Главная · Зубная боль · Сколько весит молекула. Масса и размер молекул. Относительная молекулярная масса вещества

Сколько весит молекула. Масса и размер молекул. Относительная молекулярная масса вещества

Молекулярная масса - одно из основных понятий в современной химии. Ее ввод стал возможным после научного обоснования утверждения Авогадро о том, что многие вещества состоят из мельчайших частиц - молекул, каждая из которых, в свою очередь, состоит из атомов. Этим суждением наука во многом обязана итальянскому химику Амадео Авогадро, который научно обосновал молекулярное строение веществ и подарил химии многие важнейшие понятия и законы.

Единицы масс элементов

Первоначально за базовую единицу атомной и молекулярной массы брали атом водорода как наиболее легкого из элементов во Вселенной. Но атомные массы в большинстве своем вычислялись но основе их кислородных соединений, поэтому было принято решение выбрать новый эталон для определения атомных масс. Атомную массу кислорода приняли равной 15, атомную массу самого легкого вещества на Земле, водорода, - 1. В 1961 году кислородная система определения веса была общепринятой, но создавала определенные неудобства.

В 1961 году была принята новая шкала относительных атомных масс, эталоном для которой стал изотоп углерода 12 С. Атомная единица массы (сокращенно а.е.м.) составляет 1/12 часть массы этого эталона. В настоящее время атомной массой называют массу атома, которая должна быть выражена в а.е.м.

Масса молекул

Масса молекула любого вещества равна сумме масс всех атомов, образующих данную молекулу. Самая легкая молекулярная масса газа у водорода, его соединение пишется как Н 2 и имеет значение, приближенное к двум. Молекула воды состоит из атома кислорода и двух атомов водорода. Значит, ее молекулярная масса равна 15,994 + 2*1.0079=18.0152 а.е.м. Самые большие молекулярные массы имеют сложные органические соединения - белки и аминокислоты. Молекулярная масса структурной единицы белка колеблется от 600 до 10 6 и выше, в зависимости от количества пептидных цепей в этой макромолекулярной структуре.

Моль

Одновременно со стандартными единицами массы и объема в химии используется совершенно особая системная единица - моль.

Моль - это количество вещества, которое содержит столько структурных единиц (ионов, атомов, молекул, электронов), столько содержится в 12 граммах изотопа 12 С.

При применении меры количества вещества необходимо указывать, какие именно структурные единицы имеются в виду. Как следует из понятия «моль», в каждом отдельном случае следует точно указывать, о каких структурных единицах идет речь - например, моль ионов Н + , моль молекул Н 2 и прочее.

Молярная и молекулярная масса

Масса количества вещества в 1 моль измеряется в г/моль и называется молярной массой. Отношение между молекулярной и молярной массой можно записать в виде уравнения

ν = k × m/M, где к - коэффициент пропорциональности.

Нетрудно сказать, что для любых соотношений коэффициент пропорциональности будет равен единице. Действительно, изотоп углерода имеет относительную молекулярную массу 12 а.е.м, а, согласно определению, молярная масса этого вещества равна 12 г/моль. Отношение молекулярной массы к молярной равно 1. Отсюда можно сделать вывод, что молярная и молекулярная масса имеют одинаковые числовые значения.

Объемы газов

Как известно, все окружающие нас вещества могут пребывать в твердом, жидком или газообразном агрегатном состоянии. Для твердых тел наиболее распространенной базовой мерой является масса, для твердых и жидких - объем. Это связано с тем, что твердые тела сохраняют свою форму и конечные размеры, Жидкие и газообразные вещества конечных размеров не имеют. Особенность любого газа состоит в том, что между его структурными единицами - молекулами, атомами, ионами - расстояние во много раз больше, чем такие же расстояния в жидкостях или твердых телах. Например, один моль воды в нормальных условиях занимает объем 18 мл - приблизительно столько же вмещается в одну столовую ложку. Объем одного моля мелкокристаллической поваренной соли - 58,5 мл, а объем 1 моля сахара больше моля воды в 20 раз. Для газов места требуется еще больше. Один моль азота при нормальных условиях занимает объем, в 1240 раз больший, чем один моль воды.

Таким образом, объемы газообразных веществ существенно отличаются от объемов жидких и твердых. Это обусловлено разностью растояний между молекулами веществ в различных агрегатных состояниях.

