Главная · Зубные протезы · Вторая производная сложной функции нескольких переменных. Частные производные для функции от нескольких переменных. Экстремумы функции нескольких переменных

Вторая производная сложной функции нескольких переменных. Частные производные для функции от нескольких переменных. Экстремумы функции нескольких переменных

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче:

Пусть z=ƒ(х;у) - функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема 44.4. Если z = ƒ(х;у) - дифференцируемая в точке М(х;у) є D функция и х = x(t) и у = y(t) - дифференцируемые функции независимой переменной t, то производная сложной функции z(t) = f(x(t);y(t)) вычисляется по формуле

Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.

Так как по условию функция z - ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде

где а→0, β→0 при Δх→0, Δу→0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt→0. Тогда Δх→0 и Δу→0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы - они дифференцируемые). Получаем:

Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) - сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:

Формула (44.9) носит название формулы полной производной.

Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) - сложная функция независимых переменных u и v. Ее частные производные можно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в ней соответствующими частными производными

Аналогично получаем:

Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).

Пример 44.5. Найти если z=ln(x 2 +у 2), х=u v, у=u/v.

Решение: Найдем dz/du (dz/dv - самостоятельно), используя формулу (44.10):

Упростим правую часть полученного равенства:



40. Частные производные и полный дифференциал функции нескольких переменных.

Пусть задана функция z = ƒ (х; у). Так как х и у - независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной х приращение Δх, сохраняя значение у неизменным. Тогда z получит приращение, которое называется частным приращением z по х и обозначается ∆ х z. Итак,

Δ х z=ƒ(х+Δх;у)-ƒ(х;у).

Аналогично получаем частное приращение z по у:

Δ у z=ƒ(x;у+Δу)-ƒ(х;у).

Полное приращение Δz функции z определяется равенством

Δz = ƒ(х + Δх;у + Δу)- ƒ(х; у).

Если существует предел

то он называется частной производной функции z = ƒ (х; у) в точке М(х;у) по переменной х и обозначается одним из символов:

Частные производные по х в точке М 0 (х 0 ;у 0) обычно обозначают символами

Аналогичноопределяется и обозначается частная производная от z=ƒ(х;у) по переменной у:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции ƒ(х;у) находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственно х или у считается постоянной величиной).

Пример 44.1. Найти частные производные функции z = 2у + е х2-у +1 . Решение:

Геометрический смысл частных производных функции двух переменных

Графиком функции z= ƒ (х; у) является некоторая поверхность (см. п. 12.1). График функции z = ƒ (х; у 0) есть линия пересечения этой поверхности с плоскостью у = у о. Исходя из геометрического смысла производной для функции одной переменной (см. п. 20.2), заключаем, что ƒ"x(х о;у о) = tg а, где а - угол между осью Ох и касательной, проведенной к кривой z = ƒ (х; у 0) в точке Мо(хо;уо; ƒ(хо;уо)) (см. рис. 208).

Аналогично, f"y (х 0 ;у 0)=tgβ.

Функция Z=f(x,y) называется дифференцируемой в точке P(x,y), если ее полное приращение ΔZ можно представить в виде Δz = A∙Δx+B∙Δy+ω(Δx,Δy), где Δx и Δy – любые приращения соответствующих аргументов x и y в некоторой окрестности точки Р, А и В – постоянные (не зависят от Δx,Δy),

ω(Δx,Δy) – бесконечно малое более высокого порядка, чем расстояние:

Если функция дифференцируема в точке, то ее полное приращение в этой точке состоит из двух частей:

1. Главной части приращения функции A∙Δx+B∙Δy – линейное относительно Δx,Δy

2. И нелинейное ω(Δx,Δy) – бесконечно малое более высокого порядка, чем главная часть приращения.

