Главная · Зубная боль · Введение. Основной источник энергии для организма

Введение. Основной источник энергии для организма

Первоначальным источником энергии для живых организмов служит энергия солнечного света. Фототрофы - растения и фотосинтезирующие микроорганизмы - непосредственно используют световую энергию для синтеза сложных органических веществ (жиров, белков, углеводов и др.), являющихся вторичными источниками энергии. Гетеротрофы, к которым относятся животные, используют химическую энергию, выделяющуюся при окислении органических веществ, синтезированных растениями.

Биоэнергетические процессы можно разделить на процессы производства и аккумуляции энергии и процессы, в которых за счет запасенной энергии выполняется полезная работа (Рис.1.1). Фотосинтез - основной биоэнергетический процесс на Земле. Это сложная многоступенчатая система фотофизических, фотохимических и темновых биохимических процессов, в которых энергия солнечного света трансформируется в химическую или электрохимическую формы энергии. В первом случае это энергия, заключенная в сложных органических молекулах, а во втором - энергия градиента протонов на мембранах, которая также преобразуется в химическую форму. В фотосинтезирующих организмах кванты солнечного света поглощаются молекулами хлорофилла и переводят их электроны в возбужденное состояние с повышенной энергией. Именно за счет энергии возбужденных электронов в молекулах хлорофилла фотосинтетическая система фототрофов из простых молекул углекислого газа и воды синтезирует глюкозу и другие органические молекулы (аминокислоты, жирные кислоты, нуклеотиды и т.д.), из которых впоследствии в организме строятся углеводы, белки, жиры и нуклеиновые кислоты. Продуктом этих реакций также является молекулярный кислород.

Суммарное уравнение основных реакций фотосинтеза:

6 CO 2 + 6 H 2 O C 6 H 12 O 6 (глюкоза) + 6 O 2 ,

где hн - энергия фотонов.

Глобальная роль фотосинтеза исключительно велика. Мощность солнечного излучения порядка 10 26 Вт. Из нее до поверхности Земли доходит около 2 10 17 Вт, а из этой величины примерно 4 10 13 Вт используется фотосинтезирующими организмами для синтеза органических веществ (Самойлов, 2004). Эта энергия поддерживает жизнь на Земле. За счет нее синтезируется около 7,510 10 тонн биомассы в год (в расчете на углерод). При этом порядка 4 10 10 тонн углерода фиксируется фитопланктоном в океане и 3,510 10 тонн - растениями и фотосинтезирующими микроорганизмами на суше.

Человечество потребляет продукты фотосинтеза в виде пищи, съедая органические вещества, первично произведенные растениями или вторично произведенные животными, поедающими растения, и в виде топлива, в качестве которого на 90 % используются ранее запасенные продукты фотосинтеза - нефть и уголь (остальную энергию дают атомные и гидроэлектростанции).

Извлечение энергии, накопленной фототрофными организмами, и ее последующее использование осуществляется в процессах питания и дыхания. При прохождении по пищеварительному тракту пища размельчается, клетки разрушаются и биополимеры (белки, нуклеиновые кислоты, жиры и углеводы) расщепляются на низкомолекулярные мономеры (аминокислоты, нуклеотиды, жирные кислоты и сахара), которые в кишечнике всасываются в кровь и транспортируются по всему организму. Из них клетки извлекают атомы водорода, несущие высокоэнергетические электроны, энергию которых удается частично запасать в виде молекул аденозинтрифосфата (adenosine triphosphate, ATP). ATP - универсальный источник энергии, используемый как батарейка, там и тогда, где и когда необходимо выполнить полезную работу.