Нормальные условия

Состояние любого газа сильно зависит от температуры и давления. Например, азот при температуре в 20 °С занимает объем в 24 литра, а при 100 °С при том же самом давлении - 30,6 литров. Химики учли такую зависимость, поэтому было принято решение сводить все операции и измерения с газообразными веществами к нормальным условиям. Во всем мире параметры нормальных условий одинаковы. Для газообразных химических веществ это:

  • Температура в 0°С.
  • Давление в 101,3 кПа.

Для нормальных условий принято специальное сокращение - н.у. Иногда в задачах это обозначение не пишется, тогда следует внимательно перечитать условия задачи и привести заданные параметры газа к нормальным условиям.

Расчет объема 1 моля газа

В качестве примера несложно выполнить расчет одного моля любого газа, например азота. Для этого сначала нужно найти значение его относительной молекулярной массы:

М r (N 2)= 2×14=28.

Поскольку относительная молекулярная масса вещества численно равна молярной, то M(N 2)=28 г/ моль.

Опытным путем выяснено, что при нормальных условиях плотность азота равна 1,25 г/литр.

Подставим это значение в стандартную формулу, известную со школьного курса физики, где:

  • V — объем газа;
  • m — масса газа;
  • ρ — плотность газа.

Получим, что молярный объем азота при нормальных условиях

V(N 2)= 25г/моль: 1,25 г/ литр =22,4 л/ моль.

Получается, что один моль азота занимает 22,4 литра.

Если выполнить такую операцию со всеми существующими газовыми веществам, можно прийти к удивительному выводу: объем любого газа при нормальных условиях равен 22,4 литра. Вне зависимости от того, о каком газе идет речь, какова его структура и физико-химические характеристики, один моль этого газа будет занимать объем 22,4 литра.

Молярный объем газа - одна из важнейших констант в химии. Эта постоянная позволяет решить многие химические задачи, связанные с измерением свойств газов при нормальных условиях.

Итоги

Молекулярная масса газообразных веществ важна для определения количества вещества. А если исследователь знает количество вещества того или иного газа, он может определить массу или объем такого газа. Для одной и той же порции газообразного вещества одновременно выполняются условия:

ν = m/ M ν= V/ V m.

Если убрать постоянную ν, можно уравнять эти два выражения:

Так можно вычислить массу одной порции вещества и его объем, а также становится известной молекулярная масса исследуемого вещества. Применяя эту формулу, можно легко вычислить соотношение объем-масса. При приведении данной формулы к виду M= m V m /V станет известна молярная масса искомого соединения. Для того чтобы вычислить это значение, достаточно узнать массу и объем исследуемого газа.

Следует помнить, что строгое соответствие реальной молекулярной массы вещества к той, что найдена по формуле, невозможно. Любой газ содержит массу примесей и добавок, которые вносят определенные изменения в его структуру и влияют на определение его массы. Но эти колебания вносят изменения в третью или четвертую цифру после запятой в найденном результате. Поэтому для школьных задач и экспериментов найденные результаты вполне правдоподобны.

Молекулярная масса - одно из основных понятий в современной химии. Ее ввод стал возможным после научного обоснования утверждения Авогадро о том, что многие вещества состоят из мельчайших частиц - молекул, каждая из которых, в свою очередь, состоит из атомов. Этим суждением наука во многом обязана итальянскому химику Амадео Авогадро, который научно обосновал молекулярное строение веществ и подарил химии многие важнейшие понятия и законы.

Единицы масс элементов

Первоначально за базовую единицу атомной и молекулярной массы брали атом водорода как наиболее легкого из элементов во Вселенной. Но атомные массы в большинстве своем вычислялись но основе их кислородных соединений, поэтому было принято решение выбрать новый эталон для определения атомных масс. Атомную массу кислорода приняли равной 15, атомную массу самого легкого вещества на Земле, водорода, - 1. В 1961 году кислородная система определения веса была общепринятой, но создавала определенные неудобства.

В 1961 году была принята новая шкала относительных атомных масс, эталоном для которой стал изотоп углерода 12 С. Атомная единица массы (сокращенно а.е.м.) составляет 1/12 часть массы этого эталона. В настоящее время атомной массой называют массу атома, которая должна быть выражена в а.е.м.