Главная часть приращения функции – линейная относительно Δx,Δy называется полным дифференциалом этой функции и обозначается: Δz = A∙Δx+B∙Δy, Δx=dx и Δy=dy или полный дифференциал функции двух переменных:

Дифференциал отображения. Дифференциал и производная числовой функции одной переменной. Таблица производных. Дифференцируемость. ) – функция аргумента , являющаяся бесконечно малой при →0, т.е.

Выясним теперь связь между дифференцируемостью в точке и существованием производной в той же точке.

Теорема . Для того чтобы функция f (x ) была дифференцируемой в данной точке х , необходимо и достаточно, чтобы она имела в этой точке конечную производную.

Таблица производных.

Рассмотрим функцию от двух переменных:

Поскольку переменные $x$ и $y$ являются независимыми, для такой функции можно ввести понятие частной производной:

Частная производная функции $f$ в точке $M=\left({{x}_{0}};{{y}_{0}} \right)$ по переменной $x$ — это предел

\[{{{f}"}_{x}}=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}}+\Delta x;{{y}_{0}} \right)}{\Delta x}\]

Аналогично можно определить частную производную по переменной $y$ :

\[{{{f}"}_{y}}=\underset{\Delta y\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}};{{y}_{0}}+\Delta y \right)}{\Delta y}\]

Другими словами, чтобы найти частную производную функции нескольких переменных, нужно зафиксировать все остальные переменные, кроме искомой, а затем найти обычную производную по этой искомой переменной.

Отсюда вытекает основной приём для вычисления таких производных: просто считайте, что все переменные, кроме данной, являются константой, после чего дифференцируйте функцию так, как дифференцировали бы «обычную» — с одной переменной. Например:

$\begin{align}& {{\left({{x}^{2}}+10xy \right)}_{x}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{x}+10y\cdot {{\left(x \right)}^{\prime }}_{x}=2x+10y, \\& {{\left({{x}^{2}}+10xy \right)}_{y}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{y}+10x\cdot {{\left(y \right)}^{\prime }}_{y}=0+10x=10x. \\\end{align}$

Очевидно, что частные производные по разным переменным дают разные ответы — это нормально. Куда важнее понимать, почему, скажем, в первом случае мы спокойно вынесли $10y$ из-под знака производной, а во втором — вовсе обнулили первое слагаемое. Всё это происходит из-за того, что все буквы, кроме переменной, по которой идёт дифференцирование, считаются константами: их можно выносить, «сжигать» и т.д.

Что такое «частная производная»?

Сегодня мы поговорим о функциях нескольких переменных и о частных производных от них. Во-первых, что такое функция нескольких переменных? До сих пор мы привыкли считать функцию как $y\left(x \right)$ или $t\left(x \right)$, или любую переменную и одну-единственную функцию от нее. Теперь же функция у нас будет одна, а переменных несколько. При изменении $y$ и $x$ значение функции будет меняться. Например, если $x$ увеличится в два раза, значение функции поменяется, при этом если $x$ поменяется, а $y$ не изменится, значение функции точно так же изменится.

Разумеется, функцию от нескольких переменных, точно так же как и от одной переменной, можно дифференцировать. Однако поскольку переменных несколько, то и дифференцировать можно по разным переменным. При этом возникают специфические правила, которых не было при дифференцировании одной переменной.

Прежде всего, когда мы считаем производную функции от какой-либо переменной, то обязаны указывать, по какой именно переменной мы считаем производную — это и называется частной производной. Например, у нас функция от двух переменных, и мы можем посчитать ее как по $x$, так и по $y$ — две частных производных у каждой из переменных.

Во-вторых, как только мы зафиксировали одну из переменных и начинаем считать частную производную именно по ней, то все остальные, входящие в эту функцию, считаются константами. Например, в $z\left(xy \right)$, если мы считаем частную производную по $x$, то везде, где мы встречаем $y$, мы считаем ее константой и обращаемся с ней именно как с константой. В частности при вычислении производной произведения мы можем выносить $y$ за скобку (у нас же константа), а при вычислении производной суммы, если у нас где-то получается производная от выражения, содержащего $y$ и не содержащего $x$, то производная этого выражения будет равна «нулю» как производная константы.

