Главная · Зубные протезы · Гормоны задней доли гипофиза вазопрессин и окситоцин. Окситоцин и вазопрессин – социальные гормоны Где синтезируется вазопрессин и окситоцин

Гормоны задней доли гипофиза вазопрессин и окситоцин. Окситоцин и вазопрессин – социальные гормоны Где синтезируется вазопрессин и окситоцин

Из всех гормонов наиболее хорошо изучен АКТГ, основной физиологической функцией которого является стимуляция синтеза и секреции стероидных гормонов надпочечников. Но кроме этого АКТГ может проявлять меланоцитстимулирующую и липотропную активность. В 1953 году АКТГ был выделен в чистом виде, а чуть позже была установлена его химическая структура, состоящая из 39 аминокислот. АКТГ не обладает видовой специфичностью, т. е. различий между человеческим и АКТГ животного нет.

Гормон гипофиза - ТТГ

ТТГ — основной регулятор развития и функционирования щитовидной железы, процессов синтеза и секреции тиреоидных гормонов. Это сложный белок, который состоит из двух субъединиц (α и β), соединенных между собой. Биологические свойства гормона обусловлены действием β-субъединицы, которая отличается у человека и животных.

Гонадотропные гормоны гипофиза

Гонадотропные гормоны гипофиза представлены в виде ЛГ и ФСГ. Основной функцией этих гормонов является обеспечение репродуктивной функции человека обоих полов. Они, как и ТТГ, являются сложными белками — гликопротеидами, т. е. аминокислотами, соединенными с углеводами. ФСГ индуцирует (способствует) созревание фолликулов в яичниках у женщин и сперматогенез у мужчин.

ЛГ вызывает разрыв фолликула и выход яйцеклетки, образование желтого тела и стимулирует секрецию эстрогенов и прогестерона. А у мужчин ЛГ ускорят развитие интерстициальной ткани и секрецию андрогенов. Эффекты действия гонадотропинов зависимы друг от друга и протекают синхронно. Динамика секреции у женщин меняется в ходе менструального цикла. В фолликулярную (первую) фазу цикла ЛГ находится на низком уровне, а ФСГ — увеличен.

По мере созревания фолликула секреция эстрадиола повышается, что способствует повышению продукции гонадотропинов и возникновению циклов как ЛГ, так и ФСГ, т. е. гормоны половых желез стимулируют секрецию гонадотропинов.

Гормон гипофиза - пролактин

В процессах репродукции принимает активное участие еще один гормон — пролактин (лактогенный гормон). Основной функцией этого гормона гипофиза является стимуляция развития молочных желез и лактации, роста сальных желез и внутренних органов. Он способствует проявлению вторичных половых признаков, стимулирует секрецию гормонов желтым телом и участвует в регуляции жирового обмена.

Более подробное описание свойств этого гормона читайте в статье «Что такое пролактин, когда и где он вырабатывается, какие его нормы».

В последнее время много внимания уделяется пролактину как регулятору материнского поведения. Это один из древних гормонов, который обнаруживается даже у амфибий. Рецепторы пролактина активно связывают как сам пролактин, так и гормон роста (СТГ) и плацентарный лактоген, что свидетельствует о едином механизме действия этих трех гормонов. При увеличении пролактина возможно развитие бесплодия.

Гормон гипофиза - СТГ

Более широким спектром действия, чем пролактин, является гормон роста — СТГ (соматотропин, соматотропный гормон). СТГ стимулирует рост скелета, активирует биосинтез белка, дает жиромобилизирующий эффект, способствует увеличению размеров тела. Кроме этого, он координирует обменные процессы. Этот факт доказан тем, что его секреция резко повышается при снижении сахара в крови. Химическая структура в настоящее время уже полностью установлена — 191 аминокислоты.

Гормон гипофиза - МСГ

Меланоцитстимулирующий гормон стимулирует синтез кожного пигмента меланина, способствует увеличению размеров и количества пигментных клеток меланоцитов.

Гормоны гипофиза - вазопрессин и окситоцин

Вазопрессин и окситоцин — первые гормоны гипофиза, у которых полностью была установлена аминокислотная последовательность. Оба гормона оказывают разное действие. Вазопрессин стимулирует транспорт воды и солей через мембраны, оказывает сосудосуживающее действие. Окситоцин оказывает сокращение мышц матки при родах, повышает секрецию молочных желез. Основным регулятором секреции вазопрессина является потребление воды.

Таким образом, гипофиз, связанный через гипоталамус с нервной системой, объединяет в одно целое эндокринную систему, которая участвует в поддержании постоянства внутренней среды организма (гомеостаза). Внутри эндокринной системы регуляция гомеостаза осуществляется на основе принципа обратной связи между передней долей гипофиза и железами-«мишенями» (щитовидная железа, надпочечники, половые железы).

Избыток гормона, который вырабатывается железой-«мишенью», тормозит, а его недостаток стимулирует секрецию и выделение соответствующего тропного гормона. В эту систему неизбежно включается гипоталамус. Именно в нем находятся чувствительные рецепторные зоны, которые, связываясь с гормонами крови, меняют ответную реакцию в зависимости от их концентрации. Рецепторы гипоталамуса передают сигналы в гипоталамические центры, которые затем координируют работу гипофиза. Таким образом, гипоталамус можно рассматривать как нейроэндокринный мозг.

Что относится к железам внутренней секреции

Органы, относящиеся к железам внутренней секреции, и производимые ими гормоны представлены в таблице:

*Поджелудочная железа обладает как внешней, так и внутренней секрецией.

В некоторых источниках к эндокринным железам относят также тимус (вилочковую железу), в котором образуются вещества, необходимые для регуляции работы иммунной системы. Как и все ЖВС, он действительно не имеет протоков и секретирует свои продукты непосредственно в кровоток. Однако тимус активно функционирует до подросткового возраста, в дальнейшем происходит его инволюция (замещение паренхимы жировой тканью).

Анатомия и функции эндокринного аппарата

Все эндокринные железы имеют разную анатомию и набор синтезируемых гормонов, поэтому и функции каждой из них кардинально отличаются.

К ним относятся гипоталамус, гипофиз, эпифиз, щитовидная, паращитовидные, поджелудочная и половые железы, надпочечники.

Гипоталамус

Гипоталамус является важным анатомическим образованием центральной нервной системы, которое имеет мощное кровоснабжение и хорошо иннервируется. Помимо регуляции всех вегетативных функций организма, он секретирует гормоны, которые стимулируют или угнетают работу гипофиза (рилизинг-гормоны).

Активизирующие вещества:

  • тиролиберин;
  • кортиколиберин;
  • гонадолиберин;
  • соматолиберин.

К гормонам гипоталамуса, тормозящим активность гипофиза, относятся:

  • соматостатин;
  • меланостатин.

Большинство рилизинг-факторов гипоталамуса не являются избирательными. Каждый действует сразу на несколько тропных гормонов гипофиза. Например, тиролиберин активирует синтез тиротропина и пролактина, а соматостатин подавляет образование большинства пептидных гормонов, но в основном — соматотропного гормона и кортикотропина.

В передне-боковой области гипоталамуса есть скопления специальных клеток (ядра), в которых образуются вазопрессин (антидиуретический гормон) и окситоцин.

Вазопрессин, воздействуя на рецепторы дистальных почечных канальцев, стимулирует обратную реабсорбцию воды из первичной мочи, тем самым задерживая жидкость в организме и снижая диурез. Еще один эффект вещества - повышение общего периферического сосудистого сопротивления (спазм сосудов) и увеличение артериального давления.

Окситоцин обладает в малой степени теми же свойствами, что и вазопрессин, но основной его функцией является стимуляция родовой деятельности (маточных сокращений), а также усиление выделения молока из молочных желез. Задача этого гормона в мужском организме к настоящему моменту не установлена.

Гипофиз

Гипофиз является центральной железой в организме человека, регулирующей работу всех гипофиззависимых желез (кроме поджелудочной, эпифиза и паращитовидных). Он располагается в турецком седле клиновидной кости, имеет очень малые размеры (вес около 0,5 г; диаметр — 1 см). В нем выделяют 2 доли: переднюю (аденогипофиз) и заднюю (нейрогипофиз). По ножке гипофиза, связанной с гипоталамусом, к аденогипофизу поступают рилизинг-гормоны, а к нейрогипофизу - окситоцин и вазопрессин (здесь происходит их накопление).

Гормоны, с помощью которых гипофиз управляет периферическими железами, называются тропными. Регуляция образования этих веществ происходит не только за счет рилизинг-факторов гипоталамуса, но и продуктов деятельности самих периферических желез. В физиологии этот механизм называется отрицательной обратной связью. Например, при чрезмерно высокой продукции гормонов щитовидной железы происходит угнетение синтеза тиротропина, а при снижении уровня тиреоидных гормонов его концентрация повышается.