Масса молекул

Масса молекула любого вещества равна сумме масс всех атомов, образующих данную молекулу. Самая легкая молекулярная масса газа у водорода, его соединение пишется как Н 2 и имеет значение, приближенное к двум. Молекула воды состоит из атома кислорода и двух атомов водорода. Значит, ее молекулярная масса равна 15,994 + 2*1.0079=18.0152 а.е.м. Самые большие молекулярные массы имеют сложные органические соединения - белки и аминокислоты. Молекулярная масса структурной единицы белка колеблется от 600 до 10 6 и выше, в зависимости от количества пептидных цепей в этой макромолекулярной структуре.

Моль

Одновременно со стандартными единицами массы и объема в химии используется совершенно особая системная единица - моль.

Моль - это количество вещества, которое содержит столько структурных единиц (ионов, атомов, молекул, электронов), столько содержится в 12 граммах изотопа 12 С.

При применении меры количества вещества необходимо указывать, какие именно структурные единицы имеются в виду. Как следует из понятия «моль», в каждом отдельном случае следует точно указывать, о каких структурных единицах идет речь - например, моль ионов Н + , моль молекул Н 2 и прочее.

Молярная и молекулярная масса

Масса количества вещества в 1 моль измеряется в г/моль и называется молярной массой. Отношение между молекулярной и молярной массой можно записать в виде уравнения

ν = k × m/M, где к - коэффициент пропорциональности.

Нетрудно сказать, что для любых соотношений коэффициент пропорциональности будет равен единице. Действительно, изотоп углерода имеет относительную молекулярную массу 12 а.е.м, а, согласно определению, молярная масса этого вещества равна 12 г/моль. Отношение молекулярной массы к молярной равно 1. Отсюда можно сделать вывод, что молярная и молекулярная масса имеют одинаковые числовые значения.

Объемы газов

Как известно, все окружающие нас вещества могут пребывать в твердом, жидком или газообразном агрегатном состоянии. Для твердых тел наиболее распространенной базовой мерой является масса, для твердых и жидких - объем. Это связано с тем, что твердые тела сохраняют свою форму и конечные размеры, Жидкие и газообразные вещества конечных размеров не имеют. Особенность любого газа состоит в том, что между его структурными единицами - молекулами, атомами, ионами - расстояние во много раз больше, чем такие же расстояния в жидкостях или твердых телах. Например, один моль воды в нормальных условиях занимает объем 18 мл - приблизительно столько же вмещается в одну столовую ложку. Объем одного моля мелкокристаллической поваренной соли - 58,5 мл, а объем 1 моля сахара больше моля воды в 20 раз. Для газов места требуется еще больше. Один моль азота при нормальных условиях занимает объем, в 1240 раз больший, чем один моль воды.

Таким образом, объемы газообразных веществ существенно отличаются от объемов жидких и твердых. Это обусловлено разностью растояний между молекулами веществ в различных агрегатных состояниях.

Нормальные условия

Состояние любого газа сильно зависит от температуры и давления. Например, азот при температуре в 20 °С занимает объем в 24 литра, а при 100 °С при том же самом давлении - 30,6 литров. Химики учли такую зависимость, поэтому было принято решение сводить все операции и измерения с газообразными веществами к нормальным условиям. Во всем мире параметры нормальных условий одинаковы. Для газообразных химических веществ это:

  • Температура в 0°С.
  • Давление в 101,3 кПа.

Для нормальных условий принято специальное сокращение - н.у. Иногда в задачах это обозначение не пишется, тогда следует внимательно перечитать условия задачи и привести заданные параметры газа к нормальным условиям.

Расчет объема 1 моля газа

В качестве примера несложно выполнить расчет одного моля любого газа, например азота. Для этого сначала нужно найти значение его относительной молекулярной массы:

М r (N 2)= 2×14=28.

Поскольку относительная молекулярная масса вещества численно равна молярной, то M(N 2)=28 г/ моль.

Опытным путем выяснено, что при нормальных условиях плотность азота равна 1,25 г/литр.

Подставим это значение в стандартную формулу, известную со школьного курса физики, где:

  • V — объем газа;
  • m — масса газа;
  • ρ — плотность газа.

Получим, что молярный объем азота при нормальных условиях

V(N 2)= 25г/моль: 1,25 г/ литр =22,4 л/ моль.

Получается, что один моль азота занимает 22,4 литра.

Если выполнить такую операцию со всеми существующими газовыми веществам, можно прийти к удивительному выводу: объем любого газа при нормальных условиях равен 22,4 литра. Вне зависимости от того, о каком газе идет речь, какова его структура и физико-химические характеристики, один моль этого газа будет занимать объем 22,4 литра.

