Главная · Молочные зубы · Как это работает: космические ракеты. Познавательная информация о космосе, которую должен знать каждый

Как это работает: космические ракеты. Познавательная информация о космосе, которую должен знать каждый

– это летательный аппарат, получивший широкое применение в космонавтике и военном деле. Космические ракеты используются для вывода в космос искусственных спутников, орбитальных станций, космических зондов и так далее. Такие ракеты были названы ракета-носителями.

Для того чтобы поднять ракету в воздух, необходим мощный двигатель. Большинство ракет оснащены несколькими так называемыми ракетными двигателями, количество которых зависит от массы самой ракеты и космического аппарата, который она должна доставить в космос. Ракетный двигатель работает на жидком, твердом или гибком топливе. В камере сгорания происходит химическая реакция между топливом и особым окислителем, в результате чего образуется газ и тепло. Раскаленные газы расширяются в камере сгорания и под большим давлением выбрасываются в сопла двигателя, где происходит их ускорение. Таким образом, выбрасываемый из сопла газ заставляет ракету двигаться в противоположном (движению газа) направлении.

Принцип строения и запуска ракет был разработан великим русским ученым Константином Эдуардовичем Циолковским. Важнейшие научные результаты получены Циолковским в теории движения ракет. Мысли об использовании принципа реактивного движения для целей летания высказывались Циолковским еще в 1883 году, однако создание им математически строгой теории реактивного движения относится к самому концу 19 века. В 1903 году в статье "Исследование мировых пространств реактивными приборами" на основании общих теорем механики Циолковский дал теорию полета ракеты с учетом изменения ее массы в процессе движения, а также обосновал возможность применения реактивных аппаратов для межпланетных сообщений. Строгое математическое доказательство возможности применения ракеты для решения научных проблем, использования ракетных двигателей для создания движения грандиозных межпланетных кораблей целиком принадлежат Константину Циолковскому. В этой статье и в последовавших продолжениях ее он впервые в мире дал основы теории жидкостного реактивного двигателя, а также элементов его конструкции.

В 1929 году Циолковский разработал весьма плодотворную теорию движения составных ракет. Он предлагал к осуществлению два типа составных ракет. Один из типов - последовательная составная ракета, состоящая из нескольких соединенных одна за другой ракет. При взлете толкающей является последняя (нижняя) ракета. После использования ее топлива она отделяется от общей конструкции и падает на землю. Далее начинает работать двигатель ракеты, оказавшейся последней. Эта ракета для оставшихся является толкающей до момента полного использования своего топлива, а затем также отделяется от общей конструкции. К цели полета доходит лишь головная ракета, достигающая значительно более высокой скорости, чем одиночная ракета, т. к. она разогнана отброшенными в процессе движения ракетами.

Второй тип составной ракеты (параллельное соединение ряда ракет) был назван Циолковским эскадрильей ракет. В этом случае, по мысли ученого, все ракеты работают одновременно, до момента использования половины своего топлива. Затем крайние ракеты сливают оставшийся запас топлива в полупустые баки остальных ракет и отделяются от ракетного поезда. Процесс переливания топлива повторяется до тех пор, пока от общей конструкции останется лишь одна головная ракета, набравшая очень высокую скорость.

Циолковский первым решил задачу о движении ракеты в однородном поле тяготения и подсчитал необходимые запасы топлива для преодоления силы притяжения Земли. Приближенно он рассмотрел влияние атмосферы на полет ракеты и вычислил необходимые запасы топлива для преодоления сил сопротивления воздушной оболочки Земли.

Циолковский является основоположником теории межпланетных сообщений. Вопрос о межпланетных путешествиях интересовал Константина Эдуардовича с самого начала его научных изысканий. Его исследования впервые строго научно показали возможность осуществления полета с космическими скоростями, несмотря на большие технические трудности практического осуществления этих полетов. Он первым изучил вопрос о ракете - искусственном спутнике Земли, и высказал идею о создании внеземных станций как промежуточных баз при межпланетных сообщениях, подробно рассмотрел условия жизни и работы людей на искусственном спутнике Земли и межпланетных станциях. Циолковский выдвинул идею газовых рулей для управления полетом ракеты в безвоздушном пространстве. Он предложил гироскопическую стабилизацию ракеты в свободном полете в пространстве, где нет сил тяжести и сил сопротивления. Циолковский понимал необходимость охлаждения стенок камеры сгорания реактивного двигателя, и его предложение охлаждать стенки камеры компонентами топлива широко используется в современных конструкциях реактивных двигателей.

Чтобы ракета не сгорела, как метеорит, при возвращении из космического пространства на Землю, Циолковский предложил специальные траектории планирования ракеты для погашения скорости при приближении к Земле, а также способы охлаждения стенок ракеты жидким окислителем. Он исследовал большое число различных окислителей и горючих и для жидкостных реактивных двигателей рекомендовал следующие топливные пары: жидкий кислород и жидкий водород; спирт и жидкий кислород; углеводороды и жидкий кислород или озон.

