Главная · Зубные протезы · Воспаление. механизмы воспаления. Медиатор воспаления - брадикинин А также другие работы, которые могут Вас заинтересовать

Воспаление. механизмы воспаления. Медиатор воспаления - брадикинин А также другие работы, которые могут Вас заинтересовать

4 стадии:
1- Переходящий спазм приносящих артериол отчётливо выражен при быстро развивающемся повреждении(ожог)
2-Артериальная гиперемия- увеличение кровенаполнентя повреждённого участка органа(10-30минут)
3-Венозная гиперемия-максимальное расширение приносящих артериол и прекапиллярных сфинктеров,патенте скорости кровотоков микроциркуляторнвх сосудах
4-Стаз- предшествует предстатическое состояние,характеризующееся маятникообразным движением крови,вследствие нарастающего застоя крови,потери сосудистого тонуса и резкого расширения капилляров и вернул,во время систолыилнаидвижется от артерий к венам а во время диачтлы в обратом направлении

4.Механизм образования экссудатов.

Механизмы образования экссудата.
Экссудация-выход белоксодержащей жидкой части крови через сосудистую стенку в воспалённую ткань. Выход плазмы определяется увеличением кровяного давления в венозной части капилляров воспалённой ткани. Др фактором является повышение проницаемости капиллярной стенки,вызываемого медиаторами воспаления. Когда белки крови начинают поставившиеся из сосудов во внесосудистное пространство,онкотичкское давление падает,а онкотическое давление интенстициальной жидкости растёт. Начинается переход жидкости из сосудов в окружающее постранство в связи с увеличением онкотического и осмотического давления в очаге воспаления. Воспалительный отек имеет опреределенное защитное значение,белки отёчной жидкости связывают токсины,задерживают из всасывание в кровь и распространяете по всему организму.
Увеличение осмотич давления интрестициалтной жидкости обусловлено накоплением в иннрестиций осмотически активных продуктов распада тканей(натрий,калий,кальций,хлор)

5.Виды экссудатов.

Серозный экссудат характризуется умеренным содержанием белка (3-5%) и единичные полиморфноядерные лейкоциты.

Фибринозный экссудат по составу схож с серозным, но есть еще фибриноген. Особенностью химического состава фибринозного экссудата является выход фибриногена и выпадение его в виде фибрина в воспаленной ткани(крупозная пневмония, дифтерия)

Геморрагический экссудат образуется при бурно развивающемся воспалении с выраженным повреждением сосудистой стенки, когда в воспаленную ткань выходят эритроциты.(сибирская язва, натуральная оспа, чума) и другие форменные элементы крови, есть белок.

6.Эмиграция лейкоцитов в очаг воспаления. Механизмы.

Эмиграция лейкоцитов - активный процесс их выхода из просвета сосудов микроциркуляторного русла в межклеточное пространство. Спустя 1-2 ч после воздействия на ткань флогогенного фактора в очаге воспаления обнаруживается большое число эмигрировавших нейтрофилов и других гранулоцитов, позднее - через 15-20 и более часов - моноцитов, а затем и лимфоцитов.

Процесс эмиграции последовательно проходит этапы:

Роллинга (краевого стояния - «качения») лейкоцитов,

Их адгезии к эндотелию и проникновения через сосудистую стенку,

Направленного движения лейкоцитов в очаге воспаления

7. Медиаторы воспаления.

Все известные медиаторы воспаления по происхождению можно разделить на гуморальные (образующиеся в жидких средах - плазме крови и тканевой жидкости) и клеточные. К первым относятся производные комплемента, кинины и факторы свертывающей системы крови, ко вторым - вазоактивные амины, производные арахидоновой кислоты (эйкозаноиды), лизосомальные факторы, цитокины (монокины), лимфокины, активные метаболиты кислорода, нейропептиды. В то время как все гуморальные медиаторы являются предсуществующими, т. е. имеются в виде предшественников до активации последних, среди клеточных медиаторов можно вьщелить как предсуществующие (депонированные в клетках в неактивном состоянии) - вазоактивные амины, лизосомальные факторы, нейропептиды, так и вновь образующиеся (т. е. продуцируемые клетками при стимуляции) - эйкозаноиды, цитокины, лимфокины, активные метаболиты кислорода.

8.Фагоцитарная активность лейкоцитов в очаге воспаления. Фагоцитарное число, фагоцитарный показатель.

Для оценки фагоцитарной активности лейкоцитов периферической крови к цитратной крови, взятой из пальца, в объеме 0,2 мл, добавляют 0,25 мл взвеси микробной культуры с концентрацией 2 млрд. микробов в 1 мл. Смесь инкубируют 30 мин при 37°С, центрифугируют при 1500 об/мин в течение 5-6 мин, удаляют надосадочную жидкость. Осторожно отсасывают тонкий серебристый слой лейкоцитов, готовят мазки, сушат, фиксируют, красят краской Романовского-Гимза. Препараты сушат и микроскопируют.

Подсчет поглощенных микробов ведут в 200 нейтрофилах (50 моноцитов). Интенсивность реакции оценивают по следующим показателям:

1. Фагоцитарный показатель (фагоцитарная активность) - процент фагоцитов из числа сосчитанных клеток.

2. Фагоцитарное число (фагоцитарный индекс) - среднее число микробов, поглощенное одним активным фагоцитом.

9. Фагоцитоз, стадии. Нарушения фагоцитарной активности лейкоцитов.

Фагоцитоз- активный биологический процесс, заключающийся в поглощении чужеродного материала и его внутриклеточном переваривании фагоцитами.

Стадии:
1) сближение фагоцита с объектом фагоцитоза
2) распознавание фагоцитом объекта поглощения и адгезия к нему

3) поглощение объекта фагоцитом с образованием фаголизосомы

4) разрушение объекта фагоцитоза

10. Какие гормоны являются противовоспалительными и провоспалительными?

К провоспалительным гормонам относят СТГ, минералокортикоиды, тироксин, гормон паращитовидных желез, альдостерон, дезоксикортикостерон. К противовоспалительным гормонам относятся АКТГ, глюкокортикоиды, инсулин, половые гормоны.

11.Какие факторы обуславливают боль при воспалении?
Одним из важнейших эффектов кининов является присущая им способность раздражать окончания чувствительных нервов, обусловливая возникновение воспалительной боли. Боль - связывают с высвобождением других медиаторов, особенно простагландинов, серотонина . Кромее того, нейропептиды повышают чувствительность ноцицепторов к действию различных медиаторов. И за счет механического сдавления нервов.

12. Какие механизмы экссудации являются при воспалении?

Основные факторы механизма экссудации:

1) повышение проницаемости сосудов (венул и капилляров) в результате воздействия медиаторов воспаления и в ряде случаев самого воспалительного агента - ведущий фактор;

2) увеличение кровяного (фильтрационного) давления в сосудах очага воспаления вследствие гиперемии;

3) возрастание осмотического и онкотического давления в воспаленной ткани в результате альтерации и начавшейся экссудации и, возможно, снижение онкотического давления крови из-за потери белков при обильной экссудации.

13. Какие факторы способствуют развитию отека в очаге воспаления ?
Коллагеназа, гистамин, брадикинин.

14. Отличительные признаки транссудата от экссудата при воспалении?

Экссуда т-жидкость, выходящая из микрососсудов, содержащая большое количество белка, ФЭК.
Транссудат - отечная жидкость, скапливающаяся в полостях тела и тканевых щелях. Транссудат обычно бесцветен или бледно-желтого цвета, прозрачный, реже мутноват из-за примеси единичных клеток спущенного эпителия, лимфоцитов, жира. Содержание белков в транссудате обычно не превышает 3%; ими являются сывороточные альбумины и глобулины. В отличие от экссудата в транссудате отсутствуют ферменты, свойственные плазме .). Для отличия транссудата от экссудата применяют пробу Ривальты, основанную на разном содержании в них белка.

15. Какие физико-химические изменения характерны для участка острого воспаления?

16.Что является медиаторами воспаления, вызывающими увеличение проницаемости сосудов при воспалении?

Компоненты и производные комплемента, кинины(брадикинины, каллидин), простагландины, лейкотриены, серотонин, лизосомальные ферменты, катионные белки, супероксидный анион-радикал, гидроксил-радикал ОН-, перекись водорода Н2О2. Нейропептиды. Это вещество Р, кальциотонин (генсвязанный пептид), нейрокинин А. Ацетилхолин, катехоламины.

17. Какие медиаторы воспаления являются клеточными и плазменными?



18.Механизмы действия медиаторов воспаления.
Гистамин
Спазм гладкой мускулатуры (увеличи- вает образование простагландинов Е2 и F2a, тромбоксана). Вазодилатация (расширение прекапиллярных артериол). Повышение проницаемости стенки сосудов, подавление хемотаксиса и фаго- цитарной активности нейтрофилов, угнетение активности лимфоцитов и выработки лимфокинов. Лаброциты, базофильные лейкоциты.
Серотонин Сужение посткапиллярных венул, повышение проницаемости стенки сосудов. Боль. Зуд. Тромбоциты, лаброциты.
Кинины (брадикинин, метиониллизилбрадикинин). Вазодилятация. Повышение проницае- мости сосудов. Боль. Спазм глазной мускулатуры. a2-Глобулин плазмы крови.
Компоненты системы комплемена (С3а, С5а). Дегрануляция тучных клеток (выделе- ние гистамина). Повышение проницае- мости сосудистой стенки. Спазм глад- кой мускулатуры. Стимуляция хемотак- сиса лейкоцитов. Белки плазмы.
Интерлейкины и монокины : ИЛ-1ß, фактор некроза опухоли (ФНО-a) и др. Стимуляция синтеза простагландинов, фагоцитоза, пролиферации и активации фибробластов. Пирогенез. Макрофаги, моноци- ты, нейтрофильные гранулоциты.
Лимфокины : ИЛ-2, фактор активации макрофагов. Активация естественных киллеров. Стимуляция гранулоцитов. Лимфоциты.
Простагландины (ПГЕ, ПГF2α). Вазодилятация. Повышение проницае- мости сосудистой стенки. Пирогенез. Полиненасыщенные жирные кислоты фос- фолипидов мембран и плазмы крови. Лейкотриены (ЛТВ4 и др.). Спазм гладкой мускулатуры. Повыше- ние проницаемости сосудистой стенки. Активация лейкоцитов. Гранулоциты. Моноциты. Тромбоциты. Лаброциты. 17 1 2 3 Тромбоксаны Вазоконстрикция. Агрегация тромбоци- тов. Активация гранулоцитов. Макрофаги, моноци- ты. Гранулоциты.
Лизосомальные факторы , (кислые гидролазы, неферментативные катионные белки). Вторичная альтерация, “генерация” “медиаторов воспаления”. Способствуют вазодилятации, повышению прони- цаемости сосудов, развитию отека и эмиграции лейкоцитов, микротромбообразованию. Микробоцидность. Нейтрофильные гранулоциты. Моноциты, макрофаги.

19. Какие факторы обуславливают выход плазменных белков из микроциркуляторный сосудов в очаг воспаления.
-сокращение эндотелиальных клеток
-повышение онкотического давления интерстициальной жидкости

20. какие клетки являются главным источником гистамина в очаге острого воспаления.
в очаге острого воспаления: тучные клетки.
медиаторы острого воспаления (являются анафилатоксинами, т. е. либераторами гистамина из тучных клеток, повышают проницаемость посткапиллярных венул как прямо, так и опосредованно через гистамин; С5а, образующийся из С5а в плазме и тканевой жидкости под влиянием карбоксипептидазы N, не связан с гистамином, но является нейтрофилзависимым, т.е. повышает проницаемость микрососудов за счет лизосомальных ферментов и неферментных катионных белков, активных метаболитов кислорода, высвобождаемых из полиморфноядерных гранулоцитов; С5а и С5а des Arg привлекают нейтрофилы; С5а и СЗа также высвобождают интерлейкин-1, простагландины, лейкотриены, фактор, активирующий тромбоциты, и синергистически взаимодействуют с простагландинами и веществом Р); - СЗЬ опсонизирует патогенный агент и способствует иммунной адгезии и фагоцитозу; - комплекс С5Ь-С9 ответствен за лизис микроорганизмов и патологически измененных клеток; - кинины - вазоактивные пептиды, образующиеся из кининогенов (а2-глобулинов) под влиянием калликреинов в плазме (нонапептид брадикинин) и в тканевой жидкости (декапептид лизилбрадикинин, или каллидин).

21. чем обусловлено противовоспалительное действие глюкокортикоидов
.
Глюкокортикоиды оказывают противошоковое, противовоспалительное, противоаллергическое, иммунодепрессивное, антитоксическое действие. Противовоспалительное действие обусловлено угнетением активности фосфолипазы А 2 и стабилизацией мембран клеток, снижением образования простагландинов и лейкотриенов. Противоаллергический эффект связан со стабилизацией тучных клеток и препятствием их дегрануляции. Кроме того, противоаллергический и антидепрессивный эффекты являются следствием уменьшения миграции Т- и В-лимфоцитов и нарушения их взаимодействия.
Основными показаниями к применению глюкокортикоидов является ревматизм, коллагенозы, ревматоидный артрит, полиартрит, бронхиальная астма, кожные аллергические заболевания.

22. чем обусловлено повышение осмотического и онкотического давления в воспалительной ткани.

Умеренное увеличение проницаемости приводит к выходу мелкодисперсных фракций белков, прежде всего альбуминов. При значительном увеличении проницаемости происходит выход глобулинов, а при еще более выраженном - фибриногена, который во внесосудистом русле образует сгустки фибрина.
В ткани очага воспаления повышается осмотическое давление (гиперосмия), при этом осмотическое давление крови обычно не изменяется. Возникающий градиент осмотического давления крови и ткани является важным фактором усиления экссудации и развития отека. Гиперосмия тканей возникает в результате повышения в них концентрации осмоактивных частиц, ацидоза тканей.
В ткани очага воспаления повышается также и онкотическое давление (гиперонкия). Это происходит вследствие возрастания концентрации, дисперсности и гидрофильности белковых продуктов. В крови онкотическое давление, как правило, снижается (гипоонкия) в связи с нарушением функции печени и уменьшением образования альбуминов гепатоцитами, увеличением синтеза менее онкоактивных глобулинов.Градиент онкотического давления ткани и плазмы крови - важный фактор усиления экссудации и развития отека.
мехамизмы экссудации и формирования воспалительного отека:
1.Повышение проницаемости стенок микрососудов.
2.Усиление выхода жидкости с умеренным содержанием белка (онкотическое и осмотическое давление ткани в очаге воспаления временно сохраняется неизменным).
3.В период тяжелых расстройств микроциркуляции и возникновения гипоксии развивается гиперосмия и гиперонкия ткани.

23. Чем обусловлен ацидоз в очаге воспаления?
Освобождением и накоплением большого количества кислот.
В самый начальный период воспалительной реакции развивается кратковременный первичный ацидоз, повышается содержание кислых продуктов. При наступлении артериальной гипе-ремии кислотно-основное состояние в тканях воспалительного очага нормализуется, а затем развивается длительный выраженный метаболический ацидоз, который вначале является компенсированным (происходит снижение щелочных резервов тканей, но их рН не меняется). По мере прогрессирования воспалительного процесса развивается уже некомпенсированный ацидоз вследствие нарастания концентрации свободных водородных ионов и истощение тканевых щелочных резервов. При альтерации клеток высвобождается большое количество внутриклеточного калия. В сочетании с увеличением количества водородных ионов это приводит к гиперионии в очаге воспаления, а последняя вызывает повышение осмотического давления. Накопление олиго- и монопептидов в процессе протеолиза полипептидов активированными в условиях ацидоза высвободившимися лизосо- мальными гидролазами приводит к возрастанию онкотического давления.

24. Пролиферация. Механизмы пролиферации.
По мере очищения очага воспаления наступает пролиферация– характеризующаяся увеличением числа стромальных паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления. Эти процессы направлены на регенерацию разрушенных тканевых элементов. Существенное значение на этой стадии воспаления имеют различные биологически активные вещества. Пролиферацию завершает инволюция рубца, то есть уничтожение и элиминация лишних коллагеновых структур. Основные клеточные эффекторы пролиферации – это активированные мононуклеарные фагоциты, фибробласты и иммунокомпетентные клетки. Фибробласты в очаге воспаления образуют и высвобождают коллаген и энзим коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Кроме то они выделяют фиб- ронектин, определяющий миграцию, пролиферацию и адгезию фибробластов. Мононуклеары и лимфоциты секретируют цитокины как стимулирующие, так и подавляющие эти функции фибробластов. Нейтрофилы, как клеточные эффекторы воспаления, влияют на пролиферацию, секретируя тканеспецифические ингибиторы, взаимодействующие по принципу обратной связи.

VI.Наследственность.

1.Этиология наследственных болезней.

Этиологическими факторами наследственных болезней являются мутации наследственного материала. Мутации, затрагивающие весь хромосомный набор или отдельные хромосомы в нем (полиплоидии и анэуплоидии), а также участки хромосом (структурные перестройки - делеции, инверсии, транслокации, дупликации и т.д.) приводят к развитию хромосомных болезней. При хромосомных болезнях нарушается сбалансированность набора генов, что может приводить к внутриутробной гибели эмбрионов и плодов, врожденным порокам развития и другим клиническим проявлениям. Чем больше хромосомного материала вовлечено в мутацию, тем раньше проявляется заболевание и тем значительнее нарушения в физическом и психическом развитии индивидуума. (Хромосомные заболевания редко передаются от родителей к детям, в основном это случайно возникшая новая мутация. Но около 5% людей являются носителями сбалансированных изменений в хромосомах, поэтому при бесплодии, мертворождениях, привычном невынашивании или наличии в семье ребенка с хромосомной патологией необходимо исследовать хромосомы каждого из супругов. Генными болезнями называются заболевания, обусловленные изменениями структуры молекулы ДНК (генные мутации).)-можно и не писать.

2. Виды мутаций.
По причине, вызвавшей мутации:
«спонтанные»
индуцированные.
1. Спонтанные» мутации возникают под влиянием естественных мутагенов экзо‑ или эндогенного происхождения, без специального (целенаправленного) вмешательства человека. Результате действия химических веществ,
2. Индуцированные мутации вызываются направленным воздействием факторов внешней или внутренней среды. Контролируемые - целенаправленно, с целью изучения механизмов мутагенеза и/или его последствий.
Неконтролируемые - при выбросе радиоактивных элементов в среду обитания при авариях на атомных электростанциях.
По виду клетки,в которой произошла мутация:
гаметические и
соматические.
Гаметические мутации выявляются в половых клетках. Они наследуются потомками и, как правило, обнаруживаются во всех клетках организма.
Соматические мутации происходят в неполовых – соматических клетках организма и проявляются только у того индивида, у которого они возникают. Эти мутации передаются только дочерним соматическим клеткам при их делении и не наследуются следующим поколением индивида.
По биологическому значению
патогенные,
нейтральные и
благоприятные
Патогенные мутации приводят либо к гибели эмбриона (или плода), либо к развитию наследственных и врождённых заболеваний.
Нейтральные вызывающие веснушки, изменение цвета волос, радужной оболочки глаза).
Благоприятные повышают жизнеспособность организма или вида (например, тёмная окраска кожных покровов у жителей африканского континента).

По масштабу изменений генетического материала
генные,
хромосомные или
геномные.

Генные(точковые) представляют собой изменения молекулярной структуры ДНК(делеция, дубликация, удвоение, инверсия, инсекция, транзиция, трансверсия). Значительная часть точковых мутаций нарушает «функционирование» гена и приводит к развитию генных (моногенных) болезней. Фенотипически генные болезни наиболее часто проявляются признаками нарушений метаболизма (например, фенилкетонурия, нейрофиброматоз, муковисцидоз, мышечная дистрофия Дюшенна–Беккера).
Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом, а геномные –их числа.

3. Типы наследования
АУТОСОМНО-ДОМИНАНТНЫЙ
(синдром Марфана, гемоглобинопатия М, хорея Хантингтона, полипоз толстой
кишки, семейная гиперхолестеринемия, нейрофиброматоз, полидактилия)
признакаи: Одинаковая частота патологии у лиц мужского и женского пола.Наличие больных в каждом поколении родословной.Вероятность рождения больного ребёнка равна 50% . Непоражённые члены семьи, как правило, имеют здоровых потомков.
АУТОСОМНО-РЕЦЕССИВНЫЙ ( фенилкетонурия, кожно-глазной альбинизм, серповидно-клеточная анемия, адреногенитальный синдром, галактоземия, гликогенозы, гиперлипопротеинемии, муковисцидоз)
признаки: Равная частота патологии у лиц мужского и женского пола.Проявление патологии в родословной «по горизонтали», часто у сибсов.Отсутствие заболевания у единокровных (дети одного отца от разных матерей) и единоутробных (дети одной матери от разных отцов) братьев и сестёр.Родители больного, как правило, здоровы. Это же заболевание может обнаруживаться у других родственников, например у двоюродных или троюродных братьев (сестёр) больного.
СЦЕПЛЕННОЕ С ХРОМОСОМОЙ Х-ДОМИНАНТНОЕ ( гипофосфатемии - витамин D-резистентный рахит; болезнь Шарко-Мари-Тута Х-сцепленная доминантная; рото-лице-пальцевой синдром типа I) Поражены лица мужского и женского пола, но женщины в 2 раза чаще.Передача больным мужчиной патологического аллеля всем дочерям и только дочерям, но не сыновьям. Сыновья получают от отца хромосому Y.Передача больной женщиной заболевания и сыновьям, и дочерям с равной вероятностью.Более тяжёлое течение заболевания у мужчин, чем у женщин.
СЦЕПЛЕННОЕ С ХРОМОСОМОЙ Х-РЕЦЕССИВНОЕ (гемофилия А, гемофилия В; Х-сцепленная рецессивная болезнь Шарко-Мари-Тута; дальтонизм; мышечная дистрофия Дюшенна – Беккера; синдром Калльмана; болезнь Хантера (мукополисахаридоз типа II); гипогаммаглобулинемия брутоновского типа.Больные рождаются в браке фенотипически здоровых родителей.Заболевание наблюдается почти исключительно у лиц мужского пола. Матери больных - облигатные носительницы патологического гена.Сын никогда не наследует заболевание от отца. У носительницы мутантного гена вероятность рождения больного ребёнка равна 25% (независимо от пола новорождённого); вероятность рождения больного мальчика равна 50%.
ГОЛАНДРИЧЕСКИЙ (ихтиоз кожи, гипертрихоз ушных раковин, избыточный рост волос на средних фалангах пальцев кистей, азооспермия) Передача признака от отца всем сыновьям и только сыновьям.Дочери никогда не наследуют признак от отца.«Вертикальный» характер наследования признака.Вероятность наследования для лиц мужского пола равна 100%.
МИТОХОНДРИАЛЬНОЕ НАСЛЕДОВАНИЕ (митохондриальные болезни): атрофия зрительного нерва Лебера, синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная.Наличие патологии у всех детей больной матери.Рождение здоровых детей у больного отца и здоровой матери.Указанные особенности объясняются тем, что митохондрии наследуются от матери. Доля отцовского митохондриального генома в зиготе составляет ДНК от 0 до 4 митохондрий, а материнского генома - ДНК примерно 2500 митохондрий. К тому же похоже, что после оплодотворения репликация отцовской ДНК блокируется.

4. заболевания передающиеся по аутосомно доминантному типу.
При аутосомно-доминантном типе наследования большинство больных рожда­ются в браках между пораженным (гетерозиготным по аутосомно-доминантному гену Аа) и здоровым супругом (гомозиготному по нормальному аллелюаа)
Семейная гиперхолестеринемия, гемохроматоз, синдром Марфана, нейрофиброматоз 1-го типа (бо­лезнь Реклингхаузена), синдром Элерса-Данло, миотоническая дистрофия, ахондроплазия, несовершенный остеогенез. синдром Марфана– наследственное заболевание, представляющее собой генерализованное поражение соединительной ткани с высокой пенетрантность и различной экспрессивностью.
основными признаками аутосомно-доминантного типа наследования заболевания, являют­ся:1) заболевание проявляется в каждом поколении2) каждый ребенок родителя, больного аутосомно-доминантным заболеванием, имеет 50%-ный риск унаследовать это заболе­вание;3) лица мужского и женского пола поражаются одинаково час­то и в одинаковой мере;4) больной ребенок имеет больного родителя;5) непораженные члены семьи свободны от мутантного гена

5. заболевания передающиеся по аутосомно рецессивному типу.
По аутосомно-рецессивному типу передается большинство наследственных болезней, которые развиваются у гомозиготных детей, оба родителя которых являются гетерозиготными носителями патологического признака и фенотипически здоровы. Передается аномалия в виде альбинизма (отсутствие пигмента в коже, волосах, радужке глаза из-за отсутствия тирозиназы, в норме превращающей тирозин в меланин), врожденная глухонемота, идиотия со слепотой, шизофрения сахарный диабет, полная цветовая слепота, микроцефалии. Очень часто по аутосомно-рецессивному типу передаются различные нарушения обмена веществ: фенилкетонурия(основу которой составляет понижение активности глюкозоаланингидроксилазы, что приводит к накоплениюl-фенилаланина в тканях из-за блокады его перехода в тирозин),генерализованный гликогеноз(понижение активности глюкозо-6-фосфатазы органов, из-за чего гликоген накапливается в тканях),галактоземия (возникает из-за дефекта лактазы - фермента, расщепляющего лактозу; характеризуется также увеличением печени, развитием катаракты и психических отклонений),сфинголипидоз (возникает из-за отсутствия фермента сфинголипазы в клеточных мембранах, способствует отложению холестерина и нарушению обмена липидов как мембранных сосудов, так и других клеточных структур; сопровождается гибелью детей в возрасте до 5 лет,дефицит пиридоксина - витамина В6(приводит к нарушению обмена белков, аминокислот, липидов, ферментов, развитию гипохромной анемии, эпитептиформных судорог и др.)адреногенитальный синдром:генетически обусловленная блокада синтеза глюкокортикоидных гормонов в коре надпочечников (возникает в результате дефицита А-В-гидроксилазы), сопровождающаяся увеличением в последней продукции андрогенов. Это приводит к маскулинизации девочек и преждевременному половому созреванию мальчиков.

6. Методы изучения наследственной патологии.

Клинико-генеалогический метод Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Начинается от пробанда, которым называется лицо, первым попавшим в поле зрения врача.

Метод включает два этапа:

Сбор сведений о семье

Генеалогический анализ

Близнецовый метод Если изучаемый признак проявляется у обоих близнецов пары, их называют конкордантными. Конкордантность – это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов – дискордантность.

Популяционно-статистический метод Исследование признаков в больших группах людей, различающихся по наследственным характеристикам (раса, нация, этническая группа, изоляты) или условиям жизни.

Цитогенетические методы (анализ кариотипа и полового хроматина)

Дерматоглифика – метод изучение рельефных узоров на коже, образуемых папиллярными линиями и гребешкам (находится под генетическим контролем).

7. Хромосомные болезни. Болезнь Дауна и др.

Синдром Дауна (трисомия по хромосоме 21) – чаще трисомия в 21-й паре аутосом (45 аутосом + XX у девочек или + XY у мальчиков). В остальных случаях транслокационный перенос. Характерно: олигофрения разной степени, низкий рост, разболтанность суставов, мышечная гипотония, короткие пальцы, поперечная «обезьянья» складка на ладони, монголоидный разрез глаз, эпикантус,недоразвитие половых признаков. Следствие избытка синтеза пуринов

8. Хромосомные болезни. Синдром Шерешевского-Тернера.

Синдром Шерешевского - Тернера - это хромосомное заболевание, для которого характерно либо полное отсутствие одной хромосомы, либо наличие дефекта в одной из Х - хромосом. Кариотип таких женщин - 45 Х0 . Отсутствует половой хроматин в (тельца Барра) в ядрах клеток. У таких женщиннизкий рост, короткая широкая шея, множественные пигментные пятна, недоразвитие желёз и яичников, первичная аменорея и бесплодие, умственное развитие нормальное.

9. Хромосомные болезни. Синдром трисомии.

Наследственное нарушение, обусловленное наличием дополнительной X хромосомы, является частным случаем анеуплоидии. В большинстве случаев носители дополнительной X-хромосомы - женщины без заметных признаков патологии (Два тельца Барра). Трисомия по X-хромосоме приводит к незначительному повышению внутриутробной смертности. Развитие может протекать с некоторыми нарушениями, могут возникнуть проблемы с координацией, моторикой и развитием речи. В некоторых случаях отмечен меньший размер головы (без заметного снижения умственных способностей)

10. Хросомные болезни. Синдром Клайнфельтера.

Обнаружено несколько типов полисомии по хромосомам X и Y у лиц мужского пола: 47, XXY; 47, XYY; 48, XXXY; 48, XYYY; 48 XXYY; 49 XXXXY; 49 XXXYY. Наиболее распространен синдром Клайнфельтера (47, XXY). Характерны высокий рост астеническое телосложение евнухоидного типа, гинекомастия, атрофия яичек и бесплодия, часто остеопороз. В ядрах обнаруживается половой хроматин (тельца Барра).

11. Патогенез наследственных болезней. Фенилкетонурия.

Фенилкетонурия - редкое наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина. При несоблюдении низкобелковой диеты сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся, в частности, в виде нарушения умственного развития (фенилпировиноградной олигофрении). Одно из немногих наследственных заболеваний, поддающихся успешному лечению. Вследствие метаболического блока активируются побочные пути обмена фенилаланина, и в организме происходит накопление его токсичных производных - фенилпировиноградной и фениломолочной кислот, которые в норме практически не образуются. Кроме того, образуются также почти полностью отсутствующие в норме фенилэтиламин и ортофенилацетат, избыток которых вызывает нарушение метаболизма липидов в головном мозге. Предположительно, это и ведёт к прогрессирующему снижению интеллекта у таких больных вплоть до идиотии.

12. Болезни, сцепленные с полом.

Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом. Передача дальтонизма по наследству связана с X-хромосомой и практически всегда передаётся от матери-носителя гена к сыну, в результате чего в двадцать раз чаще проявляется у мужчин, имеющих набор половых хромосом XY.

Гемофилия А (классическая гемофилия) - генетическое заболевание, вызванное врождённым дефицитом белка фактора свёртывания крови VIII. Гемофилия - заболевание, связанное с рецессивной мутацией в X-хромосоме. Встречается у мужчин и у гомозиготных женщин.

X-связанный ихтиоз (X-сцепленный ихтиоз) - X-сцепленное рецессивное кожное заболевание, вызываемое врождённой недостаточностью стероидной сульфатазы, фермента, преобразующего стероиды в активную форму.

13. Митохондриальное наследование.

У митохондрий имеется собственная ДНК - митохондриальная ДНК. В отличие от ядерных генов, митохондриальная ДНК передается исключительно по материнской линии. Примером митохондриальных болезней служат наследственная атрофия зрительных нервов Лебера, миоклоническая эпилепсия с рваными красными волокнами, митохондриальная миопатия, энцефалопатия, лактатацидоз.

VII. Лихорадка.

Что какое лихорадка?

Лихорадка – повышение температуры тела, обусловленная появлением в организме пирогенных веществ. При этом температура глубоких областей туловища и тела постоянна.

Различают инфекционную (бактерии, вирусы) и неинфекционную лихорадку (приступ подагры, аллергические реакции). Различают экзогенные и эндогенные пирогенные вещества. Всё связано с продукцией цитокинов – прежде всего интерлейкина-1.

Перегревание. Причины.

Патологические реакции организма на высокую температуру окружающей среды, связанные с дегидратацией, потерей электролитов и расстройством механизмов терморегуляции.

Причиной служит избыточное поступление тепла извне (экзогенное перегревание) или интенсивная патологическая теплопродукция в самом организме (эндогенное перегревание). Долго переносится не может.

Общая характеристика воспаления

Воспаление - защитно-приспособительная реакция целостного организма на действие патогенного раздражителя, проявляющаяся развитием на месте повреждения ткани или органа изменений кровообращения и повышением сосудистой проницаемости в сочетании с дистрофией тканей и пролиферацией клеток. Воспаление является типовым патологическим процессом, направленным на устранение патогенного раздражителя и восстановление поврежденных тканей.

Известный русский ученый И.И. Мечников в конце XIXвека впервые показал, что воспаление присуще не только человеку, но и низшим животным, даже одноклеточным, хотя и в примитивной форме. У высших животных и человека защитная роль воспаления проявляется:

а) в локализации и отграничении воспалительного очага от здоровых тканей;

б) фиксации на месте, в очаге воспаления патогенного фактора и его уничтожении; в) удалении продуктов распада и восстановлении целостности тканей; г) выработке в процессе воспаления иммунитета.

Вместе с тем еще И.И. Мечников считал, что эта защитная реакция организма относительна и несовершенна, так как воспаление составляет основу многих болезней, нередко заканчивающихся смертью больного. Поэтому необходимо знать закономерности развития воспаления, чтобы активно вмешиваться в его течение и устранять угрозу смерти от этого процесса.

Для обозначения воспаления какого-либо органа или ткани к корню их латинского названия добавляют окончание "ит": например, воспаление почек - нефрит, печени - гепатит, мочевого пузыря - цистит, плевры - плеврит и. т.д. Наряду с этим в медицине сохранились старые названия воспаления некоторых органов: пневмония - воспаление легких, панариций - воспаление ногтевого ложа пальца, ангина - воспаление зева и некоторые другие.

2 Причины и условия возникновения воспаления

Возникновение, течение и исход воспаления во многом зависят от реактивности организма, которая определяется возрастом, полом, конституциональными особенностями, состоянием физиологических систем, в первую очередь иммунной, эндокринной и нервной, наличием сопутствующих заболеваний. Немаловажное значение в развитии и исходе воспаления имеет его локализация. Например, крайне опасны для жизни абсцесс мозга, воспаление гортани при дифтерии.

По выраженности местных и общих изменений воспаление разделяют на нормергическое, когда ответная реакция организма соответствует силе и характеру раздражителя; гиперергическое, при котором ответ организма на раздражение значительно интенсивнее, чем действие раздражителя, и гипергическое, когда воспалительные изменения выражены слабо или совсем не выражены. Воспаление может иметь ограниченный характер, но может распространяться на целый орган или даже систему, например систеиу соединительной ткани.

3 Стадии и механизмы воспаления

Характерным для воспаления, отличающим его от всех других патологических процессов, является наличие трех последовательных стадий развития:

1) альтерации,

2) экссудации и 3) пролиферации клеток. Эти три стадии обязательно присутствуют в зоне любого воспаления.

Альтерация - повреждение ткани - является пусковым механизмом развития воспалительного процесса. Она приводит к высвобождению особого класса биологически активных веществ, называемых медиаторами воспаления. В целом все изменения, возникающие в очаге воспаления под влиянием этих веществ, направлены на развитие второй стадии воспалительного процесса - экссудации. Медиаторы воспаления изменяют метаболизм, физико-химические свойства и функции тканей, реологические свойства крови и функции форменных элементов. К медиаторам воспаления относятся биогенные амины - гистамин и серотонин. Гистамин выделяется лаброцитами в ответ на повреждение ткани. Он вызывает боль, расширение микрососудов и повышение их проницаемости, активирует фагоцитоз, усиливает высвобождение других медиаторов. Серотонин высвобождается из тромбоцитов в крови и изменяет микроциркуляцию в очаге воспаления. Лимфоциты выделяют медиаторы, называемые лимфокинами, которые активитуют важнейшие клетки иммунной системы - Т-лимфоциты.

Полипептиды плазмы крови - кинины, в том числе калликреины и брадикинин, вызывают боль, расширение микрососудов и повышение проницаемости их стенок, активируют фагоцитоз.

К медиаторам воспаления относятся и некоторые простагландины, вызывающие те же эффекты, что и кинины, регулируя при этом интенсивность воспалительной реакции.

воспаление защитный патогенный

Перестройка обмена веществ в зоне альтерации приводит к изменению физико-химических свойств тканей и развитию в них ацидоза. Ацидоз способствует повышению проницаемости сосудов и мембран лизосом, распаду белков и диссоциации солей, вызывая тем самым повышение онкотического и осмотического давления в поврежденных тканях. Это в свою очередь увеличивает выход жидкости из сосудов, обусловливая развитие экссудации, воспалительного отека и инфильтрации ткани в зоне воспаления.

Экссудация - выход, или пропотевание, из сосудов в ткань жидкой части крови с находящимися в ней веществами, а также клеток крови. Экссудация наступает очень быстро вслед за альтерацией и обеспечивается в первую очередь реакцией микроциркуляторного русла в очаге воспаления. Первой реакцией сосудов микроциркуляции и регионарного кровообращения в ответ на действие медиаторов воспаления, главным образом гистамина, являются спазм артериол и уменьшение притока артериальной крови. В результате возникает ишемия ткани в зоне воспаления, связанная с увеличением симпатических влияний. Эта реакция сосудов кратковременна. Замедление скорости кровотока и уменьшение объема протекающей крови приводит к нарушению обмена веществ в тканях и ацидозу. Спазм артериол сменяется их расширением, увеличением скорости кровотока, объема протекающей крови и повышением гидродинамического давления, т.е. появлением артериальной гиперемии. Механизм ее развития весьма сложен и связан с ослаблением симпатических и увеличением парасимпатических влияний, а также с действием медиаторов воспаления. Артериальная гиперемия способствует повышению обмена веществ в очаге воспаления, увеличивает приток к нему лейкоцитов и антител, способствует активации лимфатической системы, которая уносит продукты распада тканей. Гиперемия сосудов обусловливает повышение температуры и покраснение участка воспаления.

Артериальная гиперемия по мере развития воспаления сменяется венозной гиперемией. Давление крови в венулах и посткапиллярах повышается, скорость кровотока замедляется, объем протекающей крови снижается, венулы становятся извитыми, в них появляются толчкообразные движения крови. В развитии венозной гиперемии имеет значение потеря тонуса стенками венул вследствие нарушения обмена веществ и ацидоза тканей в очаге воспаления, тромбирования венул, сдавления их отечной жидкостью. Замедление скорости кровотока при венозной гиперемии способствует движению лейкоцитов из центра кровотока к его периферии и прилипанию их к стенкам сосудов. Это явление называется краевое стояние лейкоцитов, оно предшествует их выходу из сосудов и переходу в ткани. Венозная гиперемия завершается остановкой крови, т.е. возникновением стаза, который проявляется сначала в венулах, а позднее становится истинным, капиллярным. Лимфатические сосуды переполняются лимфой, лимфоток замедляется, а затем прекращается, так как наступает тромбоз лимфатических сосудов. Таким образом, очаг воспаления изолируется от неповрежденных тканей. При этом кровь к нему продолжает поступать, а отток ее и лимфы резко снижен, что препятствует распространению повреждающих агентов, в том числе токсинов, по организму.

Экссудация начинается в период артериальной гиперемии и достигает максимума при венозной гиперемии. Усиленный выход жидкой части крови и растворенных в ней веществ из сосудов в ткань обусловлен несколькими факторами. Ведущее значение в развитии экссудации имеет повышение проницаемости стенок микрососудов под влиянием медиаторов воспаления, метаболитов (молочная кислота, продукты распада АТФ), лизосомных ферментов, нарушения баланса ионов К и Са, гипоксии и ацидоза. Выход жидкости обусловлен также повышением гидростатического давления в микрососудах, гиперонкией и гиперосмией тканей. Морфологически повышение сосудистой проницаемости проявляется в усилении пиноцитоза в эндотелии сосудов, набухании базальных мембран. По мере увеличения сосудистой проницаемости из капилляров в очаг воспаления начинают выходить и форменные элементы крови.

Накапливающаяся в очаге воспаления жидкость носит название экссудат. По составу экссудат существенно отличается от транссудата - скопления жидкости при отеках. В экссудате значительно выше содержание белка (3-5%), причем экссудат содержит не только альбумины, как транссудат, но и белки с высокой молекулярной массой - глобулины и фибриноген. В экссудате в отличие от транссудата всегда имеются форменные элементы крови - лейкоциты (нейтрофилы, лимфоциты, моноциты), а нередко и эритроциты, которые, скапливаясь в очаге воспаления, образуют воспалительный инфильтрат. Экссудация, т.е. ток жидкости из сосудов в ткань по направлению к центру очага воспаления, предупреждает распространение патогенного раздражителя, продуктов жизнедеятельности микробов и продуктов распада собственных тканей, способствует поступлению в очаг воспаления лейкоцитов и других форменных элементов крови, антител и биологически активных веществ. В экссудате содержатся активные ферменты, которые высвобождаются из погибших лейкоцитов и лизосом клеток. Их действие направлено на уничтожение микробов, расплавление остатков погибших клеток и тканей. В экссудате находятся активные белки и полипептиды, стимулирующие пролиферацию клеток и восстановление тканей на заключительном этапе воспаления. Вместе с тем экссудат может сдавливать нервные стволы и вызывать боль, нарушать функцию органов и вызывать в них патологические изменения.

Классификация воспаления По этиологии воспаления (в зависимости от вида флогогенного агента):

1. Экзогенные факторы:

1. Механические.

2. Физические (лучевая, электрическая энергия, тепло, холод).

3. Химические (кислоты, щелочи).

5. Антигенные (аллергическое воспаление).

1. Эндогенные факторы:

1. Продукты тканевого распада - инфаркт, некроз, кровоизлияние.

2. Тромбоз и эмболия.

3. Продукты нарушенного метаболизма - токсические или биологически активные вещества (например, при уремии токсические вещества, образующиеся в организме, выделяются из крови слизистыми оболочками, кожей, почками и вызывают в этих тканях воспалительную реакцию).

4. Отложение солей или выпадение биологических соединений в виде кристаллов.

5. Нервно-дистрофические процессы.

По участию микроорганизмов:

· Инфекционное (септическое).

· Неинфекционное (асептическое).

По реактивности:

· Гиперэргическое.

· Нормэргическое.

· Гипоэргическое.

По течению:

· Острое.

· Подострое.

· Хроническое.

По преобладанию стадии:

· Альтеративное возникает в паренхиматозных органах (в последнее время отрицается).

· Экссудативное возникает в клетчатке и сосудах (крупозное, серозное, фибринозное, гнойное, гнилостное, геморрагическое, катаральное, смешанное).

· Пролиферативное (продуктивное) возникает в костной ткани.

Стадии воспаления

I. Стадия альтерации (повреждение) бывает:

· первичная,

· вторичная.

II. Стадия экссудации в неё входят:

· сосудистые реакции,

· собственно экссудация,

· маргинация и эмиграция лейкоцитов,

· внесосудистые реакции (хемотаксис и фагоцитоз).

III. Стадия пролиферации (восстановление поврежденных тканей):

Аутохтонность - это свойство воспаления раз начавшись, протекать через все стадии до логического завершения, т.е. включается каскадный механизм, когда предыдущая стадия порождает последующую.

Местные признаки воспаления были описаны римским энциклопедистом Цельсом. Он назвал 4 признака воспаления: краснота (rubor), припухлость (tumor), местный жар (color), боль (dolor). Пятый признак назвал Гален - это нарушение функции - functio laesa.

1. Покраснение связано с развитием артериальной гиперемии и "артериализацией" венозной крови в очаге воспаления.

2. Жар обусловлен увеличенным притоком теплой крови, активацией метаболизма, разобщением процессов биологического окисления.

3. "Опухоль" ("припухлость") возникает вследствие развития экссудации и отека, набухания тканевых элементов, увеличения суммарного диаметра сосудистого русла в очаге воспаления.



4. Боль развивается в результате раздражения нервных окончаний различными биологически активными веществами (гистамин, серотонин, брадикинин и др.), сдвига активной реакции среды в кислую сторону, возникновения дисионии, повышения осмотического давления и механического растяжения или сдавления тканей.

5. Нарушение функции воспаленного органа связано с расстройством его нейроэндокринной регуляции, развитием боли, структурными повреждениями.

Рис. 10.1. Карикатура P. Cull на описание доктором A. A. Willoughby классических местных признаков воспаления.

Общие признаки воспаления

1. Изменение количества лейкоцитов в периферичес­кой крови : лейкоцитоз (развивается при подав­ляющем большинстве воспалительных процессов) или значительно реже лейкопения (например, при воспалении вирусного происхождения). Лейкоцитоз обусловлен активацией лейкопоэза и перераспределени­ем лейкоцитов в кровеносном русле. К числу основных причин его развития относятся стимуляция САР, воздействие некоторых бактериаль­ных токсинов, продуктов тканевого распада, а также ряда медиаторов воспаления (например, ИЛ 1 , фактора индукции моноцитопоэза и др.).

2. Лихорадка развивается под влиянием поступающих из очага воспаления пирогенных факторов, таких как липополисахариды, катионные белки, ИЛ 1 и др.

3. Изменение белкового “профиля” крови выражает­ся в том, что при остром процессе в крови накапливают­ся синтезируемые печенью так называемые “белки ост­рой фазы” (БОФ) воспаления - С-реактивный белок, церулоплазмин, гаптоглобин, компоненты комплемента и др. Для хронического течения воспаления характерно увеличение в крови содержания a- и особенно g-глобулинов.

4. Изменения ферментного состава крови выражаются в увеличении активности трансаминаз (например, аланинтрансаминазы при гепатите; аспартаттрансаминазы при миокардите), гиалуронидазы, тромбокиназы и т.д.



5. Увеличение скорости оседания эритроцитов (СОЭ) из-за снижения отрицательного заряда эритроцитов, по­вышения вязкости крови, агломерации эритроцитов, из­менения белкового спектра крови, подъема температу­ры.

6. Изменения содержания гормонов в крови заключа­ются, как правило, в увеличении концентрации катехоламинов, кортикостероидов.

7. Активация иммунной системе и аллергизация ор­ганизма выражаются в нарастании титра антител, появ­лении сенсибилизированных лимфоцитов в крови, раз­витии местных и общих аллергических реакций.

II. Механизмы первичной и вторичной альтерации. Медиаторы воспаления, их происхождение и основные эффекты. Схема механизма образования в очаге воспаления брадикинина и простагландинов.

Первичная альтерация вызывается непосредственным действием повреждающего агента (например, механическая травма молотком).

Для неё характерны ацидоз повреждения, снижение макроэргов, нарушение работы насосов, накопление недоокисленных продуктов, изменение рН, повышение проницаемости мембранных структур, набухание клетки.

Вторичная альтерация возникает в динамике воспалительного процесса и обусловлена как воздействием флогогенного агента, так и факторов первичной альтерации (в основном нарушениями кровообращения).

Для неё характерно непосредственное воздействие лизосомальных ферментов (гидролазы, фосфолипазы, пептидазы, коллагеназы и т.д.), их повреждающее влияние. Опосредованное действие оказывают медиаторы, система комплемента, кининовая система.

Проявления альтерации:

1. Нарушение биоэнергетических процессов в тканях.

Отвечают на повреждение все элементы поврежденной ткани: микроциркуляторные единицы (артериолы, капилляры, венулы), соединительная ткань (волокнистые структуры и клетки), тучные клетки, нервные клетки.

Нарушение биоэнергетики в этом комплексе проявляются в снижении потребления кислорода тканью, снижении тканевого дыхания . Повреждение митохондрий клеток является важнейшей предпосылкой для этих нарушений.

В тканях преобладает гликолиз . В результате возникает дефицит АТФ, дефицит энергии. Преобладание гликолиза ведет к накоплению недоокисленных продуктов (молочной кислоты), возникает ацидоз .

Развитие ацидоза в свою очередь приводит к нарушению активности ферментных систем , к дезорганизации метаболического процесса.

2. Нарушение транспортных систем в поврежденной ткани.

Это связано с повреждением мембран, недостатком АТФ, необходимой для функционирования калий-натриевого насоса .

Универсальным проявлением повреждения любой ткани всегда будет выход калия из клеток, и задержка в клетках натрия. С задержкой натрия в клетках связано еще одно тяжелое или летальное повреждение - задержка в клетках воды, то есть внутриклеточный отек .

Выход калия ведет к углублению процесса дезорганизации метаболизма, стимулирует процессы образования биологически активных веществ - медиаторов .

3. Повреждение мембран лизосом.

При этом высвобождаются лизосомальные ферменты . Спектр действия лизосомальных ферментов чрезвычайно широк, фактически лизосомальные ферменты могут разрушать любые органические субстраты. Поэтому при их высвобождении наблюдаются летальные повреждения клеток .

Кроме этого лизосомальные ферменты, действуя на субстраты, образуют новые биологические активные вещества, токсические действующие на клетки, усиливающие воспалительную реакцию - это лизосомные флогогенные вещества .

При альтерации возможны метаболические (гипоксия) или структурные изменения (механическая травма), поэтому выделяют два ее патогенетических механизма:

· повреждение биоэнергетики (ишемия, гипоксия),

· повреждение мембран и транспортных систем.

При обструктивных воспалительных процессах бронхов , формировании респираторного дистресс-синдрома взрослых отмечается увеличение в несколько раз содержания МБР в очаге воспаления. Наибольшую концентрацию этого соединения можно обнаружить В тканях при анафилаксии и атопических процессах. Имеются сведения о том, что при бронхиальной астме главный основной белок способен повреждать эпи-телиоциты бронхов и тем самым увеличивать выраженность воспалительного процесса. Его содержание в мокроте больных коррелирует со степенью тяжести бронхиальной астмы.

Выделяют плазменные, с молекулярной массой до 97 кДа, и тканевые калликреины , имеющие молекулярную массу 33-36 кДа. Калликреины, воздействуя на а, глобулины плазмы, способствуют образованию брадикинина и каллидина, состоящих соответственно из 9 и 10 аминокислотных остатков. Основная физиологическая роль компонентов калликреин-кининовой системы в норме связана с регуляцией тонуса и проницаемости сосудов микроциркуляторного русла. В условиях острого и хронического воспаления выраженное активирование компонентов этой системы сопровождается увеличением экссудативных процессов в очаге воспаления за счет повышения проницаемости сосудистой стенки и увеличения локального кровотока из-за сосудорасширяющего действия кининов.
Калликреин принимает активное участие в регуляции процессов фагоцитоза, оказывая влияние на хемотаксис нейтрофильных лейкоцитов.

Чрезмерное активирование компонентов калликреин-кининовой системы сопровождается усилением сосудистых воспалительных реакций, увеличением гидростатического давления,во внеклеточной среде, нарастанием отека ткани, ухудшением ее обеспечения кислородом и субстратами биологического окисления. Вследствие этого происходит перерастание компенсаторно-приспособительных реакций в патологические, результатом чего является увеличение зоны вторичной альтерации.

Из других факторов, избыточное активирование которых придает преимущественно патологическую направленность воспалительному процессу , следует отметить систему комплемента, лизосомальные ферменты, катионные белки, лимфокины и монокины.

Система комплемента оказывает влияние не течение всех стадий воспаления за счет как воздействия на альтерацию и экссудацию, так и фагоцитарную активность нейтрофилов и макрофагов, индукцию иммунного ответа. Например, С1 - приводит к усилению экссудативных процессов, СЗа и С5а - способствует увеличению проницаемости сосудистой стенки, активированию процессов высвобождения гистамина из тучных клеток, СЗ и С5 - активируют хемотаксис, С5 и С9 - обладают цитоклитической активностью.

Лизосомальные ферменты в очаге воспаления накапливаются в результате их высвобождения из лизосом нейтрофильных лейкоцитов, макрофагов и клеток поврежденной в ходе альтерации ткани. Выделяясь в значительном количестве в очаге воспаления, ферменты лизосом усиливают вторичную альтерацию, повреждают как внутриклеточные мембраны, так и плазмолемму. Гидролитическое расщепление компонентов базальной мембраны микрососудов и повреждение плазмолеммы эндотелиозцитов сопровождаются выраженным увеличением проницаемости сосудистой стенки и усилением экссудативных процессов.

Катионные белки выделяются в значительном количестве нейтрофильными лейкоцитами. Обладая широким спектром биологической активности, они воздействуют на все стадии воспалительного процесса. К основным их эффектам следует отнести повышение проницаемости сосудистой стенки, усиление экссудации, индукцию высвобождения гистамина тучными клетками.

В очаге воспаления отмечается увеличение концентрации лимфокинов и монокинов, оказывающих влияние на фагоцитоз, хемотаксис и пролиферативные процессы. Избыточное накопление этих веществ сопровождается усилением цитолитических процессов.

В последнее десятилетие появились сообщения о патогенетической роли окиси азота в развитии воспаления. В организме человека и животных окись азота синтезируется из аргинина в результате реакции, катализируемой NO-синтетазой окиси азота (синтетазы окиси азота - СОА).

L-аргинин + НАДФН2 + О2-» NO + L-цитруллин

Высокая активность синтетазы окиси азота определяется в эндотелиоцитах. Ее уровень коррелирует с содержанием в клетке комплекса Са-кальмодулин. Рост содержания в эндотелиоцитах окиси азота происходит при поступлении в цитозоль Са.

Предполагается, что к числу многочисленных свойств этого соединения следует отнести его участие в процессах межклеточного взаимодействия, регуляции сосудистого тонуса и проходимости бронхов.

Положительное действие окиси азота при воспалении, связанное с активированием его высвобождения из L-аргинина, заключается в антимикробных свойствах этого соединения и влиянии на процессы миграции полиморфноядерных лейкоцитов через стенку капилляра. При воспалении создаются условия для чрезмерного образования окиси азота. Ключевым механизмом этого процесса следует считать возрастание в очаге воспаления уровня активности синтетазы окиси азота, которая активируется в присутствии комплекса Са-кальмодулин. Возрастание в цитозоле свободного кальция при воспалении непременно должно сопровождаться ростом активности фермента, катализирующего синтез окиси азота. Чрезмерное накопление окиси азота клетками воспалительного очага приводит к иммунодепрессии, снижению устойчивости цитоплазматических мембран к гипоксическому воздействию. Токсические концентрации этого соединения приводят к необратимым нарушениям микроциркуляции, что негативно влияет на течение воспалительного процесса в целом.

По мере развития воспалительного процесса в его очаге происходит накопление биологически активных веществ, обладающих преимущественно противовоспалительными эффектами. Помимо окиси азота к ним следует отнести простациклин и аденозин.

Простациклин синтезируется эндотелиоцитами и имеет биологические эффекты, сходные с окисью азота. Рост концентрации этого соединения сопровождается снижением аггрегации тромбоцитов и улучшением за счет этого процессов микроциркуляции. В условиях наблюдаемого при воспалении активирования свободно-радикального окисления простациклин обладает протекторными свойствами, защищает цитоплазматические мембраны эндотелиоцитов от деструкции.

Вторая, более тонкая система врожденного иммунитета - система комплемента (С). Она включает одиннадцать белков крови, в большей части представленных неактивными предшественниками протеаз. Активация системы комплемента в естественном, то есть врожденном, иммунитете начинается с его третьего компонента (СЗ). C3 спонтанно диссоциирует на СЗа и C3b, образуя следовые количества этих фрагментов. C3b ковалентно связывается с поверхностью бактериальной клетки, стабилизируется там и проявляет протеолитическую активность по отношению к белку В, превращая его в фрагмент Bb (рис. 2). К фиксированному на клеточной поверхности C3b специфически присоединяется Bb, образуя ферментативно активный комплекс C3bBb, направленный к исходному С3 и следующему компоненту комплемента С5, который он расщепляет на С5а и C5b. Таким образом, на мембране бактериальной клетки формируется стабильный и ферментативно активный комплекс, обладающий двойной энзиматической активностью - генерацией новых молекул C3b / С3а и C5b / С5а. Компоненты C3b и C5b фиксируются на мембране, они сами по себе обладают биологической активностью. Что касается С3а и С5а, эти полипептиды, состоящие соответственно из 77 и 74 аминокислотных остатков, остаются в среде, являясь сильнейшими медиаторами воспаления (см. рис. 2).

Компонент C5b образует на мембране новые центры ферментативной активности, направленные на активацию особого комплекса, атакующего мембрану. Последний состоит из нескольких компонентов, последовательно активирующих друг друга и фиксирующихся на клеточной мембране, присоединяясь друг к другу (C6-C8). Конечный компонент системы комплемента (C9) включается в комплекс, атакующий мембрану, и становится начальным звеном полимеризации. Присоединяя к себе несколько таких же, как и он сам, молекул, он погружается в мембрану, полимеризуется в кольцо и образует поры, «продырявливающие» оболочку клетки, что ведет к ее гибели. Таким образом, система комплемента распознает чужеродную клетку и запускает цепную реакцию активации биологически активных белков, что ведет к приобретению комплексом токсической активности и гибели клетки. Кроме того, компонент C3b (и в меньшей степени C5b), фиксированный на поверхности бактериальных тел, резко усиливает их фагоцитоз. Это обусловлено присутствием на мембране фагоцитирующих клеток рецепторов к C3b и C5b, которые существенно повышают сродство фагоцитов к бактериям, покрытым C3b и C5b. Это чрезвычайно важный феномен, один из главных в антибактериальном иммунитете.

Иная судьба у растворимых факторов С3а и главным образом С5а. Эти биологически активные пептиды обладают рядом свойств, важных для развития воспаления: прямым действием на проницаемость сосудов и, самое главное, способностью активировать так называемые тучные клетки (см. рис. 2). Тучные клетки активно синтезируют и хранят большие запасы мощного медиатора воспаления, биологически активного амина - гистамина. Тучные клетки рассеяны повсеместно в соединительной ткани и особенно вдоль кровеносных сосудов. Они несут на своей поверхности рецепторы к С3а и С5а, и, когда к ним присоединяются эти пептиды, тучные клетки секретируют гистамин в окружающую среду. Роль гистамина в воспалении многогранна. Во-первых, он быстро и резко влияет на сосудистую капиллярную сеть. Эндотелий капилляров под его воздействием выделяет сосудорасширяющие вещества, и проток крови через очаг воспаления существенно возрастает (покраснение и нагрев). Между клетками эндотелия образуются «щели», и плазма выходит из капилляров в зону воспаления, свертываясь и изолируя тем самым распространение инфекции из очага. По градиенту концентрации гистамина фагоциты «поднимаются» к источнику воспаления. Таким образом, гистамин действует подобно брадикинину, но более активно и быстро, благодаря чему и является медиатором острой фазы воспаления.

Возвращаясь к комплементу, следует еще раз подчеркнуть многонаправленность его действия (токсичность для микроорганизмов, усиление фагоцитоза, генерация медиаторов воспаления) и каскадное усиление всех направлений его активности. И опять в случае комплемента возникает вопрос, как его начальный компонент C3b отличает «чужую» поверхность от «своей».