Молярный объем газа - одна из важнейших констант в химии. Эта постоянная позволяет решить многие химические задачи, связанные с измерением свойств газов при нормальных условиях.

Итоги

Молекулярная масса газообразных веществ важна для определения количества вещества. А если исследователь знает количество вещества того или иного газа, он может определить массу или объем такого газа. Для одной и той же порции газообразного вещества одновременно выполняются условия:

ν = m/ M ν= V/ V m.

Если убрать постоянную ν, можно уравнять эти два выражения:

Так можно вычислить массу одной порции вещества и его объем, а также становится известной молекулярная масса исследуемого вещества. Применяя эту формулу, можно легко вычислить соотношение объем-масса. При приведении данной формулы к виду M= m V m /V станет известна молярная масса искомого соединения. Для того чтобы вычислить это значение, достаточно узнать массу и объем исследуемого газа.

Следует помнить, что строгое соответствие реальной молекулярной массы вещества к той, что найдена по формуле, невозможно. Любой газ содержит массу примесей и добавок, которые вносят определенные изменения в его структуру и влияют на определение его массы. Но эти колебания вносят изменения в третью или четвертую цифру после запятой в найденном результате. Поэтому для школьных задач и экспериментов найденные результаты вполне правдоподобны.

В килограммах. Чаще пользуются безразмерной величиной М отн -относительной молекулярной массой: М отн =M x /D, где М х -масса x, выраженная в тех же единицах массы (кг, г или др.), что и D. Молекулярная масса характеризует среднюю массу с учетом изотопного состава всех элементов, образующих данное хим. соединение. Иногда молекулярную массу определяют для смеси разл. в-в известного состава, напр. для "эффективную" молекулярную массу можно принять равной 29.

Абс. массами удобно оперировать в области физики субатомных процессов и , где путем измерения энергии частиц, согласно теории относительности, определяют их абс. массы. В и хим. технологии необходимо применять макроскопич. единицы измерения кол-ва в-ва. Число любых частиц ( , электро нов или мысленно выделяемых в в-ве групп частиц, напр. Na + и Сl - в кристаллич. решетке NaCl), равное N А = 6,022 . 10 23 , составляет макроскопич. единицу кол-ва в-ва-моль. Тогда можно записать: М отн = M x . N A /(D . N A),T.е. относительная молекулярная масса равна отношению массы в-ва к N A D. Если в-во состоит из с между составляющими их , то величина M x . N A представляет собой м о л я рн у ю м а с с у этого в-ва, единицы измерения к-рой кг-моль (киломоль, кМ). Для в-в, не содержащих , а состоящих из , или радикалов, определяется ф о р-м у л ь н а я м о л я р н а я м а с с а, т.е. масса N A частиц, соответствующих принятой формуле в-ва (однако в СССР часто и в этом случае говорят о молекулярной массе, что неверно).

Ранее в использовали понятия , грамм-ион, теперь-моль , подразумевая под этим N A , и соотв. их молярные массы, выраженные в граммах или килограммах. Традиционно употребляют в качестве синонима термин "молекулярный (молярный) ", т. к. определение массы производится с помощью . Но, в отличие от , зависящего от географич. координат, масса является постоянным параметром кол-ва в-ва (при обычных скоростях движения частиц в условиях хим. р-ций), поэтому правильнее говорить "молекулярная масса".

Большое число устаревших терминов и понятий, касающихся молекулярной массы, объясняется тем, что до эры космич. полетов в не придавали значения различию между массой и , к-рое обусловлено разностью значений ускорения своб. падения на полюсах (9,83 м. с -2) и на экваторе (9,78 м. с -2); при расчетах силы тяжести () обычно пользуются средним значением, равным 9,81 м. с -2 . Кроме того, развитие понятия (как и ) было связано с исследованием макроскопич. кол-в в-ва в процессах их хим. () или физ. () превращений, когда не была разработана теория строения в-ва (19 в.) и предполагалось, что все хим. соед. построены только из и .

Методы определения. Исторически первый метод (обоснованный исследованиями С. Канниццаро и А. Авогадро) предложен Ж. Дюма в 1827 и заключался в измерении плотности газообразных в-в относительно водородного , молярная масса к-рого принималась первоначально равной 2, а после перехода к кислородной единице измерений молекулярных и атомных масс-2,016 г. След. этап развития эксперим. возможностей определения молекулярной массы заключался в исследовании и р-ров нелетучих и недиссоциирующих в-в путем измерения коллигативных св-в (т. е. зависящих только от числа растворенных частиц) - осмотич. (см. ), понижения , понижения точки замерзания ()и повышения точки ()р-ров по сравнению с чистым р-рителем. При этом было открыто "аномальное" поведение .