Ракетные двигатели

Двигатели – важнейшая составная часть ракеты-носителя. Они создают силу тяги, за счет которой ракета поднимается в космос. Но когда речь идет о ракетных двигателях, не стоит вспоминать те, что находятся под капотом автомобиля или, например, крутят лопасти несущего винта вертолета. Ракетные двигатели совсем другие.

В основе действия ракетных двигателей – третий закон Ньютона. Историческая формулировка этого закона говорит, что любому действию всегда есть равное и противоположное противодействие, проще говоря – реакция. Поэтому и двигатели такие называются реактивными.


Реактивный ракетный двигатель в процессе работы выбрасывает вещество (так называемое рабочее тело) в одном направлении, а сам движется в противоположном направлении. Чтобы понять, как это происходит, не обязательно самому летать на ракете. Самый близкий, «земной», пример – это отдача, которая получается при стрельбе из огнестрельного оружия. Рабочим телом здесь выступают пуля и пороховые газы, вырывающиеся из ствола. Другой пример – надутый и отпущенный воздушный шарик. Если его не завязать, он будет лететь до тех пор, пока не выйдет воздух. Воздух здесь – это и есть то самое рабочее тело. Проще говоря, рабочее тело в ракетном двигателе – продукты сгорания ракетного топлива.

Топливо ракетных двигателей, как правило, двухкомпонентное и включает в себя горючее и окислитель. В ракете-носителе «Протон» в качестве горючего используется гептил (несимметричный диметилгидразаин), а в качестве окислителя – тетраксид азота. Оба компонента чрезвычайно токсичны, но это «память» о первоначальном боевом предназначении ракеты. Межконтинентальная баллистическая ракета УР-500 – прародитель «Протона», – имея военное предназначение, до старта должна была долго находиться в боеготовом состоянии. А другие виды топлива не позволяли обеспечить долгое хранение. Ракеты «Союз-ФГ» и «Союз-2» используют в качестве топлива керосин и жидкий кислород. Те же топливные компоненты используются в семействе ракет-носителей «Ангара», Falcon 9 и перспективной Falcon Heavy Илона Маска. Топливная пара японской ракеты носителя «H-IIB» («Эйч-ту-би») – жидкий водород (горючее) и жидкий кислород (окислитель). Как и в ракете частной аэрокосмической компании Blue Origin, применяемой для вывода суборбитального корабля New Shepard. Но это все жидкостные ракетные двигатели.

Применяются также и твердотопливные ракетные двигатели, но, как правило, в твердотопливных ступенях многоступенчатых ракет, таких как стартовый ускоритель ракеты-носителя «Ариан-5», вторая ступень РН «Антарес», боковые ускорители МТКК Спейс шаттл.

Полезная нагрузка, выводимая в космос, составляет лишь малую долю массы ракеты. Ракеты-носители главным образом «транспортируют» себя, то есть собственную конструкцию: топливные баки и двигатели, а также топливо, необходимое для их работы. Топливные баки и ракетные двигатели находятся в разных ступенях ракеты и, как только они вырабатывают свое топливо, то становятся ненужными. Чтобы не нести лишний груз, они отделяются. Кроме полноценных ступеней применяются и внешние топливные емкости, не оснащенные своими двигателями. В процессе полета они также сбрасываются.


Существует две классические схемы построения многоступенчатых ракет: c поперечным и продольным разделением ступеней. В первом случае ступени размещаются одна над другой и включаются только после отделения предыдущей, нижней, ступени. Во втором случае вокруг корпуса второй ступени расположены несколько одинаковых ракет-ступеней, которые включаются и сбрасываются одновременно. В этом случае двигатель второй ступени также может работать при старте. Но широко применяется и комбинированная продольно-поперечная схема.


Стартовавшая в феврале этого года с космодрома в Плесецке ракета-носитель легкого класса «Рокот» является трехступенчатой с поперечным разделением ступеней. А вот РН «Союз-2», запущенная с нового космодрома «Восточный» в апреле этого года, – трехступенчатая с продольно-поперечным разделением.

Интересную схему двухступенчатой ракеты с продольным разделением представляет собой система Спейс шаттл. В ней и кроется отличие американских шаттлов от «Бурана». Первая ступень системы Спейс шаттл – боковые твердотопливные ускорители, вторая – сам шаттл (орбитер) с отделяемым внешним топливным баком, который по форме напоминает ракету. Во время старта запускаются двигатели как шаттла, так и ускорителей. В системе «Энергия – Буран» двухступенчатая ракета-носитель сверхтяжелого класса «Энергия» была самостоятельным элементом и помимо вывода в космос МТКК «Буран» могла быть применена и для других целей, например для обеспечения автоматических и пилотируемых экспедиций на Луну и Марс.