Следующий класс основных химических соединений нашего организма - углеводы. Углеводы всем нам хорошо известны в виде обычного пищевого сахара (химически он является сахарозой ) или крахмала.
Углеводы делятся на простые и сложные. Из простых углеводов (моносахариды) наибольшее значение для человека имеют глюкоза, фруктоза и галактоза.
К сложным углеводам относятся олигосахариды (дисахариды: сахароза, лактоза и др.) и несахароподобные углеводы - полисахариды (крахмал, гликоген, клетчатка и др.).
Моносахариды и полисахариды отличаются по своему физиоло¬гическому действию на организм. Использование в пищевом рационе избытка легкоусвояемых моно- и дисахаридов способствует быстрому увеличению уровня сахара в крови, что может иметь негативное значение для больных с сахарным диабетом (СД) и ожирением.
Полисахариды значительно медленнее расщепляются в тонком кишечнике. Поэтому нарастание концентрации сахара в крови происходит постепенно. В связи с этим потребление продуктов, богатых крахмалом (хлеб, крупы, картофель, макароны), более полезно.
Вместе с крахмалом в организм поступают витамины, минеральные вещества, неперевариваемые пищевые волокна. К последним относятся клетчатка и пектиновые вещества.
Клетчатка (целлюлоза) оказывает благоприятное регулирующее действие на работу кишечника, желчевыводящих путей, препятствует застою пищи в желудочно-кишечном тракте, способствует выведению холестерина. К продуктам, богатым клетчаткой, относятся капуста, свекла, фасоль, ржаная мука,и др.
Пектиновые вещества входят в состав мякоти фруктов, листьев, зеленых частей стеблей. Они способны адсорбировать различные токсины (в том числе и тяжелые металлы). Много пектинов содержится в мармеладе, повидле, джемах, пастиле, но больше всего этих веществ имеется в мякоти тыквы, которая богата также и каротином (предшественник витамина А).
Большинство углеводов для организма человека - быстроусво-яемый источник энергии. Тем не менее углеводы не являются абсолютно необходимыми питательными веществами. Некоторые из них, например, важнейшее топливо для наших клеток - глюкоза, могут довольно легко синтезироваться из других химических соединений, в частности аминокислот или липидов.
Однако нельзя и недооценивать роль углеводов. Дело в том, что они не только способны, быстро сгорая в организме, обеспечивать его достаточным количеством энергии, но и откладываться про запас в виде гликогена - вещества, очень похожего на всем известный растительный крахмал. Основные запасы гликогена у нас сосредоточены в печени или мышцах. Если энергопотребности организма растут, например при значительной физической нагрузке, то запасы гликогена легко мобилизуются, гликоген превращается в глюкозу, а та уже используется клетками и тканями нашего организма как энергоноситель.

Опасность простых углеводов!

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

К таким выводам пришли ученые из университетов Иерусалима (Израиль) и Йейля (США), проведя серию экспериментов.

Кузнечиков вида Melanoplus femurrubrum посадили в две клетки, в одну из которых запустили также пауков Pisaurina mira - их естественных врагов. Задачей было только напугать кузнечиков, чтобы отследить их реакцию на хищников, поэтому пауков снабдили "намордниками", склеив им жвалы. Кузнечики испытывали сильный стресс, в результате метаболизм в их организмах сильно увеличивался и появлялся "зверский" аппетит - по аналогии с людьми, которые едят много сладкого, когда волнуются. Кузнечики поглощали за короткий срок большое количество углеводов, углеводород из которых прекрасно усваивался организмом.

Помимо этого, "объевшиеся" кузнечики, как оказалось, после смерти могут приносить вред экосистеме. Ученые обнаружили это, поместив остатки их тел в образцы почвы, где происходил процесс перегноя. Активность почвенных микробов падала на 62% в лабораторных условиях, и на 19% в полевых условиях, говорится в исследовании.

Чтобы проверить результаты эксперимента, ученые создали химическую модель "в реальном времени", заменив остовы настоящих кузнечиков органическими "куколками", состоящими, как и естественные прототипы, из углеводов, белков и хитина в разных пропорциях. Результаты опытов показали, что чем больше в останках кузнечиков был процент азота (содержащегося в белках), тем лучше в почвах шли процессы разложения органики.

Углеводы Органические

Углеводы

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

1. КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn(Н2О)n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894).

Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

2. КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

3. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О)n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на:

Альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C-. К ним, например, || относится фруктоза.