Единственным нетропным гормоном гипофиза (то есть реализующим свой эффект не за счет других желез) является пролактин. Его основная задача - стимуляция лактации у кормящих женщин.

Соматотропный гормон (соматотропин, СТГ, гормон роста) также условно относится к тропным. Основная роль этого пептида в организме - стимуляция развития. Однако этот эффект реализуется не самим СТГ. Он активирует в печени образование так называемых инсулиноподобных факторов роста (соматомединов), которые и оказывают стимулирующее влияние на развитие и деление клеток. СТГ вызывает ряд других эффектов, например, участвует в углеводном обмене путем активации глюконеогенеза.

Адренокортикотропный гормон (кортикотропин) - вещество, регулирующее работу коры надпочечников. Однако на образование альдостерона АКТГ влияние практически не оказывает. Его синтез регулируется ренин-ангиотензин-альдостероновой системой. Под действием АКТГ происходит активация продукции кортизола и половых стероидов в надпочечниках.

Тиреотропный гормон (тиреотропин) оказывает стимулирующее влияние на функцию щитовидной железы, повышая образование тироксина и трийодтиронина.

Гонадотропные гормоны - фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ) активируют деятельность половых желез. У мужчин они необходимы для регуляции синтеза тестостерона и формирования сперматозоидов в яичках, у женщин - для осуществления овуляции и образования эстрогенов и прогестогенов в яичниках.

Эпифиз

Эпифиз — маленькая железа весом всего 250 мг. Располагается этот эндокринный орган в области среднего мозга.

Функция эпифиза к настоящему моменту до конца не изучена. Единственным известным соединением является мелатонин. Это вещество представляет собой «внутренние часы». Благодаря изменению его концентрации человеческий организм распознает время суток. Именно с функцией эпифиза связана адаптация к другим часовым поясам.

Щитовидная железа

Щитовидная железа (ЩЖ) расположена на передней поверхности шеи под щитовидным хрящом гортани. Она состоит из 2 долей (правой и левой) и перешейка. В ряде случаев от перешейка отходит дополнительная пирамидальная доля.

Размеры ЩЖ весьма вариабельны, поэтому при определении соответствия норме говорят об объеме щитовидки. У женщин он не должен превышать 18 мл, у мужчин - 25 мл.

В ЩЖ образуются тироксин (Т4) и трийодтиронин (Т3), которые играют важную роль в жизни человека, оказывая влияние на обменные процессы всех тканей и органов. Они повышают потребление кислорода клетками, тем самым стимулируя образование энергии. При их недостатке организм страдает от энергетического голода, а при избытке в тканях и органах развиваются дистрофические процессы.

Особенно важны эти гормоны в период внутриутробного роста, так как при их нехватке нарушается формирование головного мозга плода, что сопровождается умственной отсталостью и нарушением физического развития.

В С-клетках ЩЖ продуцируется кальцитонин, основной функцией которого является снижение уровня кальция в крови.

Паращитовидные железы

Паращитовидные железы расположены на задней поверхности ЩЖ (в ряде случаях включены в состав щитовидки или находятся в атипичных местах - тимусе, паратрахеальной борозде и др.). Диаметр этих округлых образований не превышает 5 мм, а количество может варьироваться от 2 до 12 пар.

Паращитовидные железы продуцируют паратгормон, который оказывает влияние на фосфорно-кальциевый обмен:

  • повышает резорбцию костной ткани, высвобождая кальций и фосфор из костей;
  • увеличивает выделение фосфора с мочой;
  • стимулирует образование кальцитриола в почках (активная форма витамина D), что приводит к усилению всасывания кальция в кишечнике.

Под действием паратгормона происходит повышение уровня кальция и снижение концентрации фосфора в крови.

Надпочечники

Правый и левый надпочечники расположены над верхними полюсами соответствующих почек. Правый по своим очертаниям напоминает треугольник, а левый - полулуние. Вес этих желез около 20 г.

На разрезе в надпочечнике выделяют корковое и мозговое вещества. В первом находятся 3 микроскопических функциональных слоя:

  • клубочковый (синтез альдостерона);
  • пучковый (производство кортизола);
  • сетчатый (синтез половых стероидов).

Альдостерон отвечает за регуляцию электролитного баланса. Под его действием в почках повышается обратная реабсорбция натрия (и воды) и выведение калия.

Кортизол оказывает на организм различные эффекты. Он является гормоном, адаптирующим человека к стрессу. Основные функции:

  • повышение уровня глюкозы в крови за счет активации глюконеогенеза;
  • усиление распада белков;
  • специфическое влияние на жировой обмен (увеличение синтеза липидов в подкожно-жировой клетчатке верхних отделов туловища и повышение распада в клетчатке конечностей);
  • снижение реактивности иммунной системы;
  • угнетение синтеза коллагена.

Половые стероиды (андростендион и дигидроэпиандростерон) вызывают эффекты, аналогичные тестостерону, но уступают ему по своей андрогенной активности.

В мозговом веществе надпочечников синтезируются адреналин и норадреналин, которые являются гормонами симпатико-адреналовой системы. Их основные эффекты:

  • учащение сердцебиения, повышение сердечного выброса и артериального давления;
  • спазм всех сфинктеров (задержка мочеиспускания и дефекации);
  • замедление выделения секретов экзокринными железами;
  • увеличение просвета бронхов;
  • расширение зрачка;
  • повышение уровня глюкозы крови (активация глюконеогенеза и гликогенолиза);
  • ускорение метаболизма в мышечной ткани (аэробный и анаэробный гликолиз).

Действие этих гормонов направлено на быструю активацию организма в чрезвычайных условиях (необходимость бегства, защиты и др.).

Эндокринный аппарат поджелудочной железы

По своему значению поджелудочная железа является органом смешанной секреции. У нее имеется протоковая система, по ней в кишечник поступают пищеварительные ферменты, но в составе есть и эндокринная - островки Лангерганса, большая часть которых расположена в хвосте. В них образуются следующие гормоны:

  • инсулин (бета-клетки островков);
  • глюкагон (альфа-клетки);
  • соматостатин (Д-клетки).

Инсулин регулирует различные виды обмена:

  • снижает уровень глюкозы крови за счет стимуляции поступления глюкозы в инсулинзависимые ткани (жировая ткань, печень и мышцы), угнетает процессы глюконеогенеза (синтеза глюкозы) и гликогенолиза (распада гликогена);
  • активирует производство белка и жиров.

Глюкагон является контринсулярным гормоном. Основная его функция — активация гликогенолиза.

Соматостатин подавляет продукцию инсулина и глюкагона.

Половые железы

Гонады вырабатывают половые стероиды.

У мужчин главным половым гормоном является тестостерон. Вырабатывается он в яичках (клетки Лейдига), которые в норме расположены в мошонке и имеют размеры 35-55 и 20-30 мм в среднем.

Основные функции тестостерона:

  • стимуляция роста скелета и распределения мышечной ткани по мужскому типу;
  • развитие половых органов, голосовых связок, появление волос на теле по мужскому типу;
  • формирование мужского стереотипа сексуального поведения;
  • участие в сперматогенезе.

Для женщин основными половыми стероидами являются эстрадиол и прогестерон. Эти гормоны образуются в фолликулах яичника. В созревающем фолликуле основным веществом является эстрадиол. После разрыва фолликула в момент овуляции на его месте происходит формирование желтого тела, которое секретирует в основном прогестерон.

Яичники у женщин расположены в малом тазу по бокам от матки и имеют размеры 25-55 и 15-30 мм.

Основные функции эстрадиола:

  • формирование телосложения, распределение подкожного жира по женскому типу;
  • стимуляция пролиферации протокового эпителия молочных желез;
  • активизация формирования функционального слоя эндометрия;
  • стимуляция овуляторного пика гонадотропных гормонов;
  • формирование женского типа сексуального поведения;
  • стимуляция положительного метаболизма костной ткани.

Основные эффекты прогестерона:

  • стимуляция секреторной активности эндометрия и его подготовка к имплантации эмбриона;
  • подавление сократительной деятельности матки (сохранение беременности);
  • стимуляция дифференцировки протокового эпителия молочных желез, подготовка их к лактации.

Либерины:

  • тиролиберин;
  • кортиколиберин;
  • соматолиберин;
  • пролактолиберин;
  • меланолиберин;
  • гонадолиберин (люлиберин и фоллилиберин)
  • соматостатин;
  • пролактостатин (дофамин);
  • меланостатин;
  • кортикостатин

Нейропептиды:

  • энкефалины (лейцин-энкефалин (лей-энкефалин), метионин-энкефапин (мет-энкефалин));
  • эндорфины (а-эндорфин, (β-эндорфин, у-эндорфин);
  • динорфины А и В;
  • проопиомеланокортин;
  • нейротензин;
  • субстанция Р;
  • киоторфин;
  • вазойнтестинальный пептид (ВИП);
  • холецистокинин;
  • нейропептид-Y;
  • агутиродственный протеин;
  • орексины А и В (гипокретины 1 и 2);
  • грелин;
  • дельта-сон индуцирующий пептид (ДСИП) и др.

