенный микромир содержит:

  • совершенные системы хранения, считывания и копирования (с коррекцией ошибок) огромных объемов генетической информации;
  • фабрики синтеза белковых цепочек и придания им правильной трехмерной формы;
  • транспортные сети для перемещения необходимых веществ и компонент;
  • настоящие коммуникационные сети для внутриклеточного и межклеточного (в случае многоклеточных организмов) информационного обмена;
  • преобразователи энергии (из электрической или световой в химическую);
  • различные двигатели (роторные и поступательные);
  • транспортные каналы внутрь и наружу клетки (действующие как избирательные насосы);
  • различные регуляторные механизмы; и множество других изощрённых нано-систем...
  • Без большинства из них не обходится ни одна живая клетка, даже самая «простая»... И эти системы, которые сами по отдельности являются неупрощаемо сложными, неразрывно связаны и зависят друг от друга, демонстрируя неупрощаемую сложность второго порядка.

    Предлагаем Вам посмотреть анимационные ролики, на которых показаны некоторые удивительные механизмы и процессы внутри живых клеток. Эти видео - не плод фантазии художников, а результат многолетних исследований многих учёных. Лишь цвета и, возможно, некоторые незначительные детали являются художественным допущением.

    АТФ-синтаза

    На видео показан один из примеров потрясающих клеточных механизмов - фермент АТФ-синтаза. Этот фермент представляет собой настоящий роторный нано-мотор, состоящий, как и изобретенные человеком электродвигатели, из неподвижного статора и вращающегося со скоростью до 7 000 оборотов в минуту ротора. АТФ-синтаза - клеточный «энергетический завод», он преобразует электрическую энергию потока протонов (позитивно заряженных частиц) в химическую энергию, производя молекулы АТФ (аденозинтрифосфат). АТФ - это универсальная энергетическая «валюта» клетки, участвующая практически в каждой биохимической реакции.

    Кинезин

    Кинезин - потрясающий миниатюрный мотор, участвующий в системе транспортировке белков внутри живой клетки. Белки необходимо доставить в определённую часть клетки, чтобы они могли выполнять свои функции. Эта анимация, основанная на ряде искусных исследований в течение многих лет, показывает, каким образом это происходит. Магистрали из микротрубочек собраны из взаимосцепленных белков, каждый из которых произведён согласно инструкциям, закодированным в ДНК клетки. Мы видим, как мотор кинезин, герой нашего рассказа, шагает вдоль микротрубочки, и тащит за собой огромный мешок с белками, чтобы доставить его в заранее определённое место внутри клетки. Там белки будут высвобождены для выполнения своих функций. Линейный мотор кинезин использует 1 молекулу АТФ в качестве источника энергии для каждого шага и делает 125 тысяч шагов, чтобы преодолеть один миллиметр! Этот потрясающий механизм демонстрирует все признаки разумного замысла!

    Синтез белка

    Удивительный и невероятно сложный процесс производства белка по инструкциям, закодированным в ДНК, непрерывно происходящий в каждой живой клетке. Весь этот многоэтапный процесс и комплекс осуществляющих его механизмов должен был появиться сразу, целиком, чтобы первая живая клетка могла жить

    Сборка бактериального жгутика

    На этом видео показан процесс сборки бактериального жгутика, благодаря которому бактерия может перемещаться в окружающей её жидкости. Каждый из маленьких блоков на самом деле является белком - цепочкой аминокислот, собранной по инструкциям, закодированным на ДНК, как показано в видео «Синтез белка».

Структурной единицей любого организма является клетка. Определение этой структуры впервые использовал когда изучал строение тканей под микроскопом. Сейчас ученые нашли большое количество различных типов клеток, которые встречаются в природе. Единственными организмами неклеточного строения являются вирусы.

Клетка: определение, строение

Клетка - это структурная и морфофункциональная единица всех живых организмов. Различают одноклеточные и многоклеточные организмы.

Большинство клеток имеют следующие структуры: покровный аппарат, ядро и цитоплазма с органеллами. Покровы могут быть представлены цитоплазматической мембраной и клеточной стенкой. Ядро и органеллы имеет только эукариотическая клетка, определение которой отличается от прокариотической.

Клетки многоклеточных организмов образуют ткани, которые, в свою очередь, являются составляющей органов и систем органов. Они бывают разных размеров и могут отличаться по форме и функциям. Различить эти мелкие структуры можно только с помощью микроскопа.

в биологии. Определение прокариотической клетки

Такие микроорганизмы, как бактерии, являются ярким примером прокариотических организмов. Этот тип клеток отличается простотой в строении, т. к. у бактерий отсутствует ядро и другие цитоплазматические органеллы. микроорганизмов заключена в специализированной структуре - нуклеоиде, а функции органелл выполняют мезосомы, которые образуются путем впячивания цитоплазматической мембраны внутрь клетки.