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза. Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев.

Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6.

Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток.

В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции. Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче.

Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов. Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С.

Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара.

Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы.

Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11. Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах. Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях).

Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %. Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза.

Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы.

Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

4. БИОЛОГИЧЕСКАЯ РОЛЬ БИОПОЛИМЕРОВ - ПОЛИСАХАРИДОВ

Полисахариды - высокомолекулярные (до 1000000 Да) полимерные соединения, состоящие из большого числа мономеров - сахаров, их общая формула Сx(Н2О)y. Наиболее часто встречающимся мономером полисахаридов является глюкоза, встречаются маноза, галактоза и другие сахара. Полисахариды делятся на:
- гомополисахариды, состоящие из молекул моносахаридов одного типа (так, крахмал и целлюлоза состоят только из глюкозы);
- гетерополисахариды, в состав которых в качестве мономеров могут входить несколько различных сахаров (гепарин).

Если в полисахариде присутствуют только 1,4= гликозидные связи, мы получим линейный, неразветвленный полимер (целлюлоза); если присутствуют как 1,4=, так и 1,6= связи, полимер будет разветвленным (гликоген). К числу наиболее важных полисахаридов относятся: целлюлоза, крахмал, гликоген, хитин.

Целлюлоза, или клетчатка (от лат. сellula - клеточка), является основным компонентом клеточной стенки растительных клеток. Это линейный полисахарид, состоящий из глюкозы, соединенных 1,4= связями. Клетчатка составляет от 50 до 70 % древесины. Хлопок представляет собой почти чистую клетчатку. Волокна льна и конопли состоят преимущественно из клетчатки. Наиболее чистыми образцами клетчатки является очищенная вата, получаемая из хлопка, и фильтровальная бумага.

Крахмал - разветвленный полисахарид растительного происхождения, состоящий из глюкозы. В полисахариде остатки глюкозы связаны 1,4= и 1,6= гликозидными связями. При их расщеплении растения получают глюкозу, необходимую в процессе их жизнедеятельности. Крахмал образуется при фотосинтезе в зеленых листьях в виде зерен. Эти зерна особенно легко обнаружить в микроскопе, используя известковую реакцию с йодом: крахмальные зерна окрашиваются в синий или сине-черный цвет.

По накоплению крахмальных зерен можно судить об интенсивности фотосинтеза. Крахмал в листьях расщепляется на моносахариды или олигосахариды и переносится в другие части растений, например в клубни картофеля или зерна злаков. Здесь вновь происходит отложение крахмала в виде зерен. Наибольшее содержание крахмала в следующих культурах:

Рис (зерно) - 62-82 %;
- кукуруза (зерно) - 65-75 %;
- пшеница (зерно) - 57-75 %;
- картофель (клубни) - 12-24 %.

В текстильной промышленности крахмал используется для производства загустителей красок. Он применяется в спичечной, бумажной, полиграфической промышленности, в переплетном деле. В медицине и фармакологии крахмал идет на приготовление присыпок, паст (густых мазей), а также необходим в производстве таблеток. Подвергая крахмал кислотному гидролизу, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного некристаллизующегося сиропа.

Налажено производства модифицированных крахмалов, подвергавшихся специальной обработке или содержащих улучшающие их свойства добавки. Модифицированные крахмалы широко применяются в различных отраслях промышленности.

Гликоген - более разветвленный, чем крахмал, полисахарид животного происхождения, состоящий из глюкозы. Он играет исключительно важную роль в организмах животных как запасной полисахарид: все процессы жизнедеятельности, в первую очередь мышечная работа, сопровождаются расщеплением гликогена, отдающего сосредоточенную в нем энергию. В тканях организма из гликогена в результате ряда сложных превращений может образовываться молочная кислота.

Гликоген содержится во всех животных тканях. Особенно его много в печени (до 20 %) и мышцах (до 4 %). Он присутствует также в некоторых низших растениях, дрожжах и грибах, его можно выделить путем обработки животных тканей 5-10 %-ной трихлоруксусной кислотой с последующим осаждением извлеченного гликогена спиртом. С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого, в зависимости от происхождения гликогена, вида животного и других условий. Окрашивание йодом исчезает при кипячении и вновь появляется при охлаждении.