Гипоталамо-заднегипофизарные гормоны:

  • вазопрессин или антидиуретический гормон (АДГ);
  • окситоцин

Моноамины:

  • серотонин;
  • норадреналин;
  • адреналин;
  • дофамин

Эффекторные гормоны гипоталамуса и нейрогипофиза

Эффекторными гормонами гипоталамуса и нейрогипофиза являются вазопрессин и окситоцин. Они синтезируются в крупноклеточных нейронах СОЯ и ПВЯ гипоталамуса, доставляются путем аксонального транспорта в нейрогипофиз и выделяются в кровь капилляров нижней гипофизарной артерии (рис. 1).

Вазопрессин

Антидиуретический гормон (АДГ, или вазопрессин) - пептид, состоящий из 9 аминокислотных остатков, его содержание в составляет 0,5 — 5 нг/мл.

Базальная секреция гормона имеет суточный ритм с максимумом в ранние утренние часы. Гормон транспортируется кровью в свободной форме. Его период полураспада составляет 5-10 мин. АДГ действует на клетки-мишени через стимуляцию мембранных 7-TMS- рецепторов и вторичные посредники.

Функции АДГ в организме

Клетками-мишенями АДГ являются эпителиальные клетки собирательных трубочек почек и гладкие миоциты стенок сосудов. Через стимуляцию V 2 -рецепторов эпителиальных клеток собирательных трубочек почек и повышение в них уровня цАМФ АДГ увеличивает реабсорбцию воды (на 10-15%, или 15-22 л/сут), способствует концентрированию и уменьшению объема конечной мочи. Этот процесс называется антидиурезом, а вазопрессин, его вызывающий, получил второе название — АДГ.

В больших концентрациях гормон связывается с V 1 -рецепторами гладких миоцитов сосудов и через повышение в них уровня ИФЗ и ионов Са 2+ вызывает сокращение миоцитов,сужение артерий и повышение артериального давления крови. Это влияние гормона на сосуды называется прессорным, откуда и произошло название гормона — вазопрессин. АДГ участвует также в стимуляции секреции АКТГ при стрессе (через V 3 -рецепторы и внутриклеточные ИФЗ и ионы Са 2+), формировании мотивации жажды и питьевого поведения, в механизмах памяти.

Рис. 1. Гипоталамические и гипофизарные гормоны (РГ- рилизингвысвобождающие гормоны (либерины), СТ — статины). Пояснения в тексте

Синтез и выделение АДГ в физиологических условиях стимулируют повышение осмотического давления (гиперосмолярность) крови. Гиперосмолярность сопровождается активацией осмочувствительных нейронов гипоталамуса, которые в свою очередь стимулируют секрецию АДГ нейросекреторными клетками СОЯ и ПВЯ. С этими клетками связаны также нейроны сосудодвигательного центра, получающие информацию о кровотоке от механо- и барорецепторов предсердий и синокаротидной зоны. Через эти связи рефлекторно стимулируется секреция АДГ при понижении объема циркулирующей крови (ОЦК), падении артериального давления крови.

Основные эффекты вазопрессина

  • Активирует
  • Стимулирует сокращение гладких мышц сосудов
  • Активирует центр жажды
  • Участвует в механизмах обучения и
  • Регулирует процессы терморегуляции
  • Выполняет нейроэндокринные функции, являясь медиатором и вегетативной нервной системы
  • Участвует в организации
  • Оказывает влияние на эмоциональное поведение

Усиление секреции АДГ наблюдается также при повышении уровня в крови ангиотензина II, при стрессе и физической нагрузке.

Выделение АДГ понижается при уменьшении осмотического давления крови, повышении ОЦК и (или) артериального давления крови, действии этилового спирта.

Недостаточность секреции и действия АДГ может быть следствием недостаточности эндокринной функции гипоталамуса и нейрогипофиза, а также нарушения функции рецепторов АДГ (отсутствие, снижение чувствительности V 2 - рецепторов эпителия собирательных трубочек почек), что сопровождается избыточным выделением мочи низкой плотности до 10-15 л/сут и гипогидратацией тканей организма. Это заболевание получило название несахарный диабет. В отличие от сахарного диабета, при котором избыточное выделение мочи обусловлено повышенным уровнем глюкозы в крови, при несахарном диабете уровень глюкозы в крови остается нормальным.

Избыточная секреция АДГ проявляется уменьшением диуреза и задержкой воды в организме вплоть до развития клеточных отеков и явлений водной интоксикации.

Окситоцин

Окситоцин — пептид, состоящий из 9 аминокислотных остатков, транспортируется кровью в свободной форме, период полураспада — 5-10 мин, действует на клетки-мишени (гладкие миоциты матки и миоэпитслиальныс клетки протоков молочных желез) через стимуляцию мембранных 7-TMS- рецепторов и повышение в них уровня ИФЗ и ионов Са 2+ .

Функции окситоцина в организме

Повышение уровня гормона, наблюдающееся в естественных условиях к концу беременности, вызывает усиление сокращения матки при родах и в послеродовой период. Гормон стимулирует сокращение миоэпителиальных клеток протоков молочных желез, способствуя выделению молока при кормлении новорожденных.

Основные эффекты окситоцина:

  • Стимулирует сокращения матки
  • Активирует выделение молока
  • Оказывает диуретический и натрийуретический эффекты, участвуя в водно-солевом поведении
  • Регулирует питьевое поведение
  • Повышает секрецию гормонов аденогипофиза
  • Участвует в механизмах обучения и памяти
  • Оказывает гипотензивный эффект

Синтез окситоцина увеличивается под влиянием повышенного уровня эстрогенов, а его выделение усиливается рефлекторным путем при раздражении механорецепторов шейки матки при ее растяжении во время родов, а также при стимуляции механорецепторов сосков молочных желез во время кормления ребенка.

Недостаточная функция гормона проявляется слабостью родовой деятельности матки, нарушением выделения молока.

Гипоталамические рилизинг-гормоны рассматриваются при изложении функций и периферических эндокринных желез.

Пролактин (ЛТГ) получен в чистом виде лишь в 1971- 1972 гг., когда был осуществлен его биосинтез и установлено, что у людей он является самостоятельным гормоном, отличным от гормона роста. Несмотря на небольшое количество клеток, продуцирующих пролактин (лактопротоциты), он обнаруживается в достаточном количестве в периферическом круге кровообращения. Так, в фолликулярной фазе цикла его обнаруживают в среднем 10 нг/мл, в лютеиновой - 11 нг/мг .

Это, возможно, говорит о довольно высокой скорости его секреции. Пролактин сохраняет у человека желтое тело, доводит его до стадии созревания. Секреция пролактина в гипофизе находится под влиянием ингибирующего фактора гипоталамуса - ПИФ. Считают, что секреция ПИФ контролируется уровнем секреции и активностью гипоталамических катехоламинов. Установлено также наличие лролактин-рилизинг-фактора, так называемого пролактолиберина. Некоторые фармакологические факторы (резерпин, транквилизаторы фенотиазинового ряда), эстрогены также обладают способностью увеличивать секрецию пролактина.

Нарушение секреции (гипер-, гипосекреция) имеет существенное значение в патогенезе ряда эндокринных заболеваний (опухоли гипофиза, гипопитуитаризм, синдром Киари - Фроммеля, бесплодие). Соответствующее лечение дает благоприятные результаты . АКТГ обеспечивает секрецию гормонов, продуцируемых корой надпочечников, в особенности гидрокортизона и кортикостерона.
Важную роль в регуляции гормонопоэтических функций гипофиза играет норадреналин [Алешин Б. В.].

Вазопрессин и окситоцин - гормоны, секретируемые супраоптическим и паравентрикулярным ядрами и транспортируемые в заднюю долю гипофиза. Их биологическая роль - поддержание водно-солевого баланса, регуляция транспорта воды и солей через клеточные мембраны. Вазопрессин - антидиуретический гормон (АДГ); стимулирует абсорбцию воды из почечных канальцев, в результате чего происходит задержка воды и уменьшение диуреза.

Вазопрессин способствует сокращению гладких мышечных волокон в стенках артериальных сосудов, повышая артериальное давление. Циркулирующий в крови вазопрессин постепенно разрушается, главным образом в печени. Избыток вазопрессина в крови частично выделяется с мочой.

Окситоцин стимулирует сокращение гладких мышц матки и секрецию молока из лактирующей молочной железы. Химический синтез окситоцина осуществил V. Du Vigneaud. Синтетический препарат как по химическим свойствам, так и по биологическому действию идентичен природному гормону. Окситоцин ииактивируется в печени и почках; избыток гормона выводится с мочой. Гонадотропные гормоны аденогипофиза оказывают влияние и на некоторые процессы метаболизма.

