Главная · Зубная боль · Обнинская аэс история. История АЭС

Обнинская аэс история. История АЭС

Атомная электростанция (АЭС)

электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (См. Тепловая электростанция) (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (См. Ядерное горючее) (в основном 233 U, 235 U. 239 Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения (рис. 1 ) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт ). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт ) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором (См. Водо-водяной реактор) «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт ).

За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2 . Тепло, выделяющееся в активной зоне (См. Активная зона) реактора 1, отбирается водой (теплоносителем (См. Теплоноситель)) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (См. Тепловыделяющий элемент) (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3 ). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой (См. Биологическая защита), Теплообменник и, Насос ы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах (См. Корпусной реактор) ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах (См. Канальный реактор) ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт ) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт ) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт ) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235 U, но и сырьевые материалы 238 U и 232 Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.-Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.

С. П. Кузнецов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Атомная электростанция" в других словарях:

    Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератором энергии на АЭС является атомный реактор. Синонимы: АЭС См. также: Атомные электростанции Электростанции Ядерные реакторы Финансовый словарь… … Финансовый словарь

    - (АЭС) электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1 я в мире АЭС мощнностью 5 МВт была… … Большой Энциклопедический словарь

Предложение о создании реактора АМ будущей АЭС впервые прозвучало 29 ноября 1949 г. на совещании научного руководителя атомного проекта И.В. Курчатова, директора Института физпроблем А.П. Александрова, директора НИИХимаша Н.А. Доллежаля и учёного секретаря НТС отрасли Б.С. Позднякова. Совещание рекомендовало включить в план НИР ПГУ на 1950 г. «проект реактора на обогащённом уране с небольшими габаритами только для энергетических целей общей мощностью по тепловыделению в 300 единиц, эффективной мощностью около 50 единиц» с графитом и водяным теплоносителем. Тогда же были даны поручения о срочном проведении физических расчётов и экспериментальных исследований по этому реактору.

Позднее И.В. Курчатов и А.П. Завенягин объясняли выбор реактора АМ для первоочередного строительства тем, «что в нём может быть более, чем в других агрегатах, использован опыт обычной котельной практики: общая относительная простота агрегата облегчает и удешевляет строительство».

В этот период на разных уровнях обсуждаются варианты использования энергетических реакторов.

ПРОЕКТ

Было признано целесообразным начать с создания реактора для корабельной энергетической установки. В обосновании проекта этого реактора и для «принципиального подтверждения... практической возможности преобразования тепла ядерных реакций атомных установок в механическую и электрическую энергии» было решено построить в Обнинске, на территории Лаборатории «В» , атомную электростанцию с тремя реакторными установками, в том числе и установкой АМ, ставшей реактором Первой АЭС).

Постановлением СМ СССР от 16 мая 1950 г. НИОКР по АМ поручались ЛИПАН (институт И.В. Курчатова), НИИХиммаш, ГСПИ-11, ВТИ). В 1950 - начале 1951 гг. эти организации провели предварительные расчёты (П.Э. Немировский, С.М. Фейнберг, Ю.Н. Занков), предварительные проектные проработки и др., затем все работы по этому реактору были, по решению И.В. Курчатова, переданы в Лабораторию «В» . Научным руководителем назначен , главным конструктором - Н.А. Доллежаль.

Проектом были предусмотрены следующие параметры реактора: тепловая мощность 30 тыс. кВт, электрическая мощность - 5 тыс. кВт, тип реактора - реактор на тепловых нейтронах с графитовым замедлителем и охлаждением натуральной водой.

К этому времени в стране уже был опыт создания реакторов такого типа (промышленные реакторы для наработки бомбового материала), но они существенно отличались от энергетических, к которым относится реактор АМ. Сложности были связаны с необходимостью получения в реакторе АМ высоких температур теплоносителя, из чего следовало, что придётся вести поиск новых материалов и сплавов, выдерживающих эти температуры, устойчивых к коррозии, не поглощающих нейтроны в больших количествах и др. Для инициаторов строительства АЭС с реактором АМ эти проблемы были очевидны изначально, вопрос был в том, как скоро и насколько удачно их удастся преодолеть.