Хитин по своей структуре и функции очень близок к целлюлозе - это тоже структурный полисахарид. Хитин встречается у некоторых грибов, где он играет в клеточных стенках опорную роль благодаря своей волокнистой структуре, а также у некоторых групп животных (особенно у членистоногих) в качестве важного компонента их наружного скелета. Строение хитина сходно со строением целлюлозы, его длинные параллельные цепи также собраны в пучки.

5. ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕВОДОВ

Все моносахариды и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) сахаров. Сахароза - нередуцирующий сахар. Восстановительная способность сахаров зависит у альдоз от активности альдегидной группы, а у кетоз - от активности как кетогруппы, так и первичных спиртовых групп. У нередуцирующих сахаров эти группы не могут вступать в какие-либо реакции, потому что здесь они участвуют в образовании гликозидной связи. Две обычные реакции на редуцирующие сахара - реакция Бенедикта и реакция Фелинга - основаны на способности этих сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди (2) (CuSO4), который восстанавливается до нерастворимого оксида меди (1) (Cu2O). Ионное уравнение: Cu2+ + e = Cu+ дает синий раствор, кирпично-красный осадок. Все полисахариды нередуцирующие.

ЗАКЛЮЧЕНИЕ

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизируемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза и хитин).

Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объемов. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другим микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают питательные вещества всей поверхностью тела. При необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза. Кроме того, соединяясь с липидами и белками, углеводы образуют гликолипиды и гликопротеиды-два.

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой. А от чего зависит энергия человека?

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Пищевые источники энергии

Энергия человека для его жизнедеятельности зависит от употребляемой им пищи. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

– Углеводы – 4ккал (17кДж) на 1г
– Белки (протеин) – 4ккал (17кДж) на 1г
– Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Энергетическая ценность различных пищевых продуктов сильно отличается. Здоровые люди достигают сбалансированности своей потреблением самой разнообразной пищи. Очевидно, что, чем более активный образ жизни ведет человек, тем больше он нуждается в пище, или тем более энергоемкой она должна быть.

Самым важным источником энергии для человека являются углеводы.

Сбалансированная обеспечивает организм разными видами углеводов, но большая часть энергии должна поступать из крахмала. В последние годы немало внимания уделялось изучению связи между компонентами питания людей и различными болезнями. Исследователи сходятся во мнении, что людям необходимо уменьшать потребление жирной пищи в пользу углеводов.

Каким образом мы получаем энергию из пищи?

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание. Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь. После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

Аденозинтрифосфат (сокр. АТФ, англ. АТР) - нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ является основным переносчиком энергии в клетке.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

Запасы энергии в организме.

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии. Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию. Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

Как расходуется энергия человека во время тренировки?

Начало тренировки

В самом начале тренировки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период тренировки

В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период тренировки

Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой, которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли.

С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Какие источники энергии используются в процессе тренировки?

Углеводы являются самым важным и самым дефицитным источником энергии для работающих мышц. Они необходимы при любом виде физической активности. В организме человека углеводы хранятся в небольших количествах в виде гликогена в печени и в мышцах. Во время тренировки гликоген расходуется, и вместе с жирными кислотами и глюкозой, циркулирующей в крови, используется как источник мышечной энергии. Соотношение различных используемых источников энергии зависит от типа и продолжительности упражнений.

Несмотря на то, что в жире больше энергии, его утилизация происходит медленнее, и синтез АТФ через окисление жирных кислот поддерживается использованием углеводов и креатин фосфата.

Когда запасы углеводов истощаются, организм становится не в состоянии переносить высокие нагрузки. Таким образом, углеводы являются источником энергии, лимитирующим уровень нагрузки во время тренировки.