Понижение над р-ром зависит от молярной доли растворенного в-ва (): [(р - р 0)/р] = N, где р 0 -давление чистого р-рителя, р-давление над р-ром, N- молярная доля исследуемого растворенного в-ва, N = (т х /М х)/[(т х /М х) + (m 0 /M 0)], m x и М х -соотв. навеска (г) и молекулярная масса исследуемого в-ва, m 0 и М 0 -то же для р-рителя. В ходе определений проводят экстраполяцию к бесконечно разб. р-ру, т.е. устанавливают для р-ров исследуемого в-ва и для р-ров известного (стандартного) хим. соединения. В случае и используют зависимости соотв. Dt 3 = Кс и Dt к = Еc, где Dt 3 -понижение т-ры замерзания р-ра, Dt к - повышение т-ры р-ра, К и Е-соотв. криоскопич. и эбулиоскопич. постоянные р-рителя, определяемые по стандартному растворенному в-ву с точно известной молекулярной массой, с-моляльная исследуемого в-ва в р-ре (с = М х т х. 1000/m 0). Молекулярную массу рассчитывают по ф-лам: М х = т х К. 1000/m 0 Dt 3 или М х = т х Е. 1000/m 0 Dt к. Методы характеризуются достаточно высокой точностью, т.к. существуют спец. (т. наз. ), позволяющие измерять весьма малые изменения т-ры.

Для определения молекулярной массы используют также изотермич. р-рителя. При этом р-ра исследуемого в-ва вносят в камеру с насыщ. р-рителя (при данной т-ре); р-рителя конденсируются, т-ра р-ра повышается и после установления вновь понижается; по изменению т-ры судят о кол-ве выделившейся теплоты , к-рая связана с молекулярной массой растворенного в-ва. В т. наз. изопиестич. методах проводят изотермич. р-рителя в замкнутом объеме, напр. в Н-образном . В одном колене находится т. наз. р-р сравнения, содержащий известную массу в-ва известной молекулярной массы (молярная C 1), в другом-р-р, содержащий известную массу исследуемого в-ва (молярная С 2 неизвестна). Если, напр., С 1 > С 2 , р-ритель перегоняется из второго колена в первое, пока молярные в обоих коленах не будут равны. Сопоставляя объемы полученных изопиестич. р-ров, рассчитывают молекулярную массу неизвестного в-ва. Для определения молекулярной массыы можно измерять массу изопиестич. р-ров с помощью Мак-Бена, к-рые представляют собой две чашечки, подвешенные на пружинках в закрытом стеклянном ; в одну чашечку помещают исследуемый р-р, в другую-р-р сравнения; по изменению положения чашечек определяют массы изопиестич. р-ров и, следовательно, молекулярную массу исследуемого в-ва.

Осн. методом определения атомных и мол. масс летучих в-в является . Для исследования смеси соед. эффективно использование хромато-масс-спектромет-рии. При малой интенсивности пика мол.

