Главная · Зубные протезы · Морфологические изменения соединительной ткани при старении. Общие сведения. Биохимические изменения соединительной ткани при старении и некоторых патологических процессах. Исследования на целых организмах, органах, срезах тканей, гомогенатах, субклеточны

Морфологические изменения соединительной ткани при старении. Общие сведения. Биохимические изменения соединительной ткани при старении и некоторых патологических процессах. Исследования на целых организмах, органах, срезах тканей, гомогенатах, субклеточны

По Bürger, старение соединительной ткани сопровождается вторичным уплотнением цитоплазматических коллоидов. Огрубевшая «высыхающая» соединительная ткань характеризуется «брадитрофностью», падением обменных процессов с повышенной склонностью таких тканей к осаждению на них солей кальция.

С возрастом во внутренних органах увеличивается общее содержание соединительной ткани. Однако сама соединительная ткань претерпевает значительные изменения. Так же как и в других тканях, в ней уменьшается количество клеток, ухудшается кровообращение и иннервация. Первичным, вероятно, является ухудшение диффузии и питания вследствие уменьшения васкуляризации и развития артерио-капиллярного фиброза. Снижение выброса крови из сердца с возрастом составляет приблизительно 1% в год. Это, в частности, отражает возрастающее сопротивление периферии. Очень важно расшифровать факторы, обусловливающие это увеличение сопротивления, и проанализировать морфологические изменения в гистогематических барьерах с точки зрения физико-химических изменений мукополисахаридов, коллагена и эластина и в связи со свойствами клеток сосудов (Sinek, 1961; Ж. А. Медведев, 1963; А. В. Нагорный, 1950).

По мере старения происходит более быстрое нарастание волокнистых элементов по сравнению с аморфным веществом. Об этом, помимо морфологических наблюдений, свидетельствуют биохимические данные, которые показывают уменьшение в соединительной ткани соотношения гексозамины — гидроксипролин или гексуроновые кислоты — гидроксипролин (Asboe-Hansen и др., 1963; Sinex, 1961).

Параллельно морфологическому огрубению волокнистых структур наблюдается уменьшение гидрофильных, растворимых, лабильных фракций мукополисахаридов и коллагеновых белков и повышение содержания менее гидрофильных, метаболически инертных и нерастворимых фракций. Считают, что эти изменения обусловлены не только уменьшением клеточных элементов и снижением синтеза, но и снижением растворимости коллагенов вследствие естественного и необратимого укрупнения структур и образования внутри них прочих ковалентных связей (Altgelt и др., 1961; Milch, Murray, 1962).

Вес сосудов с возрастом увеличивается в основном за счет разрастания соединительной ткани, отложения липидов и минеральных веществ. Содержание эластина в противоположность коллагену уменьшается. Это сопровождается фрагментацией, пигментацией и кальцификацией эластиновых волокон.

«Руководство по патологической физиологии»,
И.Р.Петров, А.М.Чернух

В большинстве органов при старении происходит увеличение количества соединительной ткани. Морфологические изменения при старении наблюдаются во всех частях соединительной ткани: клеточных элементах, волокнистых структурах и в аморфном компоненте межклеточного вещества.

Коллагеновые волокна при старении характеризуются пониженной оксифилией и появлением очаговой пикринофилии и базофилии. Одновременно коллагеновые волокна приобретают способность окрашиваться подобно эластину (эластоподобная дистрофия). Часть коллагеновых волокон становится грубее, утрачивает четкие контуры, гомогенизируется и гиалинизируется. Наряду с утолщенными волокнами наблюдаются истонченные, иногда происходит их фрагментация. Отмечается резистентность коллагеновых волокон к воздействию трипсина, пепсина и коллагеназы и нарастает способность их связывать липиды. Качественные изменения свойств коллагена являются следствием образования между цепями макромолекулы коллагена ковалентных сшивок, например, между их аминокислотами - лизином и тирозином. Из биохимических изменений коллагена наиболее существенными является увеличение содержания оксипролина и оксилизина.

Эластические волокна при старении характеризуются набуханием, разволокнением, очаговой фрагментацией, зернистым распадом, появлением повышенного сродства к солям (так называемый эластокальциноз). В эластических волокнах возрастает чувствительность к эластазе, трипсину. По мере старения увеличиваются участки лизиса в эластических волокнах и исчезает фибриллярный компонент. В возрасте старше 100 лет у человека отмечается полный распад эластических волокон с образованием на их месте аморфных масс.