Так, АКТГ обладает меланостимулирующей активностью, гормон роста стимулирует рост скелета и повышает синтез белков, стимулирует синтез информационной, транспортной и рибосомной рибонуклеиновой кислоты (РНК).

Стой, кто ведет? [Биология поведения человека и других зверей] Жуков. Дмитрий Анатольевич

Окситоцин и вазопрессин – социальные гормоны

Интенсивное изучение роли гормонов в социальном поведении началось после обнаружения двух репродуктивных стратегий у полевок, рода мышевидных грызунов. Два вида полевок – степная (Microtus ochrogaster) и луговая (Microtus pennsylvanicus) – живут в приблизительно одинаковых условиях, но используют две противоположные стратегии размножения (рис. 7.20).

При моногамии (полевка степная), т. е. при К -стратегии, оба родителя две трети времени проводят в гнезде. Детеныши никогда не остаются одни. При полигамии (полевка луговая), т. е. при r -стратегии, они не знают отца, а мать проводит в гнезде только треть времени. Оказалось, что два вида полевок различаются не только стратегиями репродуктивного поведения, но и активностью систем окситоцина и вазопрессина, которая значительно выше у моногамных животных по сравнению с полигамными.

Окситоцин считается в настоящее время основным гормоном, от которого зависит привязанность матери к детенышам. Искусственное изменение уровня гормона в эксперименте вызывает соответствующее изменение родительского поведения: уменьшение окситоцина уменьшает родительскую опеку, а его рост повышает ее.

Рис. 7.20. Моно– и полигамное поведение отражает две стратегии размножения

Окситоцин усиливает аффилиативное поведение, в том числе и обеспечивая социальную память. После выключения секреции окситоцина у животных отсутствует социальная память: встречая знакомую особь, животное ведет себя с ней как с незнакомцем. Особи, лишенные социальной памяти, естественно, не способны образовывать стабильные пары, поэтому К -стратегия для них исключается. При этом память на запахи, не связанные с общением, не страдает. Животное с нарушенной системой окситоцина так же хорошо находит дорогу в лабиринте, в котором ранее была скрыта пища, как и животное, не подвергавшееся выключению секреции окситоцина. Таким образом, дефицит в системе окситоцина вызывает не нарушения обоняния, а дефицит социального поведения.

Окситоцин имеет особенно большое значение для самок грызунов. Его введение усиливает аффилиацию самки к знакомому самцу и не влияет на поведение самцов. У самцов грызунов аффилиацию к самке стимулирует другой гормон – вазопрессин, при введении которого предпочтение знакомой самки перед незнакомой возрастает. Основу этого эффекта вазопрессина, возможно, составляет повышенная тревога, при которой, соответственно, усиливается тяга к знакомой самке (даже если с ней и не было совокупления), т. е. к стабильным условиям существования.

Окситоцин усиливает аффилиацию к «своим». Вазопрессин усиливает враждебность к «чужим»

Системы окситоцина и вазопрессина и их биологические эффекты имеют свои особенности у моно– и полигамных видов, т. е. у r – и К -стратегов. У полевок, полигамных r -стратегов, роль гормонов скуднее в силу более слабого родительского поведения. Распределение рецепторов вазопрессина и окситоцина в мозге полигамов отличается от распределения гормональных рецепторов у моногамов. Кроме того, у полигамных самцов введение вазопрессина не изменяет ни аффилиацию к самке, ни межсамцовую агрессию. Введение окситоцина самкам усиливает материнскую агрессию, а самцам – аффилиативное поведение по отношению к детенышам, но только на фоне имитации тяжелых природных условий – сокращения светового дня.

Не только у грызунов, но и у человека окситоцин усиливает аффилиацию мужских и женских особей. Считают, что именно в упрочении взаимной симпатии заключается смысл резкого увеличения секреции окситоцина – не только у женщины, но и у мужчины – во время полового акта. У людей, которые переживают период романтической любви, отмечается повышенный уровень окситоцина. Добровольцы, которым его впрыскивали, оценивали сексуальную привлекательность лиц другого пола на фотографиях значительно выше, чем те люди, которые вместо окситоцина получали водный раствор яичного белка.

Под влиянием окситоцина, конечно же, усиливается и материнское поведение человека. Причем это его свойство использовали в клинике задолго до того, как в конце 1990-х гг. были обнаружены различия в системе окситоцина у моно– и полигамных полевок.

Например, описан следующий клинический случай (синдром Медеи).

Больная Б., 33 года, инженер.

Жалобы на раздражительность, легкую возбудимость и почти постоянное чувство злобы к своему девятилетнему ребенку. Эта злобность проявляется в необоснованных придирках и наказаниях из-за пустяков. И хотя больная понимает неадекватность своего поведения, поделать с собой ничего не может. Причину такого отношения к ребенку объясняет тем, что родила его от человека, который причинил ей много горя и к которому она по настоящее время испытывает ненависть. Больная не в состоянии избавиться от этого чувства. «Умом понимаю, что ребенок здесь ни при чем. Я люблю сына, но злоба меня переполняет». Особенно несдержанна пациентка в предменструальный период.

Лечилась почти всеми транквилизаторами. Эффект был лишь в первые дни приема препарата. Прошла курс гипнотерапии. Тоже безуспешно. «Я хочу забыть прошлое, но не могу».

Начат курс лечения окситоцином по 3 МЕ подкожно два раза в день в течение двух недель.

На четвертый день почувствовала себя спокойнее. Была удивлена, что ее состояние улучшилось. «Что-то звериное ушло из моего сознания». «…Со страхом думаю, что кошмар может вернуться».

Улучшение длилось более двух месяцев. Затем в предменструальный период пациентка вновь испытала чувство немотивированной злобы, правда, не столь яркое, как раньше. Сама пришла к врачу с просьбой повторить курс лечения окситоцином. Второй, а затем, через четыре месяца, третий курс лечения в значительной степени улучшили состояние больной. Появилось незнакомое ранее чувство «благополучия».

Важно, что введение окситоцина оказалось эффективным не само по себе, а только в сочетании с психотерапией. Больные говорили: «Внезапно все, что говорили врачи и мы сами себе внушали, обрело реальность»; «Слова врача, что надо забыть тот эпизод, вдруг приобрели настоящий смысл». Таким образом, окситоцин не мог индуцировать дружелюбную установку в психике человека, не мог сам по себе стереть память о тягостных воспоминаниях или сделать их субъективно незначимыми. Только после того как в результате психотерапевтических мероприятий состояние больных несколько изменилось, окситоцин усилил их безмятежность и ослабил память. Возможно, впрочем, что введение окситоцина усилило доверие к врачу, в частности к тому, что он говорит. В итоге произошла рационализация ситуации: больные осознали, что случившееся или происходящее с ними не является катастрофой. Таким образом, окситоцин модулирует дружелюбную установку человека и модулирует память – иначе говоря, влияет на эти психические функции только при определенном состоянии человека. Индуцировать эти процессы окситоцин не может.

Еще одним важным моментом является то, что окситоцин усилил связь не только между матерью и ребенком, но и между пациентом и врачом, которому женщина (см. пример с 33-летней пациенткой) стала больше доверять. Таким образом, окситоцин усиливает дружелюбное отношение не только в родительских и супружеских парах, но и в других социальных группах, что было неоднократно показано в последнее время. Например, при интраназальной аппликации (впрыскивании аэрозоля в нос) окситоцин увеличивал доверие между людьми. В этом эксперименте 124 студента участвовали в экономической игре, изображая инвесторов или управляющих инвестициями. Средства, которые они вкладывали, измерялись условными единицами и имели реальный денежный эквивалент. В конце игры все игроки получали выигранные ими деньги, помимо стабильной платы за само участие в эксперименте.

Инвестор мог выделять различные суммы в управление, а управляющий – следовать одной из двух стратегий: добросовестно распорядиться вкладом или злоупотребить доверием инвестора. В первом случае оба участника получали прибыль, пропорциональную вкладу, а во втором – инвестор терял свой вклад, зато управляющий получал прибыль значительно б?льшую, чем в первом случае. Одна пара игроков встречалась друг с другом только один раз, но все игроки по ходу игры обменивались мнениями о добросовестности управляющих.

Оказалось, что «инвесторы», получавшие в каждую ноздрю по 12 МЕ окситоцина, доверяли своим «управляющим» значительно б?льшие суммы, чем «инвесторы», получавшие плацебо. При этом введение окситоцина не влияло на рискованное поведение, которое было не связано с межличностными отношениями, т. е. с человеческим фактором. Добросовестность «управляющих» не зависела от введения им окситоцина. Точно так же не зависели от него показатели «настроения» и «спокойствия» (термины использованы авторами статьи), определенные с помощью психологических тестов и опросников.