МОЛЕКУЛЯРНЫЙ ВЕС есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van"t Hoff) молекулы растворенного вещества при достаточном разведении раствора ведут себя подобно молекулам разреженных газов, т. е. вполне независимо друг от друга и действительно для разбавленных растворов газовые законы оказываются вполне справедливыми. В сжатых газах и еще более в жидкостях проявляются в значительной степени силы сцепления между молекулами, вызывая отступления от идеальных газовых законов и приводя к образованию сложных «полимеризованных» молекул. В твердых телах эти силы сцепления сказываются,наиболее резко, отдельные простейшие молекулы уже не различимы как отдельные индивидуумы, и весь кристалл твердого тела можно рассматривать как целую огромную молекулу. Т.о., говоря о М. в. какого-либо вещества, необходимо иметь в виду то состояние, в котором оно находится. Так как газовое состояние, а тем самым и растворенное, является наиболее изученным как теоретически, так и экспериментально, то наиболее разработанными оказываются методы определения М. в. газообразных (или парообразных) и растворенных веществ. Основное уравнение газового состояния есть уравнение Клапейрона pv=nRT(\), где р- давление, v -объем газа, п -число грамм молекул, R -газовая постоянная, Т -абсолютная t°. Заменяя п через выражение п - -- (2), где G -вес данного объема газа, а М -вес отдельной молекулы, мы получаем ур-ние pv = jjRT (3), на основании к-рого чисто экспериментальным путем, измеряя р, v, О и Т, мы можем определить относительный М. в. вещества. Принято М. в. относить к весу атома водорода, что позволяет выразить М. в. как сумму атомных весов элементов, входящих в молекулу. Напишем уравнение (3) для данного газа {х) и для водорода, взятых в равных объемах, при одинаковой t° и давлении: pv = - м х - RT и pv= = ~RT. Согласно закону Авогадро в равных объемах газов при одинаковых условиях находится равное число молекул, следовательно: |^=§|. Отсюда М Х = ^М Н, Отношение - - весов двух равных объемов газа, из к-рых один принят за единицу, есть плотность газа, в данном случае по водороду-Dff. Т. к. молекулы водорода, а также большинства элементарных газов заключают по 2 атома, то M ff = 2, откуда М х = 2 D# <4). В случае, если известна плотность дан- ного газа по отношению к воздуху, то, т. к. воздух в 14,37 раз тяжелее водорода, уравнение (4) принимает вид М х - 2.14,37 Ь воздуяа ~ =28,74 D в03духа (5). Так. обр. экспериментальное определение М. в. газообразных или парообразных веществ сводится к определению пло но ти данного газа. Существует несколько различных методов определения плотностей газов (п ров), основанных на различных принципах. Так, метод Д ю-м a (Dumas) состоит в определении веса известного объема газа. Сначала взвешивается баллон (с оттянутой трубкой), наполненный воздухом, затем в него помещают некоторое количество вещества и погружают в баню с t° выше t° кипения вещества, держа до тех пор, пока не прекратится выделение пара. Баллон запаивают и одновременно отмечают барометрическое давление= =упругости пара (Р) и температуру (t°). Зная объем баллона, мы знаем вес содержащегося в нем воздуха, откуда можно высчитать вес пустого баллона. Зная же вес пустого баллона и вес его с паром, определяем вес пара вещества в данном объеме при данных условиях. Относя затем этот вес к весу равного объема воздуха или водорода при тех же условиях, узнаем плотность газа (вес 1 с„% 8 воздуха=0,001293 г, водорода- 0,0000899 г при 0° и давлении 760 мм). Приведение веса 1 см 3 газа к условиям опыта производится по формуле G = -ц^щ^щ » г Д е G - искомый вес 1 ом 3 газа (в данном случае воздуха или водорода), G 0 -вес их при нормальных условиях, а -коеф. расширения газов, t°-температура опыта.-М е т о д Гофмана (Hofmann) основан на обратном принципе и заключается в следующем: отвешенное количество вещества в запаянной ампуле помещается в пустоту над ртутью барометрической трубки (длина к-рой более 760 мм). При нагревании снаружи ампула лопается, вещество испаряется под уменьшенным давлением и объем полученного пара непосредственно отсчитывается по шкале барометрической трубки (рис. 2). Наиболее широкое применение однако имеет метод В. М е й е р a (Meyer). Он заключается в следующем: небольшое отвешенное количество-вещества испаряют в трубке, наполненной воздухом, собирают вытесненный воздух и измеряют его объем. Трубка, в к-рую вводят вещество, окружается муфтой, наполненной какой-либо жидкостью, t° кипения к-рой по крайней мере на 30° выше t° кипения исследуемого вещества. В верхней своей части трубка имеет ответвление, соединяющее ее с приб ром для измерения объема вытесненного воздуха (рис. 1). Верхний конец трубки снабжен приспособлением, позволяющим в нужный момент вводить испытуемое вещество. Сначала кипятят жидкость в муфте до тех пор, пока не прекратится выделение воздуха и затем вводят вещество. которое быстро испаряется и вытесняет нек-рое количество воздуха, переходящего в эвдиометр. Объем его равен объему пара, образовавшегося в трубке при испарении взвешенного вещества, независимо от его собственной t°. Метод этот, как и метод Гофмана, требует очень мало вещества и при- ■605 меним при очень высоких t°. В этом случае стеклянная аппаратура заменяется стойкими сортами фарфоровой, выдерживающей t° до 1 700°. В случае, если вещество реагирует с кислородом воздуха, прибор наполняется каким-нибудь индиферентным газом (азотом, водородом, аргоном).-Определение плотностей паров и газов привело к ряду важных выводов. М. в. элементарных газов при обыкновенных условиях оказались вдвое больше, чем их атомные веса, и следовательно молекулы их заключают по два атома. При более высоких t° плотность их начинает

Рисунок 1.рис. 2.