На первый взгляд может показаться, что я рассказываю о чем-то сложном, и многие ученики по началу путаются. Однако ничего сверхъестественного в частных производных нет, и сейчас мы убедимся в этом на примере конкретных задач.

Задачи с радикалами и многочленами

Задача № 1

Чтобы не терять время зря, с самого начала начнем с серьезных примеров.

Для начала напомню такую формулу:

Это стандартное табличное значение, которое мы знаем из стандартного курса.

В этом случае производная $z$ считается следующим образом:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}\]

Давайте еще раз, поскольку под корнем стоит не $x$, а некое другое выражение, в данном случае $\frac{y}{x}$, то сначала мы воспользуемся стандартным табличным значением, а затем, поскольку под корнем стоит не $x$, а другое выражение, нам необходимо домножить нашу производную на еще одну из этого выражения по той же самой переменной. Давайте для начала посчитаем следующее:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{{{{{y}"}}_{x}}\cdot x-y\cdot {{{{x}"}}_{x}}}{{{x}^{2}}}=\frac{0\cdot x-y\cdot 1}{{{x}^{2}}}=-\frac{y}{{{x}^{2}}}\]

Возвращаемся к нашему выражению и записываем:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)\]

В принципе, это все. Однако оставлять ее в таком виде неправильно: такую конструкцию неудобно использовать для дальнейших вычислений, поэтому давайте ее немного преобразуем:

\[\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \frac{y}{{{x}^{2}}}=\]

\[=-\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{{{y}^{2}}}{{{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{x\cdot {{y}^{2}}}{y\cdot {{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{y}{{{x}^{3}}}}\]

Ответ найден. Теперь займемся $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}\]

Выпишем отдельно:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{{{{{y}"}}_{y}}\cdot x-y\cdot {{{{x}"}}_{y}}}{{{x}^{2}}}=\frac{1\cdot x-y\cdot 0}{{{x}^{2}}}=\frac{1}{x}\]

Теперь записываем:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \frac{1}{x}=\]

\[=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{1}{{{x}^{2}}}}=\frac{1}{2}\sqrt{\frac{x}{y\cdot {{x}^{2}}}}=\frac{1}{2\sqrt{xy}}\]

Все сделано.

Задача № 2

Этот пример одновременно и проще, и сложней, чем предыдущий. Сложнее, потому что здесь больше действий, а проще, потому что здесь нет корня и, кроме того, функция симметрична относительно $x$ и $y$, т.е. если мы поменяем $x$ и $y$ местами, формула от этого не изменится. Это замечание в дальнейшем упростит нам вычисление частной производной, т.е. достаточно посчитать одну из них, а во второй просто поменять местами $x$ и $y$.

Приступаем к делу:

\[{{{z}"}_{x}}={{\left(\frac{xy}{{{x}^{2}}+{{y}^{2}}+1} \right)}^{\prime }}_{x}=\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

Давайте посчитаем:

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{\left(x \right)}^{\prime }}=y\cdot 1=y\]

Однако многим ученикам такая запись непонятна, поэтому запишем вот так:

\[{{\left(xy \right)}^{\prime }}_{x}={{\left(x \right)}^{\prime }}_{x}\cdot y+x\cdot {{\left(y \right)}^{\prime }}_{x}=1\cdot y+x\cdot 0=y\]

Таким образом, мы еще раз убеждаемся в универсальности алгоритма частных производных: каким бы мы образом их не считали, если все правила применяются верно, ответ будет один и тот же.