Разгонный блок

Может показаться, что как только ракета вышла в космос, то цель достигнута. Но это не всегда так. Целевая орбита космического аппарата или полезного груза может быть гораздо выше . Так, например, геостационарная орбита, на которой размещаются телекоммуникационные спутники, расположена на высоте 35 786 км над уровнем моря. Вот для этого и нужен разгонный блок, который, по сути, является еще одной ступенью ракеты. Космос начинается уже на высоте 100 км, там же начинается невесомость, которая является серьезной проблемой для обычных ракетных двигателей.

Одна из основных «рабочих лошадок» российской космонавтики ракета-носитель «Протон» в паре с разгонным блоком «Бриз-М» обеспечивает выведение на геостационарную орбиту полезных грузов массой до 3,3 т. Но первоначально вывод осуществляется на низкую опорную орбиту (200 км). Хотя разгонный блок и называют одной из ступеней корабля, от обычной ступени он отличается двигателями.


Для перемещения космического аппарата или корабля на целевую орбиту или направления его на отлетную или межпланетную траекторию разгонный блок должен иметь возможность выполнить один или несколько маневров, при совершении которых изменяется скорость полета. А для этого необходимо каждый раз включать двигатель. Причем в периоды между маневрами двигатель находится в выключенном состоянии. Таким образом, двигатель разгонного блока способен многократно включаться и выключаться, в отличие от двигателей других ступеней ракет. Исключением являются многоразовые и , двигатели первых ступеней которых используются для торможения при посадке на Землю.

Ракеты существуют для того, чтобы что-то выводить в космос. В частности, космические корабли и космические аппараты. В отечественной космонавтике это транспортные грузовые корабли «Прогресс» и пилотируемые корабли «Союз», отправляемые к МКС. Из космических аппаратов в этом году на российских ракетах-носителях отправились в космос американский и французский КА Eutelsat 9B, отечественный навигационный КА «Глонасс-М» №53 и, конечно, КА «ЭкзоМарс-2016», предназначенный для поиска метана в атмосфере Марса.

Возможности по выводу полезной нагрузки у ракет разные. Масса полезной нагрузки РН легкого класса «Рокот», предназначенной для выведения космических аппаратов на низкие околоземные орбиты (200 км), – 1,95 т. РН «Протон-М» относится к тяжелому классу. На низкую орбиту он выводит уже 22,4 т, на геопереходную – 6,15 т, а на геостационарную – 3,3 т. «Союз-2» в зависимости от модификации и космодрома способен вывести на низкую околоземную орбиту от 7,5 до 8,7 т, на геопереходную орбиту – от 2,8 до 3 т и на геостационарную – от 1,3 до 1,5 т. Ракета предназначена для запусков со всех площадок Роскосмоса: Восточного, Плесецка, Байконура и Куру, используемого в рамках совместного российско-европейского проекта. Применяемая для запуска транспортных и пилотируемых кораблей к МКС, РН «Союз-ФГ» имеет массу полезного груза от 7,2 т (с пилотируемым кораблем «Союз») до 7,4 т (с грузовым кораблем «Прогресс»). В настоящее время это единственная ракета, применяемая для доставки космонавтов и астронавтов на МКС.

Полезная нагрузка, как правило, находится в самой верхней части ракеты. Для того чтобы преодолеть аэродинамическое сопротивление, космический аппарат или корабль помещается внутрь головного обтекателя ракеты, который после прохождения плотных слоев атмосферы сбрасывается.

Вошедшие в историю слова Юрия Гагарина: «Вижу Землю… Красота-то какая!» были им сказаны именно после сброса головного обтекателя ракеты-носителя «Восток».



Система аварийного спасения

Ракету, которая выводит на орбиту космический корабль с экипажем, практически всегда можно отличить по внешнему виду от той, которая выводит грузовой корабль или космический аппарат. Чтобы в случае возникновения аварийной ситуации на ракете-носителе экипаж пилотируемого корабля остался жив, применяется система аварийного спасения (САС). По сути, это еще одна (правда, небольшая) ракета в головной части ракеты-носителя. Со стороны САС выглядит как башенка необычной формы на вершине ракеты. Ее задача – в экстренной ситуации вытянуть пилотируемый корабль и увести его от места аварии.

В случае взрыва ракеты на старте или в начале полета основные двигатели системы спасения отрывают ту часть ракеты, в которой находится пилотируемый корабль, и уводят ее в сторону от места аварии. После чего осуществляется парашютный спуск. В случае же если полет проходит нормально, после достижения безопасной высоты система аварийного спасения отделяется от ракеты-носителя. На больших высотах роль САС не так важна. Здесь экипаж уже может спастись благодаря отделению спускаемого аппарата космического корабля от ракеты.