Уменьшаться, что указывает на диссоциацию их на атомы. Плотности паров металлов отвечают одноатомным молекулам, тогда как молекулы паров фосфора, серы, мышьяка содержат более двух атомов и с повышением t° распадаются на более простые молекулы. Так, сера при 500° шестиатомна (S e), при 800° молекулы ее распадаются на £ 2 . Определение М. в. растворенных веществ основано на применении к растворам газовых законов. Как это было показано вант Гоффом, для растворенного вещества можно написать такое же уравнение состояния, как и для газа в аналогичных условиях, т. е. pv - nRT = -™ RT, где р есть осмотическое давление, т. е. то давление, которое растворенное вещество оказывает на полупроницаемую перегородку. Распространяя закон Авогадро на растворы, вант Гофф показал, что осмотическое давление, точно так же, как и газовое давление, зависит не от природы растворенного вещества, а лишь от числа растворенных молекул, и равно тому давлению, которое имело бы вещество, если бы находилось в газообразном состоянии при соответствующих условиях. Следовательно, если в одном литре растворена одна грамм-молекула вещества, то осмотическое давление будет равно 22,41 атмосферам при 0° и 22,41 (1+cct) атм. при t°. Т. о. измерение осмотического давления приводит к непосредственному определению М. в. растворенного вещества. Однако прямые измерения осмотич. давления сопряжены с большими трудностями. Наука обязана Раулю (Raoult) разработкой косвенных методов определения осмотического давления, а вместе с тем следовательно и М. в. растворенных веществ (см. Криоскопия). Между М. в. и понижением точки замерзания или повышением точки кипения раствора существует следующая зависимость, выражаемая уравнением М=С-^, где G -вес вещества, растворенного в 100 г растворителя, At -понижение точки замерзания или повышение точки кипения, а С-постоянная, найденная эмпирически Раулем, т. н. «молекулярное понижение» точки замерзания или «молекулярное повышение» точки кипения, величина, связанная со скрытой теплотой плавления или испарения уравне- нием С = щ-, где Т -абсолютная t° замерзания (или кипения) чистого растворителя, a q -скрытая теплота плавления или испарения на 1 грамм растворителя. Для воды молекулярное понижение =18,6, а молекулярное повышение = 5,15. Для измерения понижения t° замерзания или повышения t° кипения предложено большое число аппаратов, которые в принципе одинаковы. Наио"о-лее употребительны Бекмана приборы (см.). Метод криоскопический по существу возможен лишь для таких растворов, при которых происходит замерзаниетолькоодногорастворителя, но не раствора. При работах же с очень разбавленными растворами термометр Бекмана заменяется набором термоэлементов, соединенных с чувствительным гальванометром, что позволяет измерять t° до 0,00001 градуса. - Измерение М. веса растворенных веществ привело к выводам, имеющим важное теоретическое значение. Так, по отклонению от вышеприведенных формул был установлен с одной стороны факт электролитической диссоциации для электролитов, а с другой-ассоциации растворенного вещества, а также его гидратации или сольватации, т. е. соединения молекул растворенного вещества с молекулами растворителя. Следует подчеркнуть, что М. в., определяемый указанными методами, относится лишь к растворенному состоянию и на основании данных эбулиоскопии или криоскопии нельзя делать заключения о М. в. веществ в чистом состоянии. Переходя к М. в. сжатых газов и жидкостей, необходимо отметить, что до сих пор не имеется вполне совершенного и точного метода для их определения. Отступления от теории, наблюдаемые для сжатых газов и жидкостей, дают лишь косвенное указание на то, что мы имеем здесь дело с измененными молекулами. Так например согласно правилу Трутона (Trouton) отношение молекулярной теплоты испарения к абсолютной t° кипения жидкости есть величина постоянная -= = С. Величина С согласно II закону термодинамики связана с упругостью пара жидкости диференциальным ур-нием т - ВТ ~ d ~ . Т. о., измеряя скрытую теплоту испарения, мы имеем в руках метод для определения М. в. жидких веществ, т. к. А= М. I, где I -скрытая теплота испарения 1 грамма вещества. Однако правило Трутона не имеет универсального значения и справедливо лишь для небольшого числа жидкостей, для большинства же их отношение „ имеет свое особое значение, что одно уже указывает на различие М. в. в жидком и парообразном состоянии и на значительную ассоциацию жидкостей. Более определенные результаты дает метод, основанный на формуле Этвеша (Eotvos), выражающей зависимость между М. в. и поверхностным натяжением уv* 1 * = к(Т к - Т), где у - поверхностное натяжение, выражаемое в динах на см, v -молекулярный объем (=мол. вес х уд. объем), Т к -"Критическая t°, T - t° опыта, к -константа, независимая от температуры, равная в среднем 2,12. Но и в этом случае далеко не для всех жидкостей коеф. к оказывается независимым от t°. Принимается, что вещества, имеющие нормальный коеф. (не изменяющийся с t°), имеют в -жидком состоянии М. в, равный М. в. пара. Жидкости с коефшщенгом, меняющимся от t°, называются ассоциированными. М. в. их получается умножением М. в. газа на т. н. «фактор ассоциации», к-рыа вычисляется из отношения нормальной константы к к величине, получающейся на опыте. К числу ассоциированных жидкостей относятся спирты, жирные кислоты, фенол, вода (с фактором ассоциации = 4). Что касается М. в. твердых т е л, то все простейшие частицы кристалла так тесно связаны между собой, что движение одной вызывает движение всего кристалла целиком. Согласно последних воззрений на кристаллическое строение атомы в кристаллах сдерживаются теми же силами, что и атомы в отдельных газовых молекулах, т.е. силами химическими, поэтому мы можем рассматривать весь кристалл как целую молекулу и за М. в. его принимать вес этого кристалла. В настоящ. время целым рядом независимых друг от друга методов установлено абсолютное значение числа Авогадро, т.е. числа молекул в грамм-молекулярном объеме (22,41 л при 0° и 760 мм давления). Оно равно в среднем из различных определений 6,06 х10 23 . Отсюда нетрудно высчитать абсолютный вес атома водорода. Он оказывается равным 1,66х10 -84 г. Помножая это число на относительный М. в. вещества, находим абсолютный вес его молекулы. Лит.: Вознесенский С.иРебиндер П., Руководство к практическим работам по физической химии, гл. IV, М.-Л., 1928; Д ж о н с Г., Основы физической химии, гл. II, III и V, СПБ, 1911; У о к е р Д., Введение в физическую химию, гл. XIX, М., 1926: Ostwald-Luther, Hand- u. Hllfsbuch 7. Austuhrung physikochemischer Messungeri, hrsg. v. C. Drucker, Lnz.. 1927.Л. Лепинь. Н. Шилов.