Теперь давайте разберемся еще с одной частной производной из нашей большой формулы:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}={{\left({{x}^{2}} \right)}^{\prime }}_{x}+{{\left({{y}^{2}} \right)}^{\prime }}_{x}+{{{1}"}_{x}}=2x+0+0\]

Подставим полученные выражения в нашу формулу и получим:

\[\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\cdot \left({{x}^{2}}+{{y}^{2}}+1 \right)-xy\cdot 2x}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\left({{x}^{2}}+{{y}^{2}}+1-2{{x}^{2}} \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\frac{y\left({{y}^{2}}-{{x}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

По $x$ посчитано. А чтобы посчитать $y$ от того же самого выражения, давайте не будем выполнять всю ту же последовательность действий, а воспользуемся симметрией нашего исходного выражения — мы просто заменим в нашем исходном выражении все $y$ на $x$ и наоборот:

\[{{{z}"}_{y}}=\frac{x\left({{x}^{2}}-{{y}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

За счет симметрии мы посчитали это выражение гораздо быстрее.

Нюансы решения

Для частных производных работают все стандартные формулы, которые мы используем для обычных, а именно, производная частного. При этом, однако, возникают свои специфические особенности: если мы считаем частную производную $x$, то когда мы получаем ее по $x$, то рассматриваем ее как константу, и поэтому ее производная будет равна «нулю».

Как и в случае с обычными производными, частную (одну и ту же) можно посчитать несколькими различными способами. Например, ту же конструкцию, которую мы только что посчитали, можно переписать следующим образом:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=y\cdot {{\left(\frac{1}{x} \right)}^{\prime }}_{x}=-y\frac{1}{{{x}^{2}}}\]

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{{x}"}_{x}}=y\cdot 1=y\]

Вместе с тем, с другой стороны, можно использовать формулу от производной суммы. Как мы знаем, она равна сумме производных. Например, запишем следующее:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}=2x+0+0=2x\]

Теперь, зная все это, давайте попробуем поработать с более серьезными выражениями, поскольку настоящие частные производные не ограничиваются одними лишь многочленами и корнями: там встречаются и тригонометрия, и логарифмы, и показательная функция. Сейчас этим и займемся.

Задачи с тригонометрическими функциями и логарифмами

Задача № 1

Запишем следующие стандартные формулы:

\[{{\left(\sqrt{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{x}}\]

\[{{\left(\cos x \right)}^{\prime }}_{x}=-\sin x\]

Вооружившись этими знаниями, попробуем решить:

\[{{{z}"}_{x}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{x}={{\left(\sqrt{x} \right)}^{\prime }}_{x}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=\]

Отдельно выпишем одну переменную:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=-\frac{1}{y}\cdot \sin \frac{x}{y}\]

Возвращаемся к нашей конструкции:

\[=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \left(-\frac{1}{y}\cdot \sin \frac{x}{y} \right)=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}-\frac{\sqrt{x}}{y}\cdot \sin \frac{x}{y}\]

Все, по $x$ мы нашли, теперь давайте займемся вычислениями по $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{y}={{\left(\sqrt{x} \right)}^{\prime }}_{y}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=\]

Опять же посчитаем одно выражение:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot x\cdot \left(-\frac{1}{{{y}^{2}}} \right)\]

Возвращаемся к исходному выражению и продолжаем решение:

\[=0\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \frac{x}{{{y}^{2}}}\sin \frac{x}{y}=\frac{x\sqrt{x}}{{{y}^{2}}}\cdot \sin \frac{x}{y}\]

Все сделано.

Задача № 2

Запишем необходимую нам формулу:

\[{{\left(\ln x \right)}^{\prime }}_{x}=\frac{1}{x}\]

Теперь посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{x}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{x}=\]

\[=\frac{1}{x+\ln y}\cdot \left(1+0 \right)=\frac{1}{x+\ln y}\]

По $x$ найдено. Считаем по $y$:

\[{{{z}"}_{y}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{y}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{y}=\]

\[=\frac{1}{x+\ln y}\left(0+\frac{1}{y} \right)=\frac{1}{y\left(x+\ln y \right)}\]

Задача решена.

Нюансы решения

Итак, от какой бы функции мы не брали частную производную, правила остаются одними и теми же, независимо от того, работаем ли мы с тригонометрией, с корнями или с логарифмами.