Факторы, ограничивающие энергозапасы организма во время тренировки

1. Источники энергии, используемые при различных типах физической активности

– слабая интенсивность (бег трусцой)

Требуемый уровень восстановления АТФ из АДФ относительно низок, и достигается окислением жиров, глюкозы и гликогена. Когда запасы гликогена исчерпаны, возрастает роль жиров как источника энергии. Поскольку жирные кислоты окисляются довольно медленно, чтобы восполнять расходуемую энергию, возможность долго продолжать подобную тренировку зависит от количества гликогена в организме.

– средняя интенсивность (быстрый бег)

Когда физическая активность достигает максимального для продолжения процессов аэробного окисления уровня, возникает потребность быстрого восстановления запасов АТФ. Углеводы становятся основным топливом для организма. Однако только окислением углеводов требуемый уровень АТФ поддерживаться не может, поэтому параллельно происходит окисление жиров и образование лактата.

– максимальная интенсивность (спринт)

Синтез АТФ поддерживается, в основном, использованием креатин фосфата и образование лактата, поскольку метаболизм окисления углеводов и жиров не может поддерживаться с такой большой скоростью.

2. Продолжительность тренировки

Тип источника энергии зависит от продолжительности тренировки. Сначала происходит выброс энергии за счет использования креатин фосфата. Затем организм переходит на преимущественное использование гликогена, что обеспечивает энергией приблизительно на 50-60% синтез АТФ.

Остальную часть энергии на синтез АТФ организм получает за счет окисления свободных жирных кислот и глюкозы. Когда запасы гликогена истощаются, основным источником энергии становятся жиры, в то же время из углеводов начинает больше использоваться глюкоза.

3. Тип тренировки

В тех видах спорта, где периоды относительно низких нагрузок сменяются резкими повышениями активности (футбол, хоккей, баскетбол), происходит чередование использования креатин фосфата (во время пиков нагрузки) и гликогена как основных источников энергии для синтеза АТФ. В течение «спокойной» фазы в организме восстанавливаются запасы креатин фосфата.

4. Тренированность организма

Чем тренированнее человек, тем выше способность организма к окислительному метаболизму (меньше гликогена превращается в лактозу) и тем экономичнее расходуются запасы энергии. То есть, тренированный человек выполняет какое-либо упражнение с меньшим расходом энергии, чем нетренированный.

5. Диета

Чем выше уровень гликогена в организме перед началом тренировки, тем позднее настанет утомление. Чтобы повысить запасы гликогена, необходимо увеличить потребление пищи, богатой углеводами. Специалисты в области спортивного питания рекомендуют придерживаться таких диет, в которых до 70% энергетической ценности составляли бы углеводы.

– рис
– паста (макаронные изделия)
– хлеб
– зерновые злаки
– корнеплоды

– введите в свой план питания больше углеводов, чтобы поддерживать энергетические запасы организма;
– за 1-4 часа до тренировки съедайте 75-100 г углеводов;
– непосредственно перед тренировкой выпейте 200-500 мл специализированного спортивного напитка (изотоника) для увеличения запасов жидкости и углеводов;
– если возможно, пейте по 100-150 мл изотоника каждые 15-20 минут во время тренировки, чтобы компенсировать расход жидкости и углеводов;
– в течение первого получаса тренировки, когда способность мышц к восстановлению максимальна, съешьте 50-100 углеводов;
– после тренировки необходимо продолжать потребление углеводов для скорейшего восстановления запасов гликогена.

Тема сегодняшнего материала - основные механизмы образования энергии , протекающие внутри организма во время и по окончании тренировки. Нам видится целесообразным дать Вам эти базовые основы физиологии и биохимии, чтобы Вы могли свободно ориентироваться в собственном тренировочном процессе и осознавать все те изменения, которые происходят с Вашим организмом в результате воздействия на него физических нагрузок.

Итак, основной и единственный источник энергии в организме – это молекула АТФ (аденозинтрифосфорная кислота). Без нее невозможно ни сокращение, ни расслабление мышечных волокон. Очень часто АТФ по праву называют энергетической валютой организма !