Что мы знаем о космосе? Большинство из нас не может ответить на простейшие вопросы о данном загадочном мире, который, несмотря на это, нас привлекает и интересует. В данной статье представлена самая интересная общая информация о космосе, знать которую будет полезно каждому.

  • Мы (все живые существа) летим в космической среде с определенной скоростью, которая равна 530км/секунда. Если взять во внимание скорость перемещения нашей Земли в галактике, то она приравнивается к 225км/секунда. Наша галактика (Млечный путь), в свою очередь, перемещается в космосе со скоростью 305км/секунда.
  • Гигантский космический объект – планета Сатурн на самом деле имеет сравнительно небольшой вес. Плотность этой планеты-гиганта в пару раз ниже, чем у воды. Таким образом, если данное космическое тело попытаться притопить в воде, этого сделать не получится.
  • Если бы планета-Юпитер была полой, то внутри нее могли бы поместиться все известные нам планеты нашей планетарной системы «Солнечной».
  • Сокращение периодичности вращения планеты-Земли отдалят от нее Луну ежегодно приблизительно на четыре сантиметра.
  • Первый «звездный каталог» составил Гиппарх (ученый-астроном) в 150 году до нашей эры.

  • Когда мы в ночном небе обращаем внимание на самые далекие (тусклые) звезды, мы видим их такими, какими они были примерно четырнадцать миллиардов лет назад.
  • Кроме нашего светила, у нас имеется еще одна приближенная звезда «Проскима Центавра». Расстояние до данного космического объекта приравнивается к 4,2 световым годам.
  • «Красный гигант» по имени «Бетельгейзе» имеет огромный диаметр. Для сравнения, ее диаметр в пару раз превосходит орбиту нашей Земли вокруг светила.
  • Ежегодно галактика, в которой расположена наша планетарная система, производит около 40 новых звезд.
  • Если из «нейтронной звезды» изъять одну ложку (чайную) вещества, то вес данной ложки приравняется к 150-и тоннам.

  • Масса нашего светила составляет более 99% массы всей его планетарной системы.
  • Возраст света, излучаемого нашим светилом, можно приравнять всего к 30 тыс. годам. Именно тридцать тыс. лет назад в светиле образовалась определенная энергия, которая по сей день доходит до Земли. К слову, солнечные фотоны добираются до вышесказанной планеты, на которой мы живем, всего за восемь секунд.
  • Затмение нашего светила может длиться не более семи с половиной минут. Лунное затмение, в свою очередь, имеет большую продолжительность – 104 минуты.
  • «Солнечный ветер» является причиной потери массы нашего светила. В 1 секунду данное светило теряет более 1 млрд. кг из-за этого «ветра». К слову, одна «ветреная частичка» может погубить обычного человека, приблизившись к нему на расстояние в 160 километров.
  • Если бы наша Земля вертелась в иную, противоположную сторону, то длительность года являлась бы меньшей на пару дней.
  • Ежедневно наша планета переживает «метеоритную бомбардировку». Почему мы не видим этого? Большая часть падающих на нас космических объектов сильно малы, поэтому они не успевают долетать до поверхности и растворяются в нашей атмосфере.

  • У нашей планеты имеется далеко не один спутник. Современные ученые определили, что вокруг нее летает сразу четыре объекта. Конечно же, самым известным из них является Луна. Кроме нее, вокруг нас летает астероид (диаметр 5 километров), который обнаружили в 1896 году. Если быть точнее, то этот объект вращается вокруг светила, но с определенной частотой, такой же, как и наша. Поэтому он постоянно находится возле нас. Увидеть его невооруженным глазом невозможно.
  • Сгущение «космического вещества» является причиной периодического возрастания массы нашей планеты. Каждые 500 лет ее масса увеличивается примерно на один миллиард тонн.
  • «Большая Медведица» - не созвездие, как многие считают. В реальности, это «астеризм» - визуальное скопление звезд, которые весьма внушительно отдалены друг от друга. Некоторые звезды «Медведицы» размещены даже в разных галактических образованиях.

Изначально планету Уран, открытую У. Гершелем в 1781 году, называли «Звездой Георга». Сделать это приказал Георг III, который желал, чтобы его именем величали последнюю открытую планету «Солнечной системы».

Если две части метеорита соприкоснуться в космическом пространстве, то они спаяются. Если это произойдет на родной для нас планете, то они не соединятся, так как на нашей планете металлам свойственной окисляться. Оборудование, которое астронавты используют во время работы за бортом космостанции, самопроизвольно окисляется на Земле, поэтому в космическом пространстве не слипается.

Созданные инженерами спутниковые аппараты во время полета в космосе подчиняются определенным физическим законам, которые первым описал Ньютон.