Неизменными остаются классические правила работы со стандартными производными, а именно, производная суммы и разности, частного и сложной функции.

Последняя формула чаще всего и встречается при решении задач с частными производными. Мы встречаемся с ними практически везде. Ни одной задачи еще не было, чтобы там нам она не попадалась. Но какой бы мы формулой не воспользовались, нам все равно добавляется еще одно требование, а именно, особенность работы с частными производными. Как только мы фиксируем одну переменную, все остальные оказываются константами. В частности, если мы считаем частную производную выражения $\cos \frac{x}{y}$ по $y$, то именно $y$ и является переменной, а $x$ везде остается константой. То же самое работает и наоборот. Ее можно выносить за знак производной, а производная от самой константы будет равна «нулю».

Все это приводит к тому, что частные производные от одного и того же выражения, но по разным переменным могут выглядеть совершенно по-разному. Например, посмотрим такие выражения:

\[{{\left(x+\ln y \right)}^{\prime }}_{x}=1+0=1\]

\[{{\left(x+\ln y \right)}^{\prime }}_{y}=0+\frac{1}{y}=\frac{1}{y}\]

Задачи с показательными функциями и логарифмами

Задача № 1

Для начала запишем такую формулу:

\[{{\left({{e}^{x}} \right)}^{\prime }}_{x}={{e}^{x}}\]

Зная этот факт, а также производную сложной функции, давайте попробуем посчитать. Я сейчас решу двумя различными способами. Первый и самый очевидный — это производная произведения:

\[{{{z}"}_{x}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\]

Давайте решим отдельно следующее выражение:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\frac{{{{{x}"}}_{x}}\cdot y-x.{{{{y}"}}_{x}}}{{{y}^{2}}}=\frac{1\cdot y-x\cdot 0}{{{y}^{2}}}=\frac{y}{{{y}^{2}}}=\frac{1}{y}\]

Возвращаемся к нашей исходной конструкции и продолжаем решение:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\left(1+\frac{1}{y} \right)\]

Все, по $x$ посчитано.

Однако как я и обещал, сейчас постараемся посчитать эту же частную производную другим способом. Для этого заметим следующее:

\[{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}={{e}^{x+\frac{x}{y}}}\]

В этом запишем так:

\[{{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot {{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot \left(1+\frac{1}{y} \right)\]

В результате мы получили точно такой же ответ, однако объем вычислений оказался меньшим. Для этого достаточно было заметить, что при произведении показатели можно складывать.

Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}={{\left({{e}^{x}} \right)}^{\prime }}_{y}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}=\]

\[=0\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\]

Давайте решим одно выражение отдельно:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\frac{{{{{x}"}}_{y}}\cdot y-x\cdot {{{{y}"}}_{y}}}{{{y}^{2}}}=\frac{0-x\cdot 1}{{{y}^{2}}}=-\frac{1}{{{y}^{2}}}=-\frac{x}{{{y}^{2}}}\]

Продолжим решение нашей исходной конструкции:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \left(-\frac{x}{{{y}^{2}}} \right)=-\frac{x}{{{y}^{2}}}\cdot {{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\]

Разумеется, эту же производную можно было бы посчитать вторым способом, ответ получился бы таким же.

Задача № 2

Посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(x \right)}_{x}}\cdot \ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\]

Давайте посчитаем одно выражение отдельно:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{2x}{{{x}^{2}}+y}\]

Продолжим решение исходной конструкции: $$

Вот такой ответ.

Осталось по аналогии найти по $y$:

\[{{{z}"}_{y}}={{\left(x \right)}^{\prime }}_{y}.\ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\]

Одно выражение посчитаем как всегда отдельно:

\[{{\left({{x}^{2}}+y \right)}^{\prime }}_{y}={{\left({{x}^{2}} \right)}^{\prime }}_{y}+{{{y}"}_{y}}=0+1=1\]

Продолжаем решение основной конструкции:

Все посчитано. Как видите, в зависимости от того, какая переменная берется для дифференцирования, ответы получаются совершенно разные.