В соединительной ткани при старении уменьшается аморфный компонент межклеточного вещества. В основном веществе сокращается содержание гиалуроновой кислоты и увеличивается количество сульфатированных гликозамино-гликанов и нейтральных мукополисахаридов. Количество клеток соединительной ткани и их функциональная способность при старении уменьшается. Возрастные изменения структуры клеток соединительной ткани не отличаются принципиально от таковых в других тканях.

У людей в возрасте 112-114 лет в соединительной ткани кожи часто встречаются разрушенные клетки, характеризующиеся почти полным отсутствием цитоплазмы («голые ядра»).

Возрастные перестройки соединительной ткани приводят к склерозу внутренних органов. Это явление некоторые исследователи обозначили как «физиосклероз». Морфологические изменения соединительной ткани в органах нарушают межтканевые и межклеточные взаимодействия и влияют на уровень метаболических процессов в специализированных клетках.

Общим возрастным изменением, которое свойственно всем видам соединительной ткани, является уменьшение содержания воды и отношения основное вещество/волокна. Показатель этого соотношения уменьшается как за счет нарастания содержания коллагена, так и в результате снижения концентрации гликозаминогликанов. В первую очередь значительно снижается содержание гиалуроновой кислоты. Однако не только уменьшается общее количество кислых гликозаминогликанов, но изменяется и количественное соотношение отдельных гликанов. Одновременно происходит также изменение физико-химических свойств коллагена (увеличение числа и прочности внутри- и межмолекулярных поперечных связей, снижение эластичности и способности к набуханию, развитие резистентности к коллагеназе и т.д.), повышается структурная стабильность коллагеновых волокон (прогрессирование процесса «созревания» фибриллярных структур соединительной ткани). Следует помнить, что старение коллагена in vivo неравнозначно износу. Оно является своеобразным итогом протекающих в организме метаболических процессов, влияющих на молекулярную структуру коллагена.

Среди многих поражений соединительной ткани особое место занимают коллагенозы. Для них характерно повреждение всех структурных составных частей соединительной ткани: волокон, клеток и межклеточного основного вещества. К коллагенозам обычно относят ревматизм, ревматоидный артрит, системную красную волчанку, системную склеродермию, дерма-томиозит и узелковый периартериит. Каждое из этих заболеваний имеет своеобразное течение и сугубо индивидуальные проявления. Среди многочисленных теорий развития коллагенозов наибольшее признание получила теория инфекционно-аллергического происхождения.

Наконец, необходимо отметить, что нарушение процесса гидроксилирования коллагена – один из биохимических дефектов при цинге. Коллаген, синтезированный в отсутствие или при дефиците аскорбиновой кислоты, оказывается недогидроксилированным и, следовательно, имеет пониженную температуру плавления. Такой коллаген не может образовать нормальные по структуре волокна, что и приводит к поражению кожи и ломкости сосудов, столь четко выраженных при цинге.

К факторам, регулирующим метаболизм соединительной ткани, прежде всего следует отнести ферменты, гормоны и витамины.

Многие гормоны оказывают воздействие преимущественно на отдельные определенные разновидности соединительной ткани. В данном разделе рассматриваются гормональные влияния, которые носят общий характер. Так, ряд глюкокортикоидных гормонов (кортизон и его аналоги) угнетают биосинтез коллагена фибробластами, тормозят и другую важнейшую метаболическую функцию фибробластов – биосинтез гликозаминогликанов.

По-видимому, действие глюкокортикоидных гормонов на соединительную ткань не ограничивается угнетением биосинтетической активности фибробластов. Предполагают, что под их влиянием происходит активация ферментного катаболизма коллагена.

Минералокортикоидные гормоны (альдостерон, дезоксикортикостерон) надпочечников, напротив, стимулируют пролиферацию фибробластов и одновременно усиливают биосинтез «основного вещества» соединительной ткани.

Известно также, что тироксин вызывает усиленную деполимеризацию гиалуроновой кислоты, а соматотропный гормон передней доли гипофиза стимулирует включение пролина в полипептидную цепь тропоколлагена.