С 1980 года участки нашей спутницы – Луны официально продаются, причем стоят они немало. На сегодняшний день продано около семи процентов поверхности естественного спутника. Стоимость сорока соток ныне – не более 150 долларов. Счастливец, купивший участок, получает сертификат и фотоснимки своей «лунной земли».

  • В 1992 году в космос отправилась официальная пара Джен и Марк. Их по сей день считают первыми и единственными супругами, которые посетили космос вместе. Супруги полетели в космос на корабле «Эндевер».
  • Все те, кто побывал в космосе на протяжении определенного времени (1-2 месяца), вырастают примерно на пять сантиметров из-за растяжения позвоночника, что потом, после возвращения на Землю, может негативно сказаться на здоровье.
  • Спутниковая орбитальная система может сфотографировать три миллиона квадратных километров Земли за полчаса, самолет – за двенадцать лет, человек вручную – за 100 лет приблизительно.
  • В 2001 году провели интересный эксперимент, после чего выяснили, что храпящие дома космонавты в космическом пространстве лишаются этой дурной привычки.




















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.






































Назад Вперёд

Цели урока:

  • Расширить представления детей о космонавтике. Выяснить, зачем люди летают в космос.
  • Познакомить с искусственными спутниками Земли и их значением для человека, первым космонавтом Юрием Алексеевичем Гагариным.
  • Развивать познавательный интерес учащихся, учить работать с дополнительной литературой, применять в работе ранее полученные знания. Воспитывать патриотические чувства.

Оборудование:

  • модели ракет-носителей "Союз" и "Протон", фотографии и иллюстрации космических запусков, художественная литература и журналы, детские рисунки на космическую тематику;
  • ИКТ - мультимедийная презентация: демонстрация современных достижений ракетно-космической техники, стартовых комплексов и космических пусков, фотографий космонавтов.
  • песня в формате MP3: "Ода Байконуру", автор и исполнитель Тарас Ворона.

Ход урока

Презентация 1. Слайд 1. Фотозаставка. Тема урока.

1. Организационный момент. Вступительное слово и сообщение темы занятия.

Вопрос: Посмотрите, ребята, на оформление класса, вспомните, какая дата приближается. Кто догадался, о чем мы будем говорить сегодня на уроке?

На уроках знакомства с окружающим миром мы с вами говорили о том, как человек учился летать. Давайте вспомним, на чем, с помощью каких приспособлений люди пытались подняться в небо?

Издавна человечество стремилось к звёздам. С незапамятных времён люди мечтали о полётах на Луну, на планеты солнечной системы, к далёким таинственным мирам. На чем только не летали к Луне, Солнцу и звездам герои сказок и легенд: на летучих мышах и коньке - горбунке, на коврах - самолетах и волшебных стрелах.

Первым, кто увидел в ракете снаряд, способный вынести землян в межпланетные просторы, был великий русский ученый Константин Эдуардович Циолковский. Он говорил: "Земля - наша колыбель, но нельзя же вечно жить в колыбели".

Создать космическую ракету оказалось делом невероятной трудности. Сегодня наш классный час о том, как человек проложил себе дорогу в космос, о людях, которые делали первые шаги в космическое пространство, о современных достижениях космонавтики.

12 апреля наша страна, а вместе с ней и весь мир, отмечает День космонавтики - большой всенародный праздник в честь летчиков, космонавтов, конструкторов, служащих, рабочих, которые создают ракеты, космические корабли, искусственные спутники Земли.

2. Работа над темой урока.

Начало космической эры.

Вопрос: Знаете ли вы, как была открыта космическая эра, кто первым побывал в космосе?

Космическая эра была открыта более 50 лет назад, 4 октября 1957 года. В этот день в нашей стране был запущен первый искусственный спутник Земли. Он представлял собой шар диаметром 58 см, весил 86 кг и был снабжен четырьмя антеннами, работающими от батареек. (Демонстрация первого искусственного спутника в музее космодрома (книга, фотография).

Животные в космосе.

Прежде чем в космос полетел первый человек, ученые сначала отправляли в космическую неизвестность различных животных. Первыми "космонавтами" - разведчиками были мыши, собаки, кролики, насекомые и даже микробы. Первая маленькая мышка - космонавт пробыла над землей почти целые сутки. В ее черной шерстке появились белые волоски. Они поседели от космических лучей, но мышка вернулась живой.

Потом наступила очередь собак, более умных животных, чем мыши и кролики. Собак учили не бояться тряски и шума, переносить жару и холод, по сигналу лампочки начинать есть и многому другому. Первой в космос отправилась собака Лайка. Для нее построили специальную ракету, где был запас пищи, воды и воздуха. Лайка из космоса не вернулась.