Нюансы решения

Вот яркий пример того, как производную одной и той же функции можно посчитать двумя различными способами. Вот смотрите:

\[{{{z}"}_{x}}=\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

\[{{{z}"}_{x}}={{\left({{e}^{x}}.{{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}.{{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

При выборе разных путей, объем вычислений может быть разный, но ответ, если все выполнено верно, получится одним и тем же. Это касается как классических, так и частных производных. При этом еще раз напоминаю: в зависимости от того, по какой переменной идет взятие производной, т.е. дифференцирование, ответ может получиться совершенно разный. Посмотрите:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot 2x\]

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot 1\]

В заключение для закрепления всего этого материала давайте попробуем посчитать еще два примера.

Задачи с тригонометрической функция и функцией с тремя переменными

Задача № 1

Давайте запишем такие формулы:

\[{{\left({{a}^{x}} \right)}^{\prime }}={{a}^{x}}\cdot \ln a\]

\[{{\left({{e}^{x}} \right)}^{\prime }}={{e}^{x}}\]

Давайте теперь решать наше выражение:

\[{{{z}"}_{x}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{x}={{3}^{x.\sin y}}\cdot \ln 3\cdot {{\left(x\cdot \sin y \right)}^{\prime }}_{x}=\]

Отдельно посчитаем такую конструкцию:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{x}={{{x}"}_{x}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{x}=1\cdot \sin y+x\cdot 0=\sin y\]

Продолжаем решать исходное выражение:

\[={{3}^{x\sin y}}\cdot \ln 3\cdot \sin y\]

Это окончательный ответ частной переменной по $x$. Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{y}={{3}^{x\sin y}}\cdot \ln 3\cdot {{\left(x\sin y \right)}^{\prime }}_{y}=\]

Решим одно выражение отдельно:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{y}={{{x}"}_{y}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{y}=0\cdot \sin y+x\cdot \cos y=x\cdot \cos y\]

Решаем до конца нашу конструкцию:

\[={{3}^{x\cdot \sin y}}\cdot \ln 3\cdot x\cos y\]

Задача № 2

На первый взгляд этот пример может показаться достаточно сложным, потому что здесь три переменных. На самом деле, это одна из самых простых задач в сегодняшнем видеоуроке.

Находим по $x$:

\[{{{t}"}_{x}}={{\left(x{{e}^{y}}+y{{e}^{z}} \right)}^{\prime }}_{x}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{x}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{x}=\]

\[={{\left(x \right)}^{\prime }}_{x}\cdot {{e}^{y}}+x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{x}=1\cdot {{e}^{y}}+x\cdot o={{e}^{y}}\]

Теперь разберемся с $y$:

\[{{{t}"}_{y}}={{\left(x\cdot {{e}^{y}}+y\cdot {{e}^{z}} \right)}^{\prime }}_{y}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{y}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{y}=\]

\[=x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{y}+{{e}^{z}}\cdot {{\left(y \right)}^{\prime }}_{y}=x\cdot {{e}^{y}}+{{e}^{z}}\]

Мы нашли ответ.

Теперь остается найти по $z$:

\[{{{t}"}_{z}}={{\left(x\cdot {{e}^{y}}+{{y}^{z}} \right)}^{\prime }}_{z}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{z}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{z}=0+y\cdot {{\left({{e}^{z}} \right)}^{\prime }}_{z}=y\cdot {{e}^{z}}\]

Мы посчитали третью производную, на чем решение второй задачи полностью завершено.

Нюансы решения

Как видите, ничего сложного в этих двух примерах нет. Единственное, в чем мы убедились, так это в том, что производная сложной функции применяется часто и в зависимости от того, какую частную производную мы считаем, мы получаем разные ответы.

В последней задаче нам было предложено разобраться с функцией сразу от трех переменных. Ничего страшного в этом нет, однако в самом конце мы убедились, что все они друг от друга существенно отличаются.