Еще по теме Биохимические изменения соединительной ткани при старении и некоторых патологических процессах.:

  1. Изменения центральной нервной системы при старении, дегенеративных процессах и деменции (слабоумии)
  2. Влияние процессов старения на проводящие ткани желудочков
  3. Поражения легких при диффузных болезнях соединительной ткани
  4. ПОРАЖЕНИЕ НЕРВНОЙ СИСТЕМЫ ПРИ РЕВМАТИЗМЕ И ДРУГИХ ДИФФУЗНЫХ ЗАБОЛЕВАНИЯХ СОЕДИНИТЕЛЬНОЙ ТКАНИ
  5. Морфологические изменения мышечной ткани в процессе созревания мяса

Структурная организация межклеточного матрикса. Изменения соединительной ткани при старении, коллагенозах. Роль коллагеназы при заживлении ран. Оксипролинурия

Биология и генетика

Роль коллагеназы при заживлении ран. Коллаген IX типа антипараллельно присоединяется к фибриллам коллагена II типа. Его глобулярный НК4домен основный он не связан с фибриллами коллагена II типа и поэтому к нему может присоединяться такой компонент матрикса как гиалуроновая кислота. Микрофибриллы которые образуются тетрамерами коллагена VI типа присоединяются к фибриллам коллагена II типа и к гиалуроновой кислоте.

Структурная организация межклеточного матрикса. Изменения соединительной ткани при старении, коллагенозах. Роль коллагеназы при заживлении ран. Оксипролинурия.

Как уже говорилось, межклеточный матрикс представляет собой супрамолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул. В организме человека межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Межклеточный матрикс костной и зубной ткани. Костная и зубная ткань - специализированный тип соединительной ткани. Эти ткани выполняют в организме человека следующие важные функции:

  1. из костей образуется скелет организма;
  2. кости защищают и поддерживают внутренние органы;
  3. кости служат местом депонирования кальция и неорганического фосфата;
  4. костный мозг входит в состав кроветворной и иммунной систем;
  5. зубы как часть жевательного аппарата входят в состав пищеварительной системы;
  6. зубы - часть речевого аппарата человека.

Замечательным свойством костей является сочетание в них таких качеств, как высокая прочность на разрыв с очень лёгким весом. Костная и зубная ткань отличаются высокой минерализацией (или кальцификацией) межклеточного матрикса и содержат по массе -50% неорганических соединений, 25% органических компонентов и 25% воды.

Неорганическая часть. В состав костей входит 99% всего кальция организма, 87% фосфора, ~ 60% магния и -25% натрия. Кальций в костях находится в форме минерала гидроксиапатита, примерный состав которого Са10(РО4)6(ОН)2. Гидроксиапатит образует кристаллы, имеющие обычно размер 20 × 5 × 1,5 нм. В костной ткани содержится много микроэлементов, таких как медь, стронций, барий, цинк, фтор и др., которые играют важную роль в обмене веществ в организме. Минеральная часть костей включает также карбонаты, гидроксиды и цитраты. Минеральный состав зуба различен в разных его частях. Твёрдые части зуба (эмаль, дентин и цемент) содержат от 70% (цемент и дентин) до 96 - 97% (эмаль) неорганических веществ. Основную часть этих веществ составляют фосфат кальция, входящий в состав кристаллов гидроксиапатита (75%), а также карбонат и фторид кальция. Мягкие части зуба (пульпа и периодонт) не относят к тканям с высокой степенью минерализации. Пульпа состоит из рыхлой волокнистой соединительной ткани (такая ткань находится практически во всех органах и образует их строму, или каркас), а периодонт образован плотной волокнистой соединительной тканью, которая также входит в состав сухожилий и связок.

Органическая часть. Органические вещества костного матрикса представлены белками, липидами и небольшим количеством протеогликанов. Основной белок костной ткани - коллаген I типа (90 - 95%). Кроме него, в матриксе костей присутствуют такие белки, как коллаген V типа, остеонектин, остеокальцин, так называемые морфогенетические белки кости (BMP) и ферменты - щелочная фосфатаза (в остеобластах) и кислая фосфатаза (в остеокластах). Оба эти фермента служат маркёрами соответствующих клеток костной ткани. Углеводная часть протеогликанов костного матрикса представлена дерматан- и кератансульфатами. Главный компонент органических веществ зубной ткани - коллаген I типа. Углеводы и липиды присутствуют в небольших количествах. Содержание органических веществ в твёрдых частях зуба варьирует от 2% (эмаль) до 30% (дентин и цемент). Содержание органических веществ в мягких частях зуба такое же, как в соответствующих видах соединительной ткани.