Химическая реакция, объясняющая процесс высвобождения энергии из АТФ, выглядит следующим образом:

АТФ + вода –> АДФ + Ф + 10 ккал,
где АДФ – аденозиндифосфорная кислота, Ф – фосфорная кислота.

Под действием воды (гидролиз) от молекулы АТФ отщепляется молекула фосфорной кислоты, при этом образуется АДФ и выделяется энергия.

Однако запас АТФ в мышцах крайне незначителен. Его хватает максимум на 1-2 секунды. Как же в этом случае мы можем выполнять физическую нагрузку часами?

Это объясняет следующая реакция:

АДФ + Ф + энергия (креатинфосфат, гликоген, жирные кислоты, аминокислоты) –> АТФ

Благодаря последней реакции происходит ресинтез АТФ. Эта реакция может протекать только при наличии резерва в организме углеводов, жиров и белков . Они, по сути, и являются истинными источниками энергии и определяют длительность нагрузки!

Очень важно, что скорость первой и второй реакций разная. По мере увеличения интенсивности нагрузки скорость преобразования АТФ в энергию также возрастает. В то время как вторая реакция идет заведомо с меньшей скоростью. На каком-то уровне интенсивности вторая реакция уже не может компенсировать расход АТФ. В этом случае и наступает мышечный отказ. Чем тренированней спортсмен, тем выше уровень интенсивности, при котором происходит этот отказ.

Выделяют два типа физической нагрузки : аэробный и анаэробный. В первом случае процесс ресинтеза АТФ (вторая реакция, указанная выше) возможен лишь при наличии достаточного количества кислорода. Именно в этом режиме нагрузки, а это нагрузка умеренной мощности, по истечении всех запасов гликогена организм охотно будет использовать жир в качестве топлива для образования АТФ. Данный режим во многом определяет такой показатель, как МПК (максимальное потребление кислорода). Если в покое для всех здоровых людей МПК= 0,2-0,3 л/мин, то под нагрузкой этот показатель сильно увеличивается и составляет 3-7 л/мин. Чем тренированнее организм (в основном, это определяется дыхательной и сердечнососудистой системами), тем больший объем потребляемого кислорода может проходить через него в единицу времени (МПК высокий) и тем быстрее протекают реакции ресинтеза АТФ. А это, в свою очередь, напрямую связано с увеличением скорости окисления подкожного жира.

Вывод : В тренировках на снижение жировой прослойки особое внимание следует обратить на интенсивность нагрузки. Она должна быть умеренно мощной . Объем потребляемого кислорода не должен превышать 70% от МПК. Определение МПК – очень сложная процедура, поэтому можно ориентироваться на собственные ощущения: старайтесь просто не допускать дефицита поступаемого кислорода; при выполнении упражнения не должно возникать ощущения нехватки воздуха. Следует также обратить особое внимание на тренировку сердечнососудистой и дыхательной систем, которые в основном и определяют емкость потребляемого кислорода в единицу времени. Развивая тренированность этих двух систем, Вы увеличиваете тем самым скорость расщепления жиров.

Итак, мы рассмотрели аэробный путь ресинтеза АТФ. В следующем выпуске мы остановимся на двух других механизмах ресинтеза АТФ (анаэробных), которые протекают с использованием креатинфосфата и гликогена.

Углеводы – универсальный источник энергии для всех живых существ. Они являются главными в энергетическом обмене веществ человека. Только при распаде 1 молекулы получается столько энергии, сколько не получается при расщеплении жира. Универсальным источником он считается потому, что не имеет противопоказаний и обязательно должен употребляться человеком ежедневно.

Немного химии

Любая молекула углевода состоит из атомов С, Н и О. Самым массовым является водород, так как он считается самым простым элементом из всех существующих. На втором месте по количеству располагается углерод, а на третьем – кислород. Именно углерод является базовым элементом и именно он образует цепи, которые бывают разветвленные и неразветвленные. Чем сложнее устроена молекула, тем больше энергии она дает (кроме неусваиваемых углеводов).