Ключевые моменты

Окончательные выводы из сегодняшнего видеоурока следующие:

  1. Частные производные считаются так же, как и обычные, при этом, чтобы считать частную производную по одной переменной, все остальные переменные, входящие в данную функцию, мы принимаем за константы.
  2. При работе с частными производными мы используем все те же стандартные формулы, что и с обычными производными: сумму, разность, производную произведения и частного и, разумеется, производную сложной функции.

Конечно, просмотра одного этого видеоурока недостаточно, чтобы полностью разобраться в этой теме, поэтому прямо сейчас на моем сайте именно к этому видео есть комплект задач, посвященных именно сегодняшней теме — заходите, скачивайте, решайте эти задачи и сверяйтесь с ответом. И после этого никаких проблем с частными производными ни на экзаменах, ни на самостоятельных работах у вас не будет. Конечно, это далеко не последний урок по высшей математике, поэтому заходите на наш сайт, добавляйтесь ВКонтакте, подписывайтесь на YouTube, ставьте лайки и оставайтесь с нами!

1°. Случай одной независимой переменной . Если z=f(x,y) есть дифференцируемая функция аргументов х и у, которые в свою очередь являются дифференцируемыми функциями независимой переменной t : , то производная сложной функции может быть вычислена по формуле

Пример. Найти , если , где .

Решение. По формуле (1) имеем:

Пример . Найти частную производную и полную производную , если .

Решение. .

На основании формулы (2) получаем .

2°. Случай нескольких независимых переменных.

Пусть z = f (x ; y ) - функция двух переменных х и у, каждая из которых является функцией независимой переменной t : х = x (t ), у = y (t ). В этом случае функция z = f (x (t ); y (t )) является сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема . Если z == f (x ; у) - дифференцируемая в точке М(х;у) D функция и х = x (t ) и у =y (t ) - дифференцируемые функции независимой переменной t, то производная сложной функции z (t ) == f (x (t ); y (t )) вычисляется по формуле

Частный случай: z = f (x ; у), где у = у(х), т.е. z = f (x ; y (x )) - сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (3) имеем:

.

Последняя формула носит название формулы полной производной.

Общий случай: z = f (x ; y ), где х = x (u ; v ), y = y (u ; v ). Тогда z = f { x (u ; v ); y (u ; v )) - сложная функция независимых переменных и и v . Ее частные производные и можно найти, используя формулу (3) следующим образом. Зафиксировав v, заменяем в ней , соответствующими частными производными

Таким образом, производная сложной функции (z ) по каждой независимой переменной и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (x и у) на их производные по соответствующей независимой переменной (u и v).

Во всех рассмотренных случаях справедлива формула

(свойство инвариантности полного дифференциала).

Пример. Найти и , если z =f (x ,y ), где x =uv , .

Решение. Применяя формулы (4) и (5), получим:

Пример. Показать, что функция удовлетворяет уравнению .

Решение. Функция зависит от х и у через промежуточный аргумент , поэтому

Подставив частные производные в левую часть уравнения, будем иметь:

Т. е. функция z удовлетворяет данному уравнению.

Производная в данном направлении и градиент функции

1°. Производная функции в данном направлении . Производной функции z=f (x,y) в данном направлении называется , где и - значения функции в точках и . Если функция z дифференцируема, то справедлива формула

где - углы между направлением l и соответствующими координатными осями. Производная в данном направлении характеризует скорость изменения функции в этом направлении.

Пример. Найти производную функции z = 2х 2 - Зу 2 в точке P (1; 0) в направлении, составляющем с осью ОХ угол в 120°.

Решение. Найдем частные производные данной функции и их значения в точке P .