Вслед за Лайкой в космос полетели другие собаки: Белка и Стрелка, Чернушка и Звездочка, Пчелка и Мушка. Все они возвратились на Землю.

Так ученые убедились, что живые существа могут жить в невесомости. Путь в космос был открыт.

Человек в космосе.

В 1960 году в Центре подготовки космонавтов отряд из 12 человек начал готовиться к полету в космос. Работали упорно, самозабвенно. С полной отдачей сил. Каждый хотел полететь в космос первым.

12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур в Казахстане стартовал космический корабль "Восток", на борту которого находился человек. Обогнув Землю, корабль приземлился на волжской земле под Саратовом.

Первым в мире космонавтом стал Юрий Гагарин.

Слайд 2 - демонстрация фотографии Ю. Гагарина,

Ночью перед полетом Юрий Гагарин проспал 8 часов, проснулся бодрым и спокойным. Он был уверен, что все будет хорошо. В положенное время Гагарин поднялся на корабль. Взревели двигатели ракеты мощностью в 20 миллионов лошадиных сил. В момент отрыва ракеты от стартового стола земляне услышали знаменитое гагаринское: "Поехали!" Космический корабль "Восток" устремился ввысь. На трехсоткилометровой высоте "Восток" вышел на орбиту. Он мчался вокруг Земли со скоростью 28 тысяч километров в час. Полет продолжался 108 минут. Корабль совершил полный виток вокруг земли и плавно опустился в заданном районе.

Так началась эра пилотируемых полетов в космос.

Ликованию людей не было конца. Они восприняли это событие как радостный праздник. Родина отметила подвиг космонавта, присвоив ему звание Героя Советского Союза.

Проложив дорогу в космос другим, первый космонавт радовался успехам своих товарищей, мечтал о новых полетах, готовился к ним, окончил Военно-воздушную академию.

К несчастью, трагическая гибель во время полета на тренировочном реактивном самолете оборвала его короткую яркую жизнь. Но след от нее остался навсегда - и на земле, и в космосе. В этом году исполняется 50 лет со дня первого полета человека в космос.

Выходят чтецы.

Разные бывают даты. Об одних помнят только несколько человек, другие даты отмечают все люди. Именно к такой дате относится день 12 апреля 1961 года. С того праздничного утра началось освоение космоса. Сегодня все более мощные ракеты поднимаются к звездам. Но чем дальше уходит от нас год первого полета человека в космос, тем громче, торжественней звучит имя первопроходца Вселенной.

Рассвет еще не значит ничего,
Обычные "Последние известия",
А он уже летит через созвездия,
Земля проснется с именем его.

Живем мы на нашей планете
В такой замечательный век.
И первый из первых в ракете
Советский летит человек!
Не с целью разведки военной,
На сверхскоростном корабле
Летел он один во Вселенной,
Чтоб снова вернуться к Земле!

Помнит Земля,
Подвиг ценя,
Звонкий апрельский возглас:
"Как ты, Заря?
Слышишь меня?
Вижу открытый космос!

Был человек очень земной,
Самый обыкновенный.
В смелый разбег
Послан страной
"Здравствуй!" - сказал Вселенной.

После первого полета Гагарина на околоземную орбиту вышли другие покорители космического пространства. Всё они делали впервые. С огромным риском для жизни. К сожалению, не все остались живы, но их дело продолжили другие. С каждым новым полетом усложнялись программы, задания космонавтам. Но герои честно и добросовестно выполняли свою работу.

Слайд 3 - фотография Г. Титова

6 августа 1961 года на корабле "Восток - 2" в космос полетел Герман Титов. В отличие от Юрия Гагарина он совершил 17 витков вокруг Земли. Этот полет был первым в мире многовитковым полетом. Его цель - проверить, как действует на организм человека невесомость. Герман Титов по праву считается космонавтом № 2, он первым вышел в открытый космос.

Слайд 4 - фотография В. Терешковой

А через 2 года, 16 июня 1963 года в космос отправилась первая в мире женщина космонавт Валентина Терешкова.

За время космической эры много космонавтов побывали в космосе, но эти были первым, поэтому их и называют пионерами космоса.

Вопрос: Каких еще космонавтов, кроме названных, вы знаете? (демонстрация в книге фотографий отряда космонавтов).

Подготовка космонавтов к старту.

Вопрос: Какими качествами и свойствами характера должен обладать будущий космонавт?

Знаете ли вы где и как тренируются космонавты, чтобы быть готовыми к космическим т полетам?

В процессе длительной и напряженной предполетной работы на Земле космонавты тщательно готовятся к выполнению всех этих многотрудных обязанностей. И большая их часть проходит во всемирно известном Звездном городке в Подмосковье, в Центре подготовки космонавтов, который сегодня носит имя Ю.А. Гагарина (демонстрация фотографии Звездного городка).