Все углеводы, которые потребляет человек, делятся на просты и сложные. Разделение главным образом происходит по морфологическим различиям. Однако при изменении морфологии происходит и изменение вкуса и биохимических свойств. Чем более простое строение, тем более сладкий вкус и легкая усваиваемость. Самые сложные углеводы и клетчатка вообще не подвергаются разложению и выводятся в неизменном виде из организма человека.

Простые углеводы

Также их называют сахарами из-за их сладкого вкуса. Они представляют собой неразветвленные цепи с разным количеством атомов углерода. Простые углеводы являются быстрыми источниками энергии. Из-за своей простой структуры они не нуждаются в дополнительном расщеплении и поэтому сразу поступают в кровь. Уже спустя 10 минут простые углеводы значительно повышают концентрацию глюкозы в крови.

Глюкоза

Другое название – виноградный сахар. Содержится во фруктах. Также в значительных количествах в ягодах и меде. Не имеет противопоказаний. Однако, при сахарном диабете стоит заменить на сахарозу.

Фруктоза

Также можно называть фруктовым сахаром. Исходя из названия, можно догадаться, что содержится во фруктах.

Галактоза

Является единственным простым сахаром животного происхождения. Галактоза является частью молочного сахара (лактозы).

Дисахариды


Именно дисахариды считаются основными источниками энергии для организма человека. Их особенностью строения является то, что они состоят из двух простых сахаров. Несмотря на то что они состоят из простых углеводов, они не такие сладкие. Наименее сладким является лактоза. Однако, из сахарозы производится сахар, который мы привыкли добавлять в чай. С точки зрения энергетического обмена, дисахариды содержат большее количество энергии. Но их расщепление требует времени, поэтому только спустя 30-60 минут можно отметить явное повышение концентрации глюкозы в крови.

Сахароза

Или другое название – тростниковый сахар. В своем составе имеет глюкозу и фруктозу.

Мальтоза

Солодковый сахар, или мальтоза, является главным компонентом таких веществ, как крахмал и гликоген.

Лактоза

Молочный сахар является главным компонентом молока млекопитающих животных. В первые дни жизни лактоза является основным источником энергии для человека. Существует лактозная недостаточность, при которой употребление молочного сахара вызывает неприятные диспепсические расстройства у человека. Исключение лактозы из рациона не приведет к тяжелым последствиям, однако, стоит компенсировать недостаток другими углеводами.

Полисахариды

Все сложные углеводы можно разделить на те, которые усваиваются, и которые не усваиваются и не являются источником энергии, но выполняют не менее важные функции в процессах пищеварения.


В качестве усваиваемых углеводов можно выделить крахмал и гликоген. Все они являются высокомолекулярными соединениями. Количество их мономеров может доходить до сотен и даже тысяч. Такая сложная морфология и обуславливает длительное переваривание. Полисахариды можно разделить на гомополисахариды и гетерополисахариды. Различие в том, что у одних мономером является одно вещество, а у других – разные.

Крахмал

В основном содержится в растениях во всех его частях (луковицы, клубень, семена). Относиться к резервным полисахаридам.

Гликоген

Является основным и главным источником энергии в организме человека. При необходимости гликоген превращается в глюкозу для восполнения недостатка.

Неусваиваемые углеводы

К неусваиваемым углеводам можно отнести клетчатку и пектиновые вещества. Они являются полисахаридами, но из-за своего сложно строения не могут подвергаться расщеплению пищеварительными ферментами. Их роль в энергетическом обмене невелика. При распаде этого вида углеводов выделяется совсем незначительное количество энергии, которое даже не учитывается.

Они не расщепляются ферментами желудка и кишечника и практически в неизменном виде выводятся из организма через ЖКТ. Неусваиваемые углеводы могут задерживать воду в организме, влияют на перистальтику кишечника и способствуют образованию желчи для лучшего пищеварения.

Углеводы в пище и организме

Основной функцией углеводов является поддержание энергии организма на необходимом уровне, при котором человек сможет выполнять активную физическую и умственную деятельность и при этом не чувствовать усталости.