РАСЧЁТЫ И СТЕНД

К моменту передачи работы по АМ в Лабораторию «В» проект определился только в общих чертах. Оставалось много физических, технических и технологических проблем, которые предстояло решить, и их число возрастало по мере работы над реактором.

Прежде всего, это касалось физических расчётов реактора, которые приходилось вести, не имея многих необходимых для этого данных. В Лаборатории «В» некоторыми вопросами теории реакторов на тепловых нейтронах занимался Д.Ф. Зарецкий, а основные расчёты проводились группой М.Е. Минашина в отделе А.К. Красина . М.Е. Минашина особенно беспокоило отсутствие точных значений многих констант. Организовать их измерение на месте было сложно. По его инициативе часть из них постепенно пополнялась в основном за счёт измерений, проведённых ЛИПАН и немногих в Лаборатории «В» , но в целом нельзя было гарантировать высокую точность рассчитываемых параметров. Поэтому в конце февраля - начале марта 1954 г. был собран стенд АМФ - критсборка реактора АМ, которая подтвердила удовлетворительное качество расчётов. И хотя на сборке нельзя было воспроизвести все условия реального реактора, результаты поддержали надежду на успех, хотя сомнений оставалось много.

На этом стенде 3 марта 1954 г. была впервые в Обнинске осуществлена цепная реакция деления урана.

Но, учитывая, что экспериментальные данные постоянно уточнялись, совершенствовалась методика расчётов, вплоть до запуска реактора продолжалось изучение величины загрузки реактора топливом, поведение реактора в нестандартных режимах, вычислялись параметры поглощающих стержней и др.

СОЗДАНИЕ ТВЭЛА

С другой важнейшей задачей - созданием тепловыделяющего элемента (твэла) - блестяще справились В.А. Малых и коллектив технологического отдела Лаборатории «В» . Разработкой твэла занималось несколько смежных организаций, но только вариант, предложенный В.А. Малых , показал высокую работоспособность. Поиск конструкции был завершён в конце 1952 г. разработкой нового типа твэла (с дисперсионной композицией уран-молибденовой крупки в магниевой матрице).

Этот тип твэла позволял проводить их отбраковку на предреакторных испытаниях (в Лаборатории «В» для этого были созданы специальные стенды), что очень важно для обеспечения надёжной работы реактора. Устойчивость нового твэла в нейтронном потоке изучалась в ЛИПАН на реакторе МР. В НИИХиммаше были разработаны рабочие каналы реактора.

Так впервые в нашей стране была решена, пожалуй, самая главная и самая сложная проблема зарождающейся атомной энергетики – создание тепловыделяющего элемента.

СТРОИТЕЛЬСТВО

В 1951 г., одновременно с началом в Лаборатории «В» исследовательских работ по реактору АМ, на её территории началось строительство здания атомной станции.

Начальником строительства был назначен П.И. Захаров, главным инженером объекта - .

Как вспоминал Д.И. Блохинцев, «здание АЭС в важнейших своих частях имело толстые стены из железобетонного монолита, чтобы обеспечить биологическую защиту от ядерного излучения. В стены закладывались трубопроводы, каналы для кабеля, для вентиляции и т.п. Ясно, что переделки были невозможны, и поэтому при проектировании здания, по возможности, предусматривались запасы с расчётом на предполагаемые изменения. На разработку новых видов оборудования и на выполнение научно-исследовательских работ давались научно-технические задания для «сторонних организаций» – институтов, конструкторских бюро и предприятий. Часто эти сами задания не могли быть полными и уточнялись и дополнялись по мере проектирования. Основные инженерно-конструкторские решения... разрабатывались конструкторским коллективом во главе с Н.А. Доллежалем и его ближайшим помощником П.И. Алещенковым...»

Стиль работы по строительству первой АЭС характеризовался быстрым принятием решений, скоростью разработок, определённой выработанной глубиной первичных проработок и способами доработки принимаемых технических решений, широким охватом вариантных и страхующих направлений. Первая АЭС была создана за три года.

ПУСК

В начале 1954 г. началась проверка и опробование различных систем станции.