Mежклеточный матрикс суставного хряща. Основные компоненты межклеточного хрящевого матрикса - коллаген II типа, агрекан, гиалуроновая кислота и вода. Кроме них, в мат-риксе находятся малые протеогликаны, коллагены VI, IX, XI типов, связывающий белок, другие неколлагеновые белки (фибронектин, анкорин, хрящевой олигомерный белок, хонд-роадгерин), разнообразные ростовые факторы. "Эндоскелет" хрящевого матрикса образован фибриллярной сетью, которая состоит из коллагенов II, IX и XI типов и придаёт хрящу прочность. Коллаген XI типа находится внутри фибрилл, образованных коллагеном II типа, он играет определённую роль в сборке этих фибрилл. Коллаген IX типа антипараллельно присоединяется к фибриллам коллагена II типа. Его глобулярный НК4-домен - основный, он не связан с фибриллами коллагена II типа, и поэтому к нему может присоединяться такой компонент матрикса, как гиалуроновая кислота. Микрофибриллы, которые образуются тетрамерами коллагена VI типа, присоединяются к фибриллам коллагена II типа и к гиалуроновой кислоте. Кроме того, они могут присоединяться к клеткам, поэтому коллаген VI типа называют "мостовой" молекулой между поверхностью клетки и фибриллами коллагена во внеклеточном матриксе. Высокомолекулярные агрегаты, состоящие из агрекана и гиалуроновой кислоты, являются полианионами, так как содержат большое количество кислых групп. Это способствует высокой гидратации хрящевого матрикса и обеспечивает выполнение им рессорных функций. Содержание воды в суставном хряще непостоянно: при нагрузке жидкость вытесняется, пока давление набухания не уравновесит внешнюю нагрузку. Когда нагрузка прекращается, вода вновь возвращается в хрящ. Очень наглядно это проявляется в межпозвоночных дисках. Утром, после ночного сна, на долю воды приходится около 75% массы диска. При внешней нагрузке на диски в течение дня содержание воды уменьшается примерно на 20%. Вследствие того рост человека к вечеру на 1-2 см меньше, чем утром. У космонавтов в условиях невесомости отмечается увеличение роста даже на 5 см. Малые протеогликаны, например, декорин, присоединяются к фибриллам коллагена II типа; они влияют на фибриллогенез, так как ограничивают диаметр этих фибрилл. Важную роль в организации хрящевого межклеточного матрикса играет также фибронек-тин. Биологическое значение этих и других минорных компонентов хрящевого матрикса заключается в том, что они участвуют в сборке и организации высокомолекулярных компонентов межклеточного вещества и в регуляции функции хондроцитов.

Mежклеточный матрикс кожной ткани. Основной организующий компонент матрикса кожной ткани - коллаген VII типа. Пучки фибрилл, образованные димерами этого коллагена, своими С-концами могут присоединяться к lamina densa базальной мембраны (как бы "заякориваться" в ней) и образовывать петли в субэпидермисе. Такие "заякоренные" фибриллы могут соединять lamina densa базальной мембраны с "якорными дисками", которые находятся в более глубоких субэпителиальных слоях и по своему составу похожи на базальные мембраны (содержат коллаген IV типа). "Заякоренные" фибриллы также захватывают фибриллы коллагена I и III типов. Таким способом "заякоренные" фибриллы коллагена VII типа обеспечивают присоединение эпидермиса к дерме.