Рис. 7.21. Можно предположить, что у Буратино была повышена активность системы окситоцина, что и побудило его доверить свои деньги подозрительным незнакомцам

Введение окситоцина увеличивает доброжелательность оценок незнакомых людей, чьи фотографии предъявляли добровольцам. Те из них, кому вводился окситоцин, выше оценивали своих родственников, чем получавшие водный раствор, а средние оценки малознакомых людей были одинаковы в обеих группах испытуемых.

Таким образом, окситоцин увеличивает доверие между людьми точно так же, как количество социальных контактов и дружелюбие между животными (рис. 7.21).

Усиление аффилиации, т. е. дружелюбного отношения к другим людям, под действием окситоцина дало основание научным журналистам называть окситоцин «гормоном любви», «гормоном доверия» и даже «моральной молекулой». Подобные метафоры вызывают сомнения, поскольку неизвестен первичный механизм влияния окситоцина на поведение. До 2000 г. его чаще называли «амнестическим гормоном», поскольку он ухудшает память.

Рис. 7.22. Кормящие женщины плохо запоминают прочитанное. Частично это обусловлено высокой секрецией окситоцина во время лактации

Окситоцин оказался эффективен для лечения ряда случаев невроза с дисфорией (мрачным, угрюмым, злобно-раздражительным настроением). Важно то, что у всех больных имелось сочетание неприятных воспоминаний, связанных с определенным человеком. Таким образом, терапевтический эффект окситоцина проявился в том, что он усилил дружелюбие, ослабив воспоминание и уменьшив тревожность. В экспериментах на животных неоднократно было показано, что окситоцин ухудшает запоминание и затрудняет извлечение памятного следа.

Кроме того, в экспериментах на животных и на людях установлено, что окситоцин уменьшает тревожность. Пониженный уровень окситоцина связан с высокой тревогой не только при невротических состояниях. Например, при определении уровня окситоцина у студентов оказалось, что те, у кого он был высоким, сдали сессию значительно хуже, чем те, у кого содержание этого гормона было низким. Возможно, высокая концентрация окситоцина обусловила низкую тревожность и, как следствие, низкую мотивацию студентов, что и отразилось на качестве их подготовки к экзаменам (рис. 7.22).

Ранее мы говорили, что окситоцин – один из гормонов, уменьшающих психическое напряжение в результате стрессогенных событий (см. главу 5). Оказалось, что окситоцин эффективен только при стрессах, вызванных изменениями в социальной среде. Крыс подвергали либо болевому воздействию, либо вызывали стресс возмущением социальной среды – помещали в клетку с незнакомыми особями. Введение окситоцина предотвращало изменения в поведении, вызванные только социальным, но не физическим воздействием. Это означает, что окситоцин участвует в регуляции не любого стрессорного поведения, а только поведения, связанного с социальным взаимодействием.

Противоположным окситоцину действием – усилением памяти, т. е. поведения, связанного с социальным взаимодействием, – характеризуется вазопрессин. Введенный до обучения, он улучшает запоминание. Это действие вазопрессина проявляется не во всех тестах. Он усиливает тревожность как в отношении средовых изменений, так и при социальных контактах. В состоянии покоя вазопрессин усиливает активные формы поведения – движение, манипуляции с предметами, но в стрессогенной обстановке стимулирует проявление реакции затаивания. Вазопрессин часто рассматривается как гормон пассивного стиля приспособления – лишенное его животное утрачивает и способность замирать. Вазопрессин эффективен как терапевтическое средство для больных с инсультами, церебральным атеросклерозом, черепно-мозговыми травмами при нарушениях памяти, ориентировки в пространстве, внимания.

Если в отношении памяти вазопрессин является функциональным антагонистом окситоцина, то в отношении аффилиативного поведения два гормона действуют синергично. Вазопрессин, как и окситоцин, обнаружен в значительно б?льших концентрациях у моногамных видов, чем у полигамных. Манипуляции с его уровнем изменяют социальное поведение примерно так же, как и при манипуляциях с уровнем окситоцина.

Кроме того, вазопрессин и окситоцин играют определенную роль в различных расстройствах психики. При нервной анорексии отмечается высокая активность центральных вазопрессинергических систем и низкая – окситоцинергических. При шизофрении увеличена активность систем окситоцина и снижена активность систем вазопрессина. Этот факт соответствует отмечаемому терапевтическому эффекту вазопрессина на ряд шизофренических симптомов. Окситоцин может быть связан с рядом позитивных симптомов шизофрении, таких как галлюцинации. Вероятно, он играет роль при формировании навязчивых состояний.

Если окситоцин (с определенными натяжками) можно называть «гормоном любви», «амнестическим гормоном» и пр., то для вазопрессина такой детерминизм психотропной функции вряд ли возможен. Дело в том, что основное назначение вазопрессина – регуляция водно-солевого обмена. Соответственно, его секреция и синтез регулируются в первую очередь концентрацией ионов в крови. Продукция вазопрессина меняется в зависимости от физических факторов, влияющих на организм, например от положения тела – лежа или стоя. Поэтому для психотропного эффекта важна не столько его концентрация в циркулирующей крови, сколько состояние системы рецепторов вазопрессина в структурах мозга, организующих социальное поведение.

В формировании социальных связей, в частности родительских и супружеских, играют роль и другие гормоны. Если у здоровой женщины отмечается высокий уровень кортизола в состоянии покоя, то это является основанием для прогноза интенсивного родительского поведения. Концентрация кортизола в крови во время беременности растет у всех женщин. Но сильнее она увеличивалась у тех из них, которые впоследствии проявляли более выраженное материнское поведение. Помимо кортизола, склонность к родительской аффилиации отражается в соотношении эстрадиола и прогестерона. Постепенное увеличение этого соотношения от ранних сроков беременности к поздним служит основанием для прогноза выраженного материнского поведения.

Относительно гормональной регуляции отцовского, т. е. родительского, поведения мужчины известно очень мало. Есть данные, свидетельствующие о том, что такое поведение более выражено у мужчин с невысоким уровнем тестостерона и высоким содержанием пролактина. У мужчин, проводящих много времени со своими детьми до одного года, выше содержание кортизола и пролактина в крови, чем у тех, кто тратил на такое общение мало времени, однако отличия не достигают уровня статистической достоверности.

Из книги Семь экспериментов, которые изменят мир автора Шелдрейк Руперт

СОЦИАЛЬНЫЕ И БИОЛОГИЧЕСКИЕ АСПЕКТЫ При исследовании парапсихологических способностей человека испытуемым, как правило, вскоре наскучивают однообразные эксперименты. Как только интерес пропадает, результаты исследований перестают быть достоверными. Совершенно иначе

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Предпосылки гениальности автора Эфроимсон Владимир Павлович

Из книги Инстинкты человека автора Протопопов Анатолий

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

III. Социальные инстинкты О консолидированности вообще…Социальные инстинкты, как мало какие другие, служат решению долгосрочных задач процветания вида (точнее - его генофонда). На первый взгляд, концепция естественного отбора исключает возможность следования

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Что такое вазопрессин и в чем проявляется его физиологическое действие? Вазопрессин (антидиуретический гормон) – нейрогормон животных и человека, который вырабатывается в гипоталамусе, поступает в гипофиз, а затем выделяется в кровь. Вазопрессин стимулирует обратное

Из книги Человек как животное автора Никонов Александр Петрович

Что такое окситоцин и в чем состоит его физиологическое действие? Окситоцин (оцитоцин) – нейрогормон позвоночных животных и человека. Он вырабатывается в гипоталамусе, поступает в гипофиз, а затем выделяется в кровь. Окситоцин вызывает сокращение гладких мышц, особенно

Из книги Почему мы любим [Природа и химия романтической любви] автора Фишер Хелен

Вазопрессин и окситоцин Рис. 2.2. Рефлекс Фергюсона – стимуляция секреции молока при механической стимуляции влагалища. На рисунке Леонардо да Винчи показана прямая связь влагалища с молочной железой. В действительности нервный сигнал от влагалища поступает в ЦНС, что

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

Социальные потребности К этой группе относятся все потребности и, соответственно, все формы поведения, связанные с общением с другими существами, чаще всего – с представителями своего вида. Общение может быть не прямым, а только воображаемым. Тем не менее практически

Из книги Антропология и концепции биологии автора

Глава 4 Социальные аспекты животной любви Осень жизни, как и осень года, Надо, не скорбя, благословить. Эльдар Рязанов - Дочь - отрезанный ломоть, - сказала моя супруга жене моего друга, когда те пришли к нам в гости и разговор между женами зашел об ихней тяжкой бабской