9 мая 1954 года в Лаборатории "В" началась загрузка активной зоны реактора АЭС топливными каналами. При внесении 61-го топливного канала было достигнуто критическое состояние, в 19 ч. 40 мин. В реакторе началась цепная самоподдерживающаяся реакция деления ядер урана. Состоялся физический пуск атомной электростанции.

Вспоминая о пуске, писал: «Постепенно мощность реактора увеличивалась, и наконец где-то около здания ТЭЦ, куда подавался пар от реактора, мы увидели струю, со звонким шипением вырывавшуюся из клапана. Белое облачко обыкновенного пара, и к тому же еще недостаточно горячего, чтобы вращать турбину, показалось нам чудом: ведь это первый пар, полученный на атомной энергии. Его появление послужило поводом для объятий, поздравлений «с легким паром» и даже для слез радости. Наше ликование разделял и И.В. Курчатов, принимавший участие в работе в те дни. После получения пара с давлением 12 атм. и при температуре 260 °C стало возможным изучение всех узлов АЭС в условиях, близких к проектным, а 26 июня 1954 г., в вечернюю смену, в 17 час. 45 мин., была открыта задвижка подачи пара на турбогенератор, и он начал вырабатывать электроэнергию от атомного котла. Первая в мире атомная электростанция встала под промышленную нагрузку».

«В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов.»

Ещё до пуска была подготовлена первая программа экспериментальных работ на реакторе АМ, и вплоть до закрытия станции он был одной из основных реакторных баз, на которых проводились нейтронно-физические исследования, исследования по физике твёрдого тела, испытания твэлов, ЭГК, наработка изотопной продукции и др. На АЭС прошли подготовку экипажи первых атомных подводных лодок, атомного ледокола «Ленин», персонал советских и зарубежных АЭС.

Пуск АЭС для молодого коллектива института стал первой проверкой на готовность к решению новых и более сложных задач. В начальные месяцы работы доводили отдельные агрегаты и системы, подробно изучали физические характеристики реактора, тепловой режим оборудования и всей станции, дорабатывали и исправляли различные устройства. В октябре 1954 г. станция была выведена на проектную мощность.

«Лондон, 1 июля (ТАСС). Сообщение о пуске в СССР первой промышленной электростанции на атомной энергии широко отмечается английской печатью, Московский корреспондент «Дейли уоркер» пишет, что это историческое событие «имеет неизмеримо большее значение, чем сброс первой атомной бомбы на Хиросиму.

Париж, 1 июля (ТАСС). Лондонский корреспондент агентства Франс Пресс передает, что сообщение о пуске в СССР первой в мире промышленной электростанции, работающей на атомной энергии, встречено в лондонских кругах специалистов-атомников с большим интересом. Англия, продолжает корреспондент, строит атомную электростанцию в Колдерхолле. Полагают, что она сможет вступить в строй не ранее чем через 2,5 года...

Шанхай, 1 июля (ТАСС). Откликаясь на пуски в эксплуатацию советской электростанции на атомной энергии, токийское радио передает: США и Англия также планируют строительство атомных электростанций, но завершение их строительства они намечают на 1956-1957 годы. То обстоятельство, то Советский Союз опередил Англию и Америку в деле использования атомной энергии в мирных целях, говорит о том, что советские ученые добились больших успехов в области атомной энергии. Один из выдающихся японских специалистов в области ядерной физики - профессор Иосио Фудзиока, комментируя сообщение о пуске в СССР электростанции на атомной энергии, заявил, что это является началом «новой эры».

Академик Н.А. Доллежаль: «Проектирование и создание реакторной установки Первой в мире АЭС было первым и, вероятно, самым значительным достижением в области ядерной энергетики. Ее пуск доказал и продемонстрировал практическую возможность получения электроэнергии на АЭС».

Академик А.П. Александров : «Энергетика мира вступила в новую эпоху. Это случилось 27 июня 1954 г. Человечество еще далеко не осознало важности этой новой эпохи».

ГОСТИ ПЕРВОЙ АЭС

Среди гостей, в разное время посетивших Обнинскую АЭС, были выдающиеся ученые, политические и общественные деятели. За первые 20 лет работы Первую АЭС посетили около 60 тысяч человек.