Выраженная в атомных единицах массы . Численно равна молярной массе . Однако следует чётко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и различаются по размерности.

Молекулярные массы сложных молекул можно определить, просто складывая молекулярные массы входящих в них элементов. Например, молекулярная масса воды (H 2 O) есть

M H 2 O = 2 M H + M O ≈ 2·1+16 = 18 а. е. м.

См. также

Wikimedia Foundation . 2010 .

  • Молекулярные моторы
  • Молекулярный генетик

Смотреть что такое "Молекулярный вес" в других словарях:

    МОЛЕКУЛЯРНЫЙ ВЕС - есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van t Hoff)… … Большая медицинская энциклопедия

    МОЛЕКУЛЯРНЫЙ ВЕС - см. Молекулярная масса … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНЫЙ ВЕС - МОЛЕКУЛЯРНЫЙ ВЕС, термин, который ранее использовался для обозначения ОТНОСИТЕЛЬНОЙ МОЛЕКУЛЯРНОЙ МАССЫ … Научно-технический энциклопедический словарь

    молекулярный вес - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN molecular weightM … Справочник технического переводчика

    Молекулярный вес М в - Молекулярный вес, М. в. * малекулярная вага, М. в. * molecular weight or M. w. сумма атомных весов всех атомов, из которых состоит данная молекула. Часто отождествляется с терминами «молекулярная масса» (см.) и «относительная молекулярная масса»… … Генетика. Энциклопедический словарь

    МОЛЕКУЛЯРНЫЙ ВЕС - устарев шее и неправильное название молекулярной относительной (см.) … Большая политехническая энциклопедия

    молекулярный вес - то же, что молекулярная масса. * * * МОЛЕКУЛЯРНЫЙ ВЕС МОЛЕКУЛЯРНЫЙ ВЕС, см. Молекулярная масса (см. МОЛЕКУЛЯРНАЯ МАССА) … Энциклопедический словарь