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Окситоцин: еще один коктейль привязанности? …Так вместе мы росли, Как бы двойчатка-вишня, с виду порознь И все же, хоть раздельные, в единстве; Две ягоды, но на одном стебле. (53) Поэты редко воспевают чувство привязанности, возможно, потому, что оно редко заставляет их

Из книги Тайны пола [Мужчина и женщина в зеркале эволюции] автора Бутовская Марина Львовна

Окситоцин и парохиальность Разумеется, парохиальный альтруизм не канул в лету: он и сегодня остается весьма характерной особенностью человеческой психики и поведения. Многие люди готовы пожертвовать своими интересами (то есть совершить альтруистический поступок) ради

Из книги автора

9.3. Социальные вопросы пола Наглядно демонстрирует значение филогенетических истоков анализ роли полового поведения в эволюции человека. Долгое детство и беспомощность человека в этот период явились причиной многих радикальных изменений в его анатомии, физиологии и

Из книги автора

4.2. Социальные взаимоотношения Неотъемлемый атрибут закрытой социальной системы, который определяет ее структурированность, – это иерархия доминирования. Как филогенетическое наследие она является продуктом социальной эволюции, а как адаптация – своеобразным

Из книги автора

Социальные отношения у обезьян: различия между полами Гипотеза пресса хищников и гипотеза межгрупповой конкуренции за пищевые ресурсы сходятся в одном важном пункте: они признают, что виды существенно различаются, в первую очередь, по характеру внутригрупповых

Из книги автора

Социальные отношения у обезьян: различия между полами В настоящее время для объяснения социальности у приматов предлагаются две гипотезы: гипотеза пресса хищников и гипотеза межгрупповой конкуренции за пищевые ресурсы. Обе гипотезы сходятся в одном важном пункте: они

Оба гормона представляют собой 9-аминокислотные пептиды, продуцируемые нейрона­ми гипоталамуса, главным образом, супраоптическим и паравентрикулярным ядрами (пе­редний гипоталамус). АДГ и окситоцин хранятся в нейрогипофизе в накопительных тель­цах Герринга, из них они поступают в общий кровоток. Окситоцинергические и вазопрессинергические нейроны начинают усиленно секретировать эти гормоны и одновременно воз­действовать на процессы их высвобождения из накопительных телец под влиянием возбуж­дения - для этого необходимо, чтобы нейроны генерировали не менее 5 имп/с., а оптимум частоты возбуждения (при которой выделяется максимальное количество секрета) состав­ляет 20-50 имп/с.

Транспорт АДГ и окситоцина осуществляется в виде гранул, в которых эти гормоны находятся в комплексе с нейрофизином. При выделении в кровь комплекс «гормон + нейрофизин» распадается, и гормон поступает в кровь. АДГ или вазопрессин предназначен для

регуляции осмотического давления крови. Его секреция увеличивается под влиянием таких факторов, как: 1) повышение осмолярности крови, 2) гипокалиемия, 3) гипокальциемия, 4) повышениесодержания натрия в спинномозговой жидкости, 5) уменьшение, объема внекле­точной и внутриклеточной воды, б) снижение артериального давления, 7) повышение тем­пературы тела, 8) повышение в крови ангиотензина-П (при активации ренин-ангиотензиновой системы), 9) при активации симпатической системы (бета-адренорецепторный процесс).

Выделенный в кровь АДГ достигает эпителия собирательных трубок почки, взаимодей­ствует с вазопрессиновыми (АДГ-) рецепторами, это вызывает активацию аденилатциклазы, повышает внутриклеточную концентрацию цАМФ и приводит к активации протеинкиназы, что в конечном итоге вызывает активацию фермента, понижающего связь между эпи­телиальными клетками собирательных трубок. По мнению А. Г. Гинецинского, таким фер­ментом служит гиалуронидаза, расщепляющая межклеточный цемент - гиалуроновую кислоту. В результате - вода из собирательных трубок идет в интерстиций, где за счет поворотно-множительного механизма (см. Почки) создается высокое осмотическое давле­ние, вызывающее «притяжение» воды. Таким образом, под влиянием АДГ в значительной степени возрастает реабсорбция воды. При недостаточности выделения АДГ у больного развивается несахарное мочеизнурение, или диабет: объем мочи за сутки может достигать 20 л. И лишь применение препаратов, содержащих этот гормон, приводит к частичному восстановлению нормальной функции почек.

Свое название - «вазопрессин»- этот гормон получил в силу того, что при использо­вании его в высоких (фармакологических) концентрациях АДГ вызывает повышение арте­риального давления за счет прямого влияния на гладкомышечные клетки сосудов.

Окситоцин у женщин играет роль регулятора маточной активности и участвует в про­цессах лактации как активатор миоэпителиальных клеток. При беременности миометрий женщин становится чувствительным к окситоцину (уже в начале второй половины бере­менности достигается максимальная чувствительность миометрия к окситоцину как стиму­лятору). Однако в условиях целостного организма эндогенный или экзогенный окситоцин не способен повысить сократительную деятельность матки женщин во время беременнос­ти, так как существующий механизм торможения маточной активности (бета-адренорецеп­торный ингибирующий механизм) не дает возможность проявиться стимулирующему эф­фекту окситоцина. Накануне родов, когда происходит подготовка к плодоизгнанию, снима­ется тормозной механизм и матка приобретает чувствительность повышать свою активность под влиянием окситоцина.

Повышение продукции окситоцина окситоцинергическими нейронами гипоталамуса про­исходит под влиянием импульсов, поступающих от рецепторов шейки матки (это возникает в период раскрытия шейки матки в 1-м периоде нормально протекающих родов), что получило название «рефлекс Фергуссона», а также под влиянием раздражения механорецепторов сосков грудной железы, что имеет место при кормлении грудью. У беременных женщин (перед щами) раздражение механорецепторов сосков молочной железы тоже вызывает повышение выброса окситоцина, что (при наличии готовности к родам) проявляется усилением сократительной деятельности матки. Это так называемый маммарный тест, используемый в акушерской клинике с целью определения готовности материнского организма к родам.

Во время кормления выделяемый окситоцин способствует сокращению миоэпителиальных клеток и выбросу молока из альвеол.

Все описанные эффекты окситоцина осуществляются за счет его взаимодействия с окситоциновыми рецепторами, расположенными на поверхностной мембране клеток. В дальнейшем происходит повышение внутриклеточной концентрации ионов кальция, что и вызывает соответствующий сократительный эффект.

В акушерской литературе, в учебниках фармакологии до сих пор можно встретить ошибочное описание механизма действия окситоцина: предполагалось, что окситоцин сам по себе не действует на ГМК или миоэпителиальные клетки, а влияет на них опосредованно, за счет выделения ацетилхолина, который через М-холинорецепторы вызывает активацию

клеток. Однако в настоящее время доказано, что окситоцин действует через собственные окситоциновые рецепторы, а кроме того, установлено, что ацетилхолин у беременных жен­щин не способен активировать миометрий, так как ГМК матки при беременности и в родах рефрактерны к ацетилхолину.

Относительно функции окситоцина у мужчин - данных мало. Считают, что окситоцин участвует в регуляции водно-солевого обмена, выступая в роли антагониста АДГ. В опытах на крысах и собаках показано, что в физиологических дозах окситоцин выступает в роли эндогенного диуретика, избавляя организм от «лишней» воды. Окситоцин способен блоки­ровать продукцию эндогенного пирогена в мононуклеарыах, оказывая антипирогенный эф­фект, т. е. блокировать повышение температуры тела под влиянием пирогенов.

Таким образом, несомненно, дальнейшие исследования позволят уточнить роль оксито­цина, продуцируемого нейронами гипоталамуса, а также, как стало теперь известно, и дру­гими клетками, расположенными, например, в яичниках и матке.

ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Клетки, продуцирующие гормоны, сконцентрированы в поджелудочной железе в виде островков, которые были открыты еще в 1869 году П. Лангергансом. Таких островков у взрослого человека насчитывается от 110 тысяч до 2 миллионов, но их общая масса не превы­шает 1,5 % от массы всей железы. Среди клеток островков имеются шесть различных ви­дов; каждый из них, вероятно, выполняет свою определенную функцию:

Таблица 4.

Вид клеток

Процентное содержание

Функция клеток

А или альфа

продукция глюкагона

В или бета

продукция инсулина

Д или дельта

продукция соматостатина

G или гамма

клетки - предшественницы других клеток

продукция какого-то гормона?

возможно, продукция панкреа­тического полипептида

Вопрос о продукции других гормонов (липокаина, ваготонина, центропнеина) - пока остается открытым. Поджелудочная железа привлекает огромное внимание физиологов и врачей прежде всего благодаря тому, что она продуцирует инсулин - один из важнейших гормонов организма, регулирующий уровень сахара в крови. Недостаточность этого гормо­на приводит к развитию сахарного диабета - болезни, которой страдают ежегодно около 70 миллионов людей.