Операция по остановке реактора в Обнинске прошла штатно, без нарушений, в присутствии научной общественности и ветеранов отечественной ядерной энергетики.

Результаты, полученные в ходе выполнения этой операции, будут использованы при выполнении аналогичных процедур на других реакторах.

Всегда приятно в чем-то быть первым. Так и наша страна, еще будучи в составе СССР, оказалась первой во многих начинаниях. Ярким примером служит возведение АЭС. Понятно, что в ее разработке и строительстве были задействованы многие. Но все же первая в мире АЭС была расположена на территории, которая сейчас находится в России.

Предыстория возникновения АЭС

Она началась с использования атома в военных целях. До того как была построена первая в мире АЭС, многие сомневались в том, что атомную энергию можно направить в мирное русло.

Сначала была создана атомная бомба. Всем известен печальный опыт использования ее в Японии. Потом на полигоне было осуществлено испытание атомной бомбы, созданной советскими учеными.

Спустя некоторое время в СССР начали производить плутоний на промышленном реакторе. Созданы все условия для получения в крупных масштабах обогащенного урана.

Именно в это время, осенью 1949 года, началось активное обсуждение того, как организовать предприятие, на котором атомная энергия будет применяться для выработки электроэнергии и тепла.

Теоретические разработки и создание проекта было возложено на Лабораторию «В». В то время ее возглавлял Д.И. Блохинцев. Ученый совет под руководством предложил ядерный реактор, который работал на обогащенном уране. В качестве замедлителя использовался бериллий. Охлаждение осуществлялось с применением гелия. Рассматривались и другие варианты реакторов. Например, с использованием быстрых и промежуточных нейтронов. Также допускались другие способы охлаждения.

Весной 1950 года вышло постановление Совета министров. В нем значилось то, что необходимо возвести три опытных реактора:

  • первый — уран-графитовый с охлаждением водой;
  • второй — гелий-графитовый, который должен был использовать газовое охлаждение;
  • третий — уран-бериллиевый также с газовым охладителем.

На создание технического проекта отводился остаток текущего года. С использованием этих трех реакторов мощность первой в мире АЭС была около 5000 кВт.

Где и кем они были созданы?

Само собой, для того чтобы возвести эти постройки, нужно было определиться с местом. Так, первая АЭС в мире построена в городе Обнинске.

Строительные работы были поручены НИИ "Химмаш". В тот момент им руководил Н. Доллежаль. По образованию он химик-строитель, который был далек от ядерной физики. Но все же его знания оказались полезными во время сооружения конструкций.

Общими усилиями, а в работу чуть позже подключились еще несколько институтов, была построена первая в мире АЭС. Создатель у нее не один. Их много, потому что такой масштабный проект не под силу создать в одиночку. Но основным разработчиком называется Курчатов, а строителем — Доллежаль.

Ход строительства и подготовка пуска

Параллельно с тем, как создавалась первая в мире АЭС, в лаборатории разрабатывались стенды. Они были прототипами которые впоследствии использовались на атомных подводных лодках.

Летом 50-го года начались подготовительные работы. Они продолжались в течение одного года. Итогом всех работ оказалась самая первая АЭС в мире. Ее первоначальный проект практически не изменился.

Были внесены такие коррективы:

  • уран-бериллиевый реактор был создан со свинцово-висмутовым охладителем;
  • гелий-графитовый реактор был заменен водо-водяным, который лег в основу всех последующих АЭС, а также использовался на ледоколах и подводных лодках.

В июне 1951 года вышло постановление о том, чтобы соорудить опытную электростанцию. Тогда же для уран-графитового реактора были доставлены все необходимые материалы. И в июле началось сооружение АЭС с охлаждением водой.

Первый запуск, обеспечивающий электричеством населенные пункты

Начало загрузки активной зоны реактора состоялось в мае 1954 года. А именно 9 числа. Вечером того же дня в нем началась цепная реакция. урана происходило так, что оно поддерживалось самостоятельно. Это был так называемый физический пуск станции.

Спустя полтора месяца в июне 1954 года был выполнен энергетический пуск АЭС. Это заключалось в том, что произошла подача пара на турбогенератор. Первая в мире АЭС заработала 26 июня в половине шестого вечера. Она функционировала на протяжении 48 лет. Ее роль заключалась в том, чтобы дать толчок к возникновению подобных электростанций по всему миру.