Теорема. Пусть u = f (х, у) задана в области D и пусть х = х(t) и у = у(t) определены в области , причём, когда , то х и у принадлежат области D . Пусть функция u дифференцируема в точке M 0 (x 0 , y 0 , z 0), а функции х (t) и у (t) дифференцируемы в соответствующей точке t 0 , то сложная функция u = f [x (t ), y (t )]=F (t ) дифференцируема в точке t 0 и имеет место равенство:

.

Доказательство. Так как u дифференцируема по условию в точке (x 0 , y 0), то её полное приращение представляется в виде

Разделив это соотношение на , получим:

Перейдём к пределу при и получим формулу

.

Замечание 1. Если u = u (x, y ) и x = x , y = y (x ), то полная производная функции u по переменной х

или .

Последнее равенство можно использовать для доказательства правила дифференцирования функции одной переменной, заданной неявно в виде F (x , y ) = 0, где y = y (x ) (см. тему № 3 и пример 14).

Имеем: . Отсюда . (6.1)

Вернёмся к примеру 14 темы № 3:

;

.

Как видим, ответы совпали.

Замечание 2. Пусть u = f (х, у ), где х = х (t , v ), у = у (t , v ). Тогда u есть в конечном счёте сложная функция двух переменных t и v . Если теперь функция u дифференцируема в точке M 0 (x 0 , y 0), а функции х и у дифференцируемы в соответствующей точке (t 0 , v 0), то можно говорить о частных производных по t и v от сложной функции в точке (t 0 , v 0). Но если мы говорим о частной производной по t в указанной точке, то вторая переменная v считается постоянной и равной v 0 . Следовательно, речь идёт о производной только от сложной функции по t и, следовательно, мы можем воспользоваться выведенной формулой. Таким образом, получим:

и .

Пример 13. Найти полную производную функции u = x y , где x = sin t , y = cos t .

41. Экстремумы функции нескольких переменных.

Экстремум функции нескольких переменных. Необходимые и достаточные условия существования экстремума

Определение 7. Точка называется точкой минимума (максимума) функции, если существует такая окрестность точки, что для всех точек из этой окрестности выполняется неравенство, ().

Точки минимума и максимума функции называются точками экстремума, а значения функции в этих точках - экстремумами функции (минимумом и максимумом соответственно).

Заметим, что минимум и максимум функции имеют локальный характер, так как значение функции в точке сравнивается с ее значениями в точках, достаточно близких к.

Теорема 1 (необходимые условия экстремума). Если - точка экстремума дифференцируемой функции, то ее частные производные и в этой точке равны нулю: .

Точки, в которых частные производные первого порядка равны нулю, называются критическими или стационарными. В критических точках функция может иметь экстремум, а может и не иметь.

Теорема 2 (достаточное условие экстремума). Пусть функция: а) определена в некоторой окрестности критической точки, в которой и; б) имеет непрерывные частные производные второго порядка. Тогда, если, то функция в точке имеет экстремум: максимум, если А<0; минимум, если А>0; если, то функция в точке экстремума не имеет. В случае вопрос о наличии экстремума остается открытым.

При исследовании функции двух переменных на экстремум рекомендуется использовать следующую схему:

1. Найти частные производные первого порядка: и.

2. Решить систему уравнений и найти критические точки функции.

3. Найти частные производные второго порядка: , .

4. Вычислить значения частных производных второго порядка в каждой критической точке и, используя достаточные условия, сделать вывод о наличии экстремума.

5. Найти экстремумы функции.

Пример 6. Найти экстремумы функции.

Решение. 1. Находим частные производные и:

2. Для определения критических точек решаем систему уравнений

Из первого уравнения системы находим: . Подставляя найденное значение y во второе уравнение, получим

Находим значения y, соответствующие значениям. Подставляя значения в уравнение, получим: .

Таким образом, имеем две критические точки: и.

3. Находим частные производные второго порядка:

4. Вычисляем значения частных производных второго порядка в каждой критической точке. Для точки имеем:

то в точке экстремума нет.

и, следовательно,

Значит, в силу достаточного условия экстремума, в точке функция имеет минимум, так как в этой точке и.