Инсулин. Первые сведения о нем были получены в 1889 г. - удалив у собаки поджелудоч­ную железу, Меринг и Минковски обнаружили, что на следующее утро после операции животное было все облеплено мухами. Они догадались, что моча собаки содержит сахар. В 1921 г. Бантинг и Бест выделили инсулин, который в последующем был использован для введения больным. За эти работы ученые были удостоены Нобелевской премии. В 1953 г. была расшифрована химическая структура инсулина.

Инсулин состоит из 51 аминокислотного остатка, объединенных в две субъединицы (А и В), которые связаны между собой двумя сульфидными мостиками. Наиболее близок по ами­нокислотному составу к инсулину человека инсулин свиньи. Молекула инсулина имеет вто­ричную и третичную структуры и содержит в своем составе цинк. О процессе синтеза инсу­лина подробно изложено выше. Секреторная активность В-клеток островков Лангерганса

повышается под влиянием парасимпатических воздействий (блуждающий нерв), а также при участии таких веществ как глюкоза, аминокислоты, кетоновые тела, жирные кислоты, гастрин, секретин, холецистокинин-панкреозимин, которые оказывают свой эффект через соответствующие специфические рецепторы В-клеток. Угнетают продукцию инсулина сим­патические воздействия, адреналин, норадреналин (за счет активации (3-адренорецепторов В-клеток) и гормон роста. Метаболизм инсулина происходит в печени и почках под влияни­ем фермента глютатион-инсулин-трансгидролазы.

Инсулиновые рецепторы находятся на поверхностной мембране клетбк-мишеней. При взаимодействии инсулина с рецептором образуется комплекс «гормон + рецептор»; он по­гружается в цитоплазму, где под влиянием лизосомальных ферментов расщепляется; сво­бодный рецептор вновь возвращается на поверхность клетки, а инсулин оказывает свой эффект. Основными клетками-мишенями для инсулина являются гепатоциты, миокардиоциты, миофибриллы, адипоциты, т.е. гормон оказывает свое действие преимущественно в печени, сердце, скелетных мышцах и жировой ткани. Инсулин увеличивает примерно в 20 раз проницаемость клеток-мишеней для глюкозы и ряда аминокислот и тем самым спо­собствует утилизации этих веществ клетками-мишенями. Благодаря этому возрастает син­тез гликогена в мышцах и печени, синтез белков в печени, мышцах и других органах, синтез жиров в печени и жировой ткани. Важно подчеркнуть, что нейроны мозга не являются клет­ками-мишенями для инсулина. Конкретные механизмы, посредством которых инсулин по­вышает проницаемость клеток-мишеней для глюкозы и аминокислот, до настоящего време­ни неясны.

Таким образом, основная функция инсулина - регуляция уровня глюкозы в крови, пре­дотвращение чрезмерного его повышения, т.е. гипергликемии. Принято считать, что нор­мальное содержание глюкозы в крови может варьировать от 3,9 до 6,7 ммоль/л (в среднем 5,5 ммоль/л) или от 0,7 до 1,2 г/л. При инсулиновой недостаточности уровень глюкозы в крови превышает 7 ммоль/л или 1,2 г/л, что расценивается как явление гипергликемии. Если концентрация глюкозы в крови становится выше 8,9 ммоль/л или выше 1,6 г/л, то возникает глюкозурия, так как почки не способны полностью реабсорбировать глюкозу, выходящую в первичную мочу. Это влечет за собой повышение диуреза: при сахарном диабете (мочеизнурении) диурез может достигать 5 л в сутки, а иногда 8-9 л в сутки.

Если продукция инсулина повышена, например, при инсулиноме, или при избыточном Поступлении в организм инсулина - лекарства, то уровень глюкозы в крови может стать ниже 2,2 ммоль/л или 0,4 г/л, что расценивается как гипогликемия; в этом случае часто развивается гипогликемическая кома. Она проявляется такими симптомами как головокру­жение, слабость, усталость, раздражительность, появление выраженного чувства голода, выделение холодного пота. В тяжелых случаях происходит нарушение сознания, речи, расширение зрачков, резкое падение артериального давления, ослабление деятельности сердца. Гипогликемическое состояние может возникнуть и на фоне нормальной деятельности поджелудочной железы в условиях интенсивной и длительной физической нагрузки, например, при соревнованиях в беге на длинные и сверхдлинные дистанции, при марафонским заплыве и т.д.

Особое внимание заслуживает сахарный диабет. В 30% случаев он обусловлен недостаточной продукцией инсулина В-клетками поджелудочной железы (инсулинозависимый са­харный диабет). В остальных случаях (инсулинонезависимый сахарный диабет) его развитие связано с либо с тем, что нарушен контроль секреции инсулина в ответ на естественные стимуляторы высвобождения инсулина, либо обусловлено снижением концентрации инсулиновых рецепторов в клетках-мишенях, например, в результате появления аутоантител к этим рецепторам. Инсулинозависимый сахарный диабет возникает в результате образования антител к антигенам островков поджелудочной железы, что сопровождается уменьше­нием количества активных В-клеток и тем самым - падением уровня продукции инсулина. Другой причиной могут стать вирусы гепатита Коксаки, повреждающие клетки. Появление инсулинонезависимого сахарного диабета обычно связано с избыточным употреблением

углеводов, жиров: переедание вначале вызывает гиперсекрецию инсулина, снижение кон­центрации инсулиновых рецепторов в клетках-мишенях, а в конечном итоге приводит к инсулинорезистентности. Известна также такая форма заболевания, как диабет беремен­ных. Мы склонны рассматривать его как результат нарушения регуляции продукции инсу­лина. Согласно нашим данным, при беременности возрастает содержание в крови эндогенно­го (3-адреномиметика, который за счет активации бетта-адренорецепторов В-клеток островков Лангерганса может ингибировать секрецию инсулина. Этому способствует также повыше­ние при беременности уровня в крови так называемого эндогенного сенсибилизатора бетта-адренорецепторов (ЭСБАР), т.е. фактора, увеличивающего (3-адренореактивность клеток-мишеней в сотни раз.

При любой форме сахарного диабета углеводы не могут использоваться для нужд энер­гетики печенью, скелетными мышцами, сердцем. Поэтому существенно меняется метабо­лизм организма - на энергетические нужды, в основном, используются жиры и белки. Это ведет к накоплению продуктов неполного окисления жиров - оксимасляной кислоты и ацетоуксусной кислоты (кетоновые тела), что может сопровождаться развитием ацидоза и диабетической комы. Изменение в обмене веществ приводит к поражению сосудов, нейро­нов мозга, к патологическим изменениям в различных органах и тканях, а тем самым - к существенному снижению здоровья человека и сокращению продолжительности его жиз­ни. Длительность течения заболевания, сложное и не всегда эффективное лечение - все это указывает на необходимость профилактики сахарного диабета. Рациональное питание и здоровый образ жизни - важнейшие компоненты такой профилактики.

Глюкагон. Его молекула состоит из 29 аминокислотных остатка. Продуцируется А-клетками островков Лангерганса. Секреция глюкагона возрастает при стресс-реакциях, а также под влиянием таких гормонов как нейротензин, вещество Р, бомбезин, гормон роста. Тормо­зят секрецию глюкагона секретин и гипергликемическое состояние. Физиологические эффек­ты глюкагона во многом идентичны эффектам адреналина: под его влиянием активируется гликогенолиз, липолиз и глюконеогенез. Известно, что в гепатоцитах под влиянием глюкаго­на (глюкагон + глюкагоновые рецепторы) повышается активность аденилатциклазы, что со­провождается ростом уровня цАМФ в клетке; под ее влиянием повышается активность про-теинкиназы, которая индуцирует переход фосфорилазы в активную форму; в итоге, повышается расщепление гликогена и, тем самым, возрастает уровень глюкозы в крови.

Таким образом, глюкагон совместно с адреналином и глюкокортикоидами способствует повышению уровня энергетических субстратов в крови (глюкоза, жирные кислоты), что необходимо в различных экстремальных состояниях организма.

Соматостатин. Он продуцируется Д (дельта)-клетками островков Лангерганса. Вероят­нее всего, гормон действует паракринно, т.е. влияет на соседние клетки островков, угнетая секрецию глюкагона и инсулина. Полагают, что соматостатин снижает выделение гастрина, панкреозимина, ингибирует процессы всасывания в кишечнике, тормозит активность желч­ного пузыря. Учитывая, что многие интестинальные гормоны активируют секрецию соматостатина, можно утверждать, что этот соматостатин служит для предотвращения чрез­мерной продукции гормонов, регулирующих функции ЖКТ.

В последние годы появились факты, свидетельствующие о том, что инсулин, глкжагон и соматостатин продуцируются не только в островках Лангерганса, но и за пределами пан­креатической железы, что указывает на важную роль этих гормонов в регуляции деятель­ности висцеральных систем и метаболизма тканей.