На следующий день электрический ток был дан в город первой в мире АЭС (1954 года) — в подмосковный Обнинск.

Толчок к возникновению других АЭС по всему миру

Она имела сравнительно небольшую мощность, всего в 5 МВт. Одной загрузки реактора хватало для его работы на полной мощности на продолжении 3 месяцев.

И несмотря на это, привлекала внимание людей со всего мира. В город первой в мире АЭС приезжали многочисленные делегации. Их целью было увидеть воочию чудо, созданное советским народом. Для того чтобы получить электричество, не нужно использовать Без угля, нефти или газа в движение приводился турбогенератор. И АЭС обеспечивала электричеством город с населением около 40 тысяч человек. При этом расходовалось только Его количество равнялось 2 тоннам в год.

Это обстоятельство стало толчком к возведению подобных станций почти по всему миру. Их мощность была огромной. И все же начало было здесь — в небольшом Обнинске, где атом стал трудягой, сбросив военную форму.

Когда АЭС закончила работу?

Первая АЭС в России была остановлена в 2002 году 29 апреля. К этому были экономические предпосылки. Ее мощность была недостаточно большой.

В течение ее работы были получены данные, которые подтверждали все теоретические выкладки. Оправдались все технические и инженерные решения.

Это дало возможность уже через 10 лет (1964 г.) запустить Белоярскую АЭС. Причем ее мощность была в 50 раз больше, чем у Обнинской.

Где еще используются ядерные реакторы?

Параллельно с созданием АЭС группа под руководством Курчатова проектировала атомный реактор, который можно было бы установить на ледокол. Эта задача была такой же важной, как и обеспечение электричеством, без расходования газа и угля.

СССР, как, впрочем, и России, было важно на максимально большое время продлить навигацию в морях, которые лежат на севере. Атомные ледоколы могли обеспечить круглогодичную навигацию на этих территориях.

Такие разработки были начаты в 53-м году, и спустя шесть лет в свое первое плавание был отправлен атомный ледокол «Ленин». Он исправно нес службу в условиях Арктики на протяжении 30 лет.

Не менее важным было и создание атомной подводной лодки. И она была спущена на воду в 57-м году. Тогда же эта подлодка осуществила поход подо льдами на Северный полюс и вернулась на базу. Название этой подводной лодки было «Ленинский комсомол».

Влияние АЭС на окружающую среду

Этот вопрос интересовал людей уже тогда, когда была первая АЭС в мире построена в городе Обнинске. Сейчас известно, что влияние на экологию осуществляется в трех направлениях:

Тепловые выбросы;

Газ, который к тому же радиоактивен;

Жидкие вокруг АЭС.

Причем выброс радиации происходит даже при нормальной работе реакторов. Такие постоянные поступления радиоактивных веществ в окружающую среду происходят под контролем персонала АЭС. Они потом распространяются в воздухе и земле, проникая в растения и организмы животных и людей.

Стоит отметить, что не только АЭС является источником отходов радиации. Медицина, наука, промышленность и сельское хозяйство тоже вносят свою долю в общий зачет. Все отходы полагается специальным образом обезвреживать. А потом они подлежат захоронению.

Первая АЭС в мире

27 июня 1954 года в подмосковном Обнинске дала ток первая в мире

атомная электростанция.

Осенью 1949 года после успешного испытания , когда уже на первом промышленном реакторе производился плутоний, когда было организовано и освоено в промышленном масштабе производство обогащенного урана, началось активное обсуждение проблем и направлений создания энергетических ядерных реакторов для транспортного применения и получения электроэнергии и тепла.
В июне 1950 года директором Лаборатории "В" назначен член-корреспондент АН СССР Дмитрий Иванович Блохинцев. В декабре того же года создан Ученый Совет для подготовки научных кадров высшей квалификации. В совет вошли: А.И.Лейпунский, Д.И.Блохинцев, Н.В.Агеев, О.Д.Казачковский, А.К.Красин, П.Н.Слюсарев, П.Д.Горбачев.
От лаборатории "В" для энергетического применения был предложен