Какими еще особенностями обладает Определение гласит, что наличие ресничек и жгутиков также является характерным признаком бактерий. Этот дополнительный двигательный аппарат отличается у разных групп микроорганизмов: у кого-то только один жгутик, у кого-то их два и более. У инфузорий жгутиков нет, зато присутствуют реснички по всей периферии клетки.

Включения играют большую роль в жизни бактерий, т. к. прокариотические клетки не обладают органеллами, которые способны накапливать необходимые вещества. Включения находятся в цитоплазме и там же компактизируются. При необходимости бактерии могут использовать эти накопленные вещества для своих нужд, дабы поддерживать нормальную жизнедеятельность.

Эукариотическая клетка

Эволюционно более развиты по сравнению с клетками прокариот. Они имеют все типичные органеллы, а также ядро - центр хранения и передачи генетической информации.

Определение понятия "клетка" точно описывает строение эукариот. Каждая клетка покрыта цитоплазматической мембраной, которая представлена билипидным слоем и белками. Сверху располагается гликокаликс, который образован гликопротеидами и выполняет рецепторную функцию. У растительных клеток также выделяют клеточную стенку.

Цитоплазма эукариот представлена коллоидным раствором, в котором находятся органеллы, цитоскелет и различные включения. Среди органоидов выделяют эндоплазматическую сеть (гладкую и шероховатую), лизосомы, пероксисомы, митохондрии, а также пластиды растений. Цитоскелет представлен микротрубочками, микрофиламентами и промежуточными микрофиламентами. Эти структуры образуют каркас, а также участвуют в делении. Непосредственную роль в этом процессе играет центр, который имеет любая животная клетка. Определение, нахождение цитоскелета и клеточного центра в ее толще возможно только с использованием мощного современного микроскопа.

Ядро - это двумембранная структура, содержимое которого представлено кариолимфой. В ней находятся хромосомы, содержащие ДНК всей клетки. Ядро отвечает за транскрипцию генов организма, а также контролирует этапы деления при митозе, амитозе и мейозе.

Неклеточные формы жизни

Что такое клетка термина можно использовать при описании строения почти любого организма, однако здесь есть исключения. Так, вирусы являются основными представителями неклеточной формы жизни. Их организация довольно проста, т. к. вирусы - это инфекционные агенты, которые в своем составе содержат только два органических компонента: ДНК или РНК, а также белковую оболочку.

Бактерии также страдают от нападения вирусов, которые составляют группу бактериофагов. Их тело имеет форму додекаэдра, а «впрыскивание» нуклеиновой кислоты в бактериальную клетку происходит с помощью хвостового отростка, представленного сократительным чехлом, внутренним стержнем и базальной пластинкой.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (предъядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Прокариотическая клетка

Эукариотическая клетка

Строение эукариотической клетки

Поверхностный комплекс животной клетки

Состоит из гликокаликса , плазмалеммы и расположенного под ней кортикального слоя цитоплазмы . Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана , толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира - гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов , полисахаридов , гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков , в частности, поверхностных антигенов и рецепторов . В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета - упорядоченные определённым образом актиновые микрофиламенты . Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий . При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды . На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек , служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов , играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы , относят к гранулярному (или шероховатому ) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР, принимающему участие в синтезе липидов . Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки .

Аппарат Гольджи
Ядро
Цитоскелет
Центриоли
Митохондрии

Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970-1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета . Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот - обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот - например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5-5 мкм , размеры эукариотических - в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток - это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии .

История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, -) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов , однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (предъядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Прокариотическая клетка

Эукариотическая клетка

Строение эукариотической клетки

Поверхностный комплекс животной клетки

Состоит из гликокаликса , плазмалеммы и расположенного под ней кортикального слоя цитоплазмы . Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана , толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира - гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов , полисахаридов , гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков , в частности, поверхностных антигенов и рецепторов . В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета - упорядоченные определённым образом актиновые микрофиламенты . Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий . При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды . На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек , служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов , играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы , относят к гранулярному (или шероховатому ) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР, принимающему участие в синтезе липидов . Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки .

Аппарат Гольджи
Ядро
Цитоскелет
Центриоли
Митохондрии

Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970-1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета . Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот - обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот - например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5-5 мкм , размеры эукариотических - в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток - это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии .

История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, -) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов , однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

См. также

  • Сравнение строения клеток бактерий, растений и животных

Ссылки

  • Molecular Biology Of The Cell, 4е издание, 2002 г. - учебник по молекулярной биологии на английском языке
  • Цитология и генетика (0564-3783) публикует статьи на русском, украинском и английском языках по выбору автора, переводится на английский язык (0095-4527)