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

Железа продуцирует йодсодержащие гормоны - тироксин (Т4) и трийодтиронин (Т3), а также -тирокальцитонин, имеющий отношение к регуляции уровня кальция в крови. В дан­ном разделе основное внимание уделено йодсодержащим гормонам щитовидной железы.

Еще в 1883 г. известный швейцарский хирург Кохер описал признаки умственной недо­статочности при гипофункции щитовидной железы, а в 1917 г. Кендалл выделил тироксин. За год до итого - в 1916 г. был предложен метод профилактики гипофункции щитовидной железы - прием йода (А.Меррине и Д. Кимбаль), который до настоящего времени не поте­рял своей актуальности.

Синтез Т3 и Т4 совершается в тироцитах из аминокислоты тирозина и йода, запасы кото­рого в щитовидной железе, благодаря ее удивительной способности захватывать его из кро­ви, создаются примерно на 10 недель. При недостатке йода в пищевых продуктах происходит компенсаторное разрастание ткани железы (зоб), позволяющее улавливать из крови даже следы йода. Хранение готовых молекул Т3 и Т4 осуществляется в просвете фолликула, куда гормоны выделяются из тироцитов в комплексе с глобулином (этот комплекс называется тироглобулином). Выброс в кровь гормонов щитовидной железы активируется тиреотропным гормоном (ТГГ) гипофиза, выделение которого контролируется тиролиберином гипо­таламуса. Под влиянием ТТГ (через систему аденилатциклазы) тироглобулины захватыва­ются тироцитами из просвета фолликула; в тироците с участием лиэосомальных ферментов от них отщепляются Т3 и Т4, которые затем попадают в кровь, захватываются тироксинсвя-зывающим глобулином и доставляются к клеткам-мишеням, где и оказывают соответствую­щие физиологические эффекты. При чрезмерной продукции Т3 и Т4 секреция тиролиберина и ТТГ тормозится, а при снижении в крови уровня йодсодержащих гормонов - наоборот, возрастает, что приводит к восстановлению необходимой концентрации Т3 и Т4 в крови (по механизму обратной связи). Выделение тиролиберина может возрастать при стресс-реакци­ях, при снижении температуры тела; торможение секреции тиролиберина вызывают Т3, Т4, гормон роста, кортиколиберин, а также норадреналин (при активации а-адренорецепторов).

Йодсодержащие гормоны щитовидной железы необходимы для нормального физичес­кого и интеллектуального развития ребенка (за счет регуляции синтеза различных белков). Они регулируют чувствительность тканей к катехоламинам, в том числе к медиаторному норадреналину (за счет изменения концентрации а- и Р-адренорецепторов); это проявляет­ся в усилении влияния симпатической системы на деятельность сердечно-сосудистой систе­мы и других органов. Т3 и Т4 также повышают уровень основного обмена - увеличивают термогенез, что, вероятно, обусловлено разобщением окислительного фосфорилирования в митохондриях.

Основной механизм действия Т3 и Т4 объясняется следующим образом. Гормон прохо­дит внутрь клетки-мишени, соединяется с тирорецептором, образуя комплекс. Этот ком­плекс проникает в ядро клетки и вызывает экспрессию соответствующих генов, в результа­те чего активируется синтез белков, необходимых для физического и интеллектуального развития, а также синтез Р-адренорецепторов и других белков.

Патология щитовидной железы - достаточно распространенное явление. Она может проявляться избыточным выделением йодсодержащих гормонов (гипертироз или тиротоксикоз) или, наоборот, недостаточным выделением их (гипотироз). Гипертироз возникает при различных формах зоба, при аденоме щитовидной железы, тироидитах, раке шитовид-вой железы, при приеме тиреоидных гормонов. Он проявляется такими симптомами, как иовышенная температура тела, исхудание, тахикардия, повышение умственной и физичес­кой активности, пучеглазие, мерцательная аритмия, повышение уровня основного обмена. Важно отметить, что среди причин, вызывающих гипертироз, большой удельный вес зани­мает патология иммунной системы, в том числе появление тироидстимулирующих антител, они по своему эффекту подобны ТТГ), а также появление аутоантител к тироглобулину.

Гипотироз возникает при патологии щитовидной железы, при недостаточной продукции ТТГ или тиролиберина, при появлении в крови аутоантител против Т3 и Т4, при снижении в легких -мишенях концентрации тирорецепторов. В детском возрасте это проявляется в слабоумии (кретинизме), низкорослости (карликовости), т.е. в выраженной задержке физического и умственного развития. У взрослого человека гипотироз проявляется такими симптомами как снижение основного обмена, температуры, теплопродукции, накопление продуктов об-

мена в тканях (это сопровождается нарушением функции ЦНС, эндокринной системы, желу-дочно-кишечиого тракта), слизистый отек тканей и органов, слабость, утомляемость, сонли­вость, снижение памяти, заторможенность, апатичность, нарушение работы сердца, наруше­ние фертильности. При резком снижении в крови уровня йодсодержащих гормонов может развиться гипотироидная кома, которая проявляется резко выраженным снижением функции ЦНС, прострацией, нарушением дыхания и деятельности сердечно-сосудистой системы.

В тех регионах, где в почве снижено содержание йода и с пищей йод поступает в малых количествах (менее 100 мкг/сутки), часто развивается зоб - разрастание ткани щитовид­ной железы, т.е. компенсаторное ее увеличение. Это заболевание называется эндемическим зобом. Оно может протекать на фоне нормальной продукции Т3 и Т4 (эутироидный зоб), либо на фоне гиперпродукции (токсический зоб) или в условиях Т3-Т4-недостаточности (гипотироидный зоб). Общепризнанно, что применение в пищу йодированной соли (для получения суточной дозы йода, равной 180-200 мкг) является достаточно надежным мето­дом профилактики эндемического зоба.

КАЛЫЩЙРЕГУЛИРУЮЩИЕ ГОРМОНЫ

Паратгормон продуцируется в паращитовидных железах. Он состоит из 84 аминокис­лотных остатков. Гормон действует на клетки-мишени, расположенные в костях, кишечни­ке и почках, в результате чего уровень кальция в крови не снижается меньше 2,25 ммоль/л. Известно, что при взаимодействии паратгормона с соответствующими рецепторами остео­кластов повышается активность аденилатциклазы, что приводит к увеличению внутрикле­точной концентрации цАМФ, активации протеинкиназы и, тем самым, к росту функциональной активности остеокластов. В результате резорбции кальций выходит из кости, в результате чего повышается его содержание в крови. В энтероцитах паратгормон совместно с витами­ном Д3 усиливает синтез кальцийтранспортирующего белка, что облегчает всасывание каль­ция в кишечнике. Действуя на эпителий почечных канальцев, паратгормон повышает реабсорбцию кальция из первичной мочи, что также способствует повышению уровня кальция в крови. Предполагают, что регуляция секреции паратгормона осуществляется по механизму обратной связи: если уровень кальция в крови ниже 2,25 ммоль/л, то продукция гормона будет автоматически возрастать, если больше 2,25 ммоль/л - она будет тормозиться.

Известны явления гиперпаратироза и гипопаратироза. Гиперпаратироз представляет собой увеличение продукции паратгормона, которое может возникать при опухолях паращитовидной железы. Проявляется декальцинозом костей, чрезмерной подвижностью сус­тавов, гиперкальциемией, симптомами мочекаменной болезни. Противоположное явление (недостаточная продукция гормона) может возникнуть как результат появления аутоантител к паращитовидной железе, либо возникает после оперативного вмешательства на щито­видной железе. Проявляется резким снижением уровня кальция в крови, нарушением функ­ции ЦНС, судорогами, вплоть до летального исхода.

Кальцитонин, или тирокальцитонин, состоит из 32 аминокислотных остатков, продуци­руется в щитовидной железе, а также в паращитовидной железе и в клетках АПУД-системы. Его физиологическое значение состоит в том, что он не «позволяет» повышаться уров­ню кальция в крови выше 2,55 ммоль/л. Механизм действия этого гормона заключается в том, что в костях он угнетает активность остеобластов, а в почках подавляет реабсорбцию кальция и, таким образом, являясь антагонистом паратгормона, он препятствует чрезмер­ному увеличению уровню кальция в крови.

1.25-дигидроксихолекальциферол - еще один гормон, участвующий в регуляции уров­ня кальция в крови. Он образуется из витамина Д3 (холекальциферол). На первом этап (в печени) из витамина Д3 образуется 25-гидроксихолекальциферол, а на втором (в почках) - 1.25-дигидроксихолекальциферол. Гормон способствует образованию в кишечнике каль­цийтранспортирующего белка, необходимого для всасывания кальция в кишечнике, а так­же активирует процессы мобилизации кальция из костей. Таким образом, метаболит вита­мина Д3 является синергистом паратгормона.