Углеводы должны составлять 60-70% нашего рациона. Именно за счет них калорийность пищи достигает необходимых значений. В среднем, человек должен потреблять 1500 ккал, то есть около 1100 должно приходиться на углеводы. Стоит отдать предпочтение кашам, хлебобулочным изделиям из муки грубого помола, овощам.

Потребление углеводов должно быть индивидуальным и зависеть физических данных и активности в течение всего дня. В среднем, для здорового человека нормой является 350-500 гр. Однако, если много энергии траться на умственную или физическую нагрузку, то количество должно быть увеличено.

В молодом возрасте стоит увеличить потребление углеводов, так как они необходимы для построения организма. В пожилом возрасте, наоборот, стоит уменьшить количество, так как энергии тратится немного, а излишки будут откладываться в жир. Это в итоге приведет к ожирению и сахарному диабету.

Большая часть энергии углеводов поступает к нам из зерновых культур. На втором месте – сахар, а на третьем – овощи и фрукты. Стоит отдать предпочтение овощам и зерновым культурам.

Продукты растительного происхождения содержат как простые углеводы, так и сложные. Их соотношение влияет на сладкий вкус фрукта. При снижении количества крахмала, полисахарида, вкус становится более сладким, так как преобладают простые сахара.

Всасывание в кровь

Все продукты, содержащие углеводы всасываются в кровь с разной скоростью. Это связано с их морфологическим строением – чем более разветвленные цепи и больше углеродных остатков, тем дольше происходит переваривание.

Самыми быстрыми источниками энергии являются простые углеводы. У них нет необходимости подвергаться расщеплению пищеварительными ферментами, поэтому они начинают всасываться уже в ротовой полости. Эта особенность важна для людей больных сахарным диабетом, так как для восстановления концентрации глюкозы у них немного времени. Также быстрые углеводы полезно употреблять перед экзаменами, важными встречами и спортивными соревнованиями или тренировками.

Дисахариды должны подвергаться действию ферментов, поэтому их всасывание будет дольше. Главными источниками энергии для организма человека являются полисахариды. Так как они не всасываются моментально, они создают резерв энергии в организме. Эта энергия поступает постепенно в течение 2-6 часов. Преимуществом полисахаридов в том, что они не вызывают резкого повышения глюкозы в крови. Поэтому все диетологи говорят, что утро стоит начинать с каши.

Органы и их потребление глюкозы

Нервная система является самой чувствительной к недостатку глюкозы. У нейронов нет возможности откладывать энергию в резерв, поэтому они потребляют ее сразу. Нервной системе необходимо около 140 гр в течение суток. Эритроцитам необходимо около 40 гр. Мышечная ткань потребляет глюкозу в зависимости от энергетических потребностей, и поэтому число постоянно варьирует. Все остальные органы и системы могут использовать гликоген для получения глюкозы посредством его окисления.

Гликоген содержится в печени и мышцах. Его среднее количество 300-400 гр. При увеличении поступления глюкозы она откладывается в жир, если физическая активность не покрывает это количество энергии. При повышенной физической нагрузке тратиться сначала гликоген, а уже потом жировые запасы.

Самым чувствительным к недостатку глюкозы считается головной мозг. Поэтому при длительном голодании, когда развивается гипогликемия, могут появляться неприятные симптомы. К ним относятся:

  • головокружение;
  • потеря сознания;
  • тошнота;
  • слабость;
  • помутнение в глазах;
  • чрезмерная потливость;
  • дрожание рук и судороги.

Углеводы нельзя заменить белками или жирами, они обязательно должны быть в рационе каждого. При соблюдении диеты или при похудении исключать их нельзя, стоит лишь снизить их количество, но они все равно должны преобладать количественно над жирами и белками.

Универсальностью углеводов является то, что они всасываются практически в неизменном виде, в то время как при расщеплении белков образуется много продуктов распада, которые в большом количестве могут вызывать интоксикацию. Поэтому основным источником энергии в организме являются углеводы.