В физическую подготовку космонавтов включаются интенсивная утренняя зарядка, игра в футбол, волейбол, баскетбол, акробатика, бег, плавание, прыжки в воду, езда на велосипеде, силовые упражнения на спортивных снарядах.

В подготовке космонавтов используется целый ряд специальных тренажеров, имитирующих работу на космических кораблях в состоянии невесомости.

ИКТ - демонстрация слайдов подготовки космонавтов в Звездном.

5 слайд - Для тренировок космонавтов используют тренажер - центрифугу. В этой огромной, 18-метровой кегле создаются перегрузки, которые космонавт испытывает во время полета. Сама она вращается по кругу, голова ее тоже вращается, внутри головы вращается кабина, а внутри кабины вращается кресло с космонавтом.

6 слайд - Опытные тренеры, инструкторы и врачи тщательно наблюдают за тренировками, контролируют нагрузки. Смотрят, как реагирует организм человека при различных нагрузках на специальных тренажерах: это сурдокамеры, вращающиеся кресла, качели, стенды, термокамеры, барокамеры, центрифуги, проверяют надежность скафандров.

Вопрос: А как же питаются космонавты в космосе?

Слайд 7 - демонстрация слайдов с изображением продуктов питания космонавтов.

В космическом корабле продукты питания хранятся в тубах. Они похожи на тюбики с зубной пастой, только размером побольше. Из них еду выдавливают. В условиях невесомости крошки хлеба, капельки жидкости могут доставить неприятности космонавтам. В космическом доме есть холодильник и электрическая плита.

Подготовка космического аппарата к пуску.

Пока космонавты тренируются и готовятся к полетам, тысячи других специалистов готовят к стартам в космические дали ракеты-носители и другие космические аппараты.

Все знают, что самолету для взлета нужен аэродром, ракета - носитель с очередным спутником Земли или космическим кораблем стартует с космодрома.

Космодром - очень сложное многоплановое сооружение, с большим количеством сложных технических устройств. В нашей стране существовало несколько космодромов: Капустин яр в Астраханской области, Мирный в Архангельской области, Свободный в Амурской области, Байконур в Казахстане. Сегодня функционируют только два космодрома: Мирный в Архангельской области и Байконур в Казахстане.

Слайд 8 - слайды сборки КА в МИКе.

С завода космические аппараты и ракеты-носители доставляются на космодром в виде отдельных блоков. Их сборка происходит в монтажно-испытательном корпусе. Это здание длиной более 150 и шириной более 70 метров, высотой с 12-ти этажный дом. Сегодня в современных МИКах можно производить сборку нескольких ракет одновременно.

Именно в монтажно-испытательном корпусе ракета приобретает знакомый нам по экранам телевизоров вид.

ИКТ - демонстрация слайдов вывоза ракеты на стартовый комплекс.

9 слайд - Из монтажно-испытательного корпуса по железнодорожным рельсам космический аппарат доставляется на стартовую позицию.

10 слайд - Территория, где готовят ракету к запуску, больше московского стадиона Лужники.

ИКТ - демонстрация слайдов установки ракеты на стартовом столе.

11 слайд - Здесь ракета устанавливается вертикально на прочное железобетонное сооружение.

12 слайд - После установки ракеты на стартовой площадке проводятся предстартовые комплексные испытания ракеты-носителя и космического аппарата, производится заправка топливом. По команде топливо поступает в камеры двигателей. Включаются бортовые системы управления.

Космический аппарат отправляется в космос.

ИКТ - демонстрация слайдов пуска ракеты.

13 слайд - Зажигание! Объявляется минутная готовность. На космодроме все затихает. Кажется, что слышно как на вершине ракеты бьются человеческие сердца.

Зрелище старта никого не оставляет равнодушным!

По громкой связи над космодромом раздаются одна за другой четкие команды руководителя полета:

  • Ключ на старт!
  • Протяжка один!
  • Продувка!
  • Предварительная!
  • Промежуточная!
  • Главная!

14 слайд - Старт! В газоход устремляется водопад огня, и могучий грохот разносится по степи. Как будто рядом выстрелили, но звук выстрела не прекращается. Ракета окутывается красноватым дымом.

15 слайд - Подъем! Грохот нарастает, двигатели выходят на предельные режимы, раздвигаются опорные фермы, ракета медленно, очень медленно, опираясь на огненный столб, отрывается от Земли:

16 слайд - Поехали! :поднимается над стартовым столом и устремляется в небо. Рокочущие двигатели первой ступени извергают столько огня, что на мгновение слепнешь, пламя намного ярче солнца! И грохот стоит несусветный, как будто рядом происходит извержение вулкана:

17 слайд - В полете! И вот она уже вся как на ладони, показалась над стартом. Ракета быстро набирает скорость, еще мгновение - и она превратится уже в звездочку, звездочка, уменьшаясь, исчезнет в высоте:

На космодроме опять тишина. Только запах гари да раскинутые фермы стартового стола как бы тяжело и спокойно дышат, совершив тяжелую работу, отправив новый экипаж в космос. Через несколько минут по радио объявят: "Космический корабль вышел на заданную околоземную орбиту".

В первые секунды после старта полет контролируется командно-измерительным комплексом космодрома. После выхода космического корабля на заданную орбиту полет контролируется Центром управления полетом.

Достижения современной космонавтики.

Вопрос: А зачем сегодня люди летают в космос?

Во время первого космического полета Ю. Гагарин поддерживал радиосвязь с Центром управления полетом, сообщал о работе бортовых систем, передавал первые результаты наблюдения Земли с космической орбиты, следил за работой оборудования корабля и приборов, наблюдал за реакцией своего организма, принимал пищу и еду. Все это было впервые, и все это было очень важно для будущих полетов.

Сегодня экипажи космонавтов, отправляясь в очередную экспедицию на околоземную орбиту, выполняют конкретные задачи ученых, биологов, медиков, делают тысячи снимков земной поверхности и Мирового океана, определяют состояние сельскохозяйственных посевов.

Слайд 18:

Космонавты сообщают о стихийных бедствиях: о пожарах в лесах, о снежных обвалах в горах, о штормах на морях; уточняют прогноз погоды, помогают геологам в поисках природных ископаемых, испытывают новое снаряжение и новые технические системы, проводят многочисленные эксперименты по космическим технологиям.

Обобщение и подведение итогов урока.

А теперь давайте проверим, что нового вы узнали сегодня, какими были внимательными и что запомнили на уроке.

Викторина.

Задание 1. Назвать как можно больше слов на космическую тематику.

Слайд 19 - на экране появляются слова на космическую тематику.

Это слова - подсказки для ответов на вопросы викторины

Задание 2.

Космические вопросы.

  1. Небесное тело, которое само светится. (звезда)
  2. Звезда, вокруг которой вращается Земля. (Солнце)
  3. Пространство, окружающее Землю, звезды и планеты. (космос)
  4. Назовите животных - космонавтов. (собаки, обезьяны. мыши)
  5. Как называется одежда космонавта. (скафандр)
  6. Кто был первым космонавтом планеты?
  7. Когда состоялся первый полет в космос?
  8. Как назывался космический корабль, на борту которого первый космонавт планеты совершил полет? ("Восток")
  9. Сколько времени длился полет Ю.А. Гагарина? (108 минут)
  10. Кто из женщин первой побывал в космосе?
  11. Какую "шоколадную" планету можно купить в магазине? (Марс)
  12. Как называется город, в котором живут и работают космонавты? (Звездный)
  13. Место, где готовят и откуда запускают космические ракеты, спутники. (космодром)
  14. Название космодрома, откуда был совершен первый полет в космос. (Байконур)

Выходят чтецы.

После старта Юрия Гагарина прошло много лет. За это время многое изменилось в космонавтике: и техника, и подготовка экипажей, и программа работы на орбите.

Работа в космосе теперь длится долго. Стартуют новые корабли, орбитальные станции кружат вокруг планеты. Уходит в небо одна экспедиция, другая готовится к полету. В космосе работают мужественные люди, герои.

Может, быть пройдет совсем немного времени, и кто-нибудь из вас, сидящих сегодня за партами проложит свою дорогу в космическую неизвестность.

Когда над Землею летит космонавт,
Глядят ему вслед миллионы ребят.
Вечерней порою глядят в небеса,
Сияют, сияют ребячьи глаза.
И в них отражаются, ярко горят
Те звезды, к которым они полетят!

Мы спешим скорее в школу,
В наш любимый светлый класс.
Много дел, больших и новых,
Ожидает нас.
Будет день, дорогой света
Полетим и мы -
К тайнам, сказочным планетам,
В дальние миры.

Проложим дороги к далёким мирам,
В ракетах к Луне полетим,
И если мы встретим ровесников там,
То в гости к себе пригласим.

Подводя итоги урока, хочу сказать всем ребятам спасибо за активность и любознательность, и в подарок дать возможность полюбоваться тем местом, тем городом, который по праву считается Колыбелью Космонавтики.

Т. Ворона

Казахстанскую степь обнимают орлиные крылья.
Там, откуда ушел человек в самый первый космический тур.
Место есть на земле, где фантастика сделалась былью,
И название славного места того - БАЙКОНУР .

ИКТ - "Ода Байконуру". Презентация 2.

мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост - от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский - ученый-самоучка из Рязанской губернии, невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета - все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД - группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки - немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха - ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» - система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Конструкция ракеты

Схема двухступенчатой ракеты.