Базальные мембраны. Базальные мембраны - специализированная форма межклеточного матрикса. Они синтезируются различными клетками: эндотелиальными, эпителиальными, мышечными, нервными, жировыми. Базальные мембраны представляют собой тонкие слои, которые обычно отделяют клетки и клеточные слои от окружающей соединительной ткани. Например, они окружают отдельные мышечные волокна, жировые и шванновские клетки. В таких структурах, как почечные клубочки и лёгочные альвеолы, ба-зальные мембраны расположены между двумя различными слоями клеток и играют роль высокоселективного фильтрационного барьера. С помощью электронной микроскопии выявлена двухслойная структура базальных мембран:lamina mm, которая находится со стороны клеточной мембраны, и lamina densa, которая соединена с подлежащей соединительной тканью. Основными компонентами базальных мембран являются коллаген IV типа, ламинин, гепарансульфатсодержащие протеогликаны (ГСПГ). Нерастворимость и механическую стабильность базальных мембран обеспечивают молекулы коллагена IV типа, которые организуются в специальную опорную сеть. Эта эластичная трёхмерная сеть образует структурный остов, к которому прикрепляются другие компоненты базальных мембран. Ламинин взаимодействует практически со всеми структурными компонентами базальных мембран: коллагеном IV типа, нидогеном, ГСПГ.Нидоген формирует с ламинином нековалентно связанный комплекс. Кроме этого, нидоген имеет центр связывания коллагена IV типа и, таким образом, может играть роль "мостовой" молекулы между различными компонентами базальной мембраны.ГСПГ базальных мембран могут образовывать олигомеры, соединяясь концевыми доменами белкового ядра, а также связываться с ламинином и коллагеном IV типа. Базальные мембраны выполняют разнообразные и сложные функции. В почечных клубочках базальная мембрана служит полупроницаемым фильтром, препятствующим переходу макромолекул из плазмы в первичную мочу. Большое значение в этом процессе имеет высокий отрицательный заряд протеогликанов, который препятствует прохождению через базальную мембрану других отрицательно заряженных молекул (например, белков), а также отрицательно заряженных эритроцитов. Кроме этого, базальные мембраны играют важную роль в прикреплении и ориентации клеток в пространстве, в процессах эмбрионального развития и тканевой регенерации.

Известны 2 типа коллагеназ:

Тканевая коллагеназа присутствует у человека в различных органах и тканях. В норме она синтезируется клетками соединительной ткани, прежде всего, фибробластами и макрофагами. Тканевая коллагеназа - металлозависимый фермент, который содержит Zn2+ в активном центре. В настоящее время известно 4 изоформы этого фермента. Активность коллагеназы зависит от соотношения в межклеточном матриксе её активаторов и ингибиторов. Среди активаторов особую роль играют плазмин, калликреин и катепсин В (см. раздел 14). Тканевая коллагеназа обладает высокой специфичностью, она перерезает тройную спираль коллагена в определённом месте, примерно на 1/4 расстояния от С-конца, между остатками глицина и лейцина (или изолейцина). Образующиеся фрагменты коллагена растворимы в воде, при температуре тела они спонтанно денатурируются и становятся доступными для действия других протеолитических ферментов. Нарушение катаболизма коллагена ведёт к фиброзу органов и тканей (в основном печени и лёгких). А усиление распада коллагена происходит при аутоиммунных заболеваниях (ревматоидном артрите и системной красной волчанке) в результате избыточного синтеза коллагеназы при иммунном ответе.

Бактериальная коллагеназа синтезируется некоторыми микроорганизмами. Например,Clostridium histolyticum (возбудитель газовой гангрены) выделяет коллагеназу, расщепляющую пептидную цепь коллагена более чем в 200 местах. Этот фермент гидролизует следующую связь -X-Гли-Про-У- между звеньями X и Гли. Таким образом разрушаются соединительнотканные барьеры в организме человека, что обеспечивает проникновение (или инвазию) этого микроорганизма и способствует возникновению и развитию газовой гангрены. Сам возбудитель не содержит коллагена и поэтому не подвержен действию коллагеназы.

Заболевания, связанные с нарушением синтеза и созревания коллагена

Тип коллагена

Локализация коллагена в тканях

Заболевания

Причина

Клинические проявления

Кости, кожа, связки, сухожилия, склера, роговица, строма внутренних органов

Несовершенный остеогенез

Мутации в генах (более 160), чаще всего делеции и замены. Самая неблагоприятная - замена глицина на другую аминокислоту, в результате чего в молекуле проколлагена появляется перелом или изгиб, и нормальная тройная спираль не образуется

Повышенная ломкость костей, аномалии зубов, треугольная форма лица, гиперподвижность суставов, голубые склеры

Хрящи, межпозвоночные диски, стекловидное тело

Болезнь Книста

Делеция в гене, которая приводит к синтезу укороченных цепей коллагена

Укорочение и деформации конечностей, туго-подвижность суставов, кифосколиоз, миопия высокой степени

Синдром Стиклера и Вагнера

Образование терминирующего кодона, вследствие чего в стекловидном теле синтезируется половина молекулы коллагена

Прогрессирующая миопия, часто отслойка сетчатки; патология суставов по типу хронического остеоартрита

Кожа, сосуды, строма паренхиматозных органов, матка

Синдром Элерса-Данло-Русакова, IV тип

Мутации в гене (более 20) по типу делеции, вставок, замен. В результате этого синтезируется молекула коллагена с нарушением первичной структуры, которая отличается сниженной стабильностью. Фибриллы, которые образуют такие молекулы коллагена, тоньше нормальных и менее организованы

Спонтанные разрывы крупных сосудов, перфорации кишечника, разрывы беременной матки, спонтанный пневмоторакс

Базальные мембраны (почки и лёгкие)

Синдром Альпорта

Мутации в генах, которые сопровождаются нарушением образования базальных мембран

Преимущественное поражение почек, проявляющееся гематурией и протеинурией; при некоторых формах одновременно развивается диффузный эзофагеальный лейомиоматоз (доброкачественная опухоль гладких мышц пищевода).

Синдром Гудпасчера

Образование антител к молекулам коллагена IV типа

Гломерулонефрит, лёгочный гемосидероз

Кожа

Буллёзный эпидермолиз

Мутации в гене, приводящие к снижению общего количества «заякоренных» фибрилл в коже, а также синтез дефектных фибрилл

Эпидермис слабо связан с дермой, легко слущивается и образует пузыри (буллы), которые легко травмируются, и на их месте образуются эрозии


А также другие работы, которые могут Вас заинтересовать

73192. Функция потребления и мультипликатор (по Кейнсу) 199.67 KB
Мультипликатор - это числовой коэффициент показывающий зависимость изменения ВНП в соответствии с изменением какого-либо компонента совокупного спроса. Мультипликатор инвестиций будет выглядеть следующим образом: где MR1 - мультипликатор инвестиций...
73193. Объекты мониторинга: социум, среда, экономика 160.5 KB
Экологический мониторинг относится к информационной структуре системы управления и регулирования. Комплексный экологический мониторинг включает в себя как биологический так геофизический аспекты в качестве результата которого должна выступать оценка и прогноз состоянии...
73194. Математические понятия 112.5 KB
Понятия, которые изучаются в начальном курсе математику, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнение и др.
73195. Охорона і захист права власності 85.33 KB
Охорона власності - це вжиття власником різноманітних заходів, спрямованих на забезпечення цілісності свого майна, його схоронності від найрізноманітніших небажаних обставин: негоди, стихійного лиха, нападу зловмисника, дикого звіра тощо.
73196. Экология микроорганизмов 34.63 KB
Данные биоценозы характеризуются относительным постоянством однако качественный и количественный состав микрофлоры организма человека меняется в течение жизни и зависит от пола возраста питания климата и др.
73197. Реальные газы и фазовые переходы 834 KB
Учёт конечных размеров молекул и сил взаимодействия между ними позволяет ввести поправки в уравнение Менделеева-Клапейрона и получить уравнение состояния идеальных газов. Пересечение изобары с изотермой даёт точки с соответствующими параметрами состояния.
73198. Физика атомного ядра. Радиоактивность 290 KB
Как уже известно современная физика установила что атом состоит из положительно заряженного ядра и окружающих его электронов. Каково же строение атомного ядра Ключом к изучению атомного ядра послужило открытие французского ученого А.
73199. Ядерные реакции. Искусственная радиоактивность. Элементарные частицы 272.5 KB
Ядра атомов нельзя разрушить ни нагреванием до многих тысяч градусов, ни охлаждением до самых низких температур. Для разрушения ядер нужны значительные затраты энергии. Как же это осуществить? Чтобы ответить на этот вопрос, необходимо уяснить смысл ядерных реакций.
73200. Основы молекулярно-кинетической теории. Термодинамические параметры. Масса и размеры молекул 348 KB
Все тела - твёрдые жидкие и газообразные - представляют собой совокупность большого числа атомов и молекул. При изучении свойств тел и физических явлений происходящих с телами возможны два направления исследований: а молекулярно-кинетическое устанавливает законы протекания различных...

Рост, развитие и наступающий затем процесс старения сопровождаются значительными изменениями в соединительной ткани. В биохимическом аспекте они сводятся к следующему:

2. Количество основного вещества с возрастом уменьшается, а содержание коллагеновых волокон - увеличивается.

3. Снижается количество поперечных связей в эластине и уменьшается эластичность соединительно-тканных образований.

4. Количество поперечных связей в коллагене, напротив, увеличивается, вследствие чего увеличивается прочность коллагенового волокна и умень-шается доступность его коллагеназе.

5. В процессе старения замедляется интенсивность метаболизма компонентов соединительной ткани.

6. Уменьшается концентрация гидроксипролина в сыворотке крови и суточная экскреция его с мочой.

7. В составе коллагеновых и эластических волокон увеличивается содержание кальция, что ведёт к ригидности некоторых видов соединительной ткани.

8. Количество связанной воды уменьшается, что приводит к снижению тургора тканей.

Структура и функции соединительной ткани могут нарушаться в патологии, в частности, при мукополисахаридозах и коллагенозах.

Мукополисахаридозы - группа тяжёлых наследственных заболеваний, связанных с генетически обусловленным отсутствием одного из ферментов, участвующих в катаболизме ГАГ или протеогликанов, которые при этом накапливаются в лизосомах, что приводит к развитию тяжёлых клинических проявлений. При некоторых видах мукополисахаридозов происходит выделение с мочой нерасщеплённых фрагментов ГАГ. Клиническая симптоматика различных видов мукополисахаридозов имеет свои особенности, но всех их объединяет нарушение умственного и физического развития ребёнка, деформации скелета, помутнение роговицы, нарушение структуры и функций различных соединительнотканных структур, сокращение продолжительности жизни. В настоящее время эти заболевания не поддаются лечению, но они могут быть диагностированы в период беременности путём определения активности соответствующих ферментов в клетках амниотической жидкости.

Коллагенозы - группа заболеваний, при которых повреждаются все структурные компоненты соединительной ткани: клетки, волокна, основное вещество. К коллагенозам относятся ревматизм, ревматоидный артрит, системная красная волчанка, системная склеродермия, узелковый периартериит, дерматомиозит. Коллагенозы являются следствием не только генетических нарушений, но и могут иметь приобретённый характер.

Рубцовоизменённая соединительная ткань (рубец) - особый вид соединительной ткани, образующейся в ответ на повреждение любых тканей в результате травмы или воспалительного процесса. В заживающей ране фибробласты интенсивно синтезируют коллаген, неколлагеновые белки, холестерин, триацилглицерины, фосфолипиды, гликозаминогликаны, протеогликаны, гликопротеины. Затем происходит формирование рубцовой ткани, в процессе которого уменьшается количество клеток, почти полностью расщепляются липиды, неколлагеновые белки, протеогликаны, а также избыток коллагена и формируется рубец. Рубец - это плотная соединительная ткань, полностью воспроизводящая конфигурацию дефекта ткани, которую он заполняет. Сформировавшийся рубец состоит, главным образом, из коллагеновых волокон, структура которых не имеет регулярного строения, а также очень небольшого количества нерасщеплённых липидов, гликозаминогликанов, неколлагеновых белков. Коллаген вызывает адгезию и агрегацию тромбоцитов, что способствует образованию защитной плёнки на поверхности раны и её заживлению. Иногда могут формироваться гипертрофические обезображивающие рубцы келлоидного характера, содержащие в своём составе много липидов, ГАГ и продуктов их деградации при пониженном содержании коллагена. Кортикотропный гормон гипофиза, глюкокортикоиды, паратгормон, ионизирующее излучение, стресс, дефицит полноценного белка и витамина С в диете замедляют заживление ран. К гормонам, стимулирующим синтез коллагена и способствующим заживлению ран, относятся соматотропин, тироксин, инсулин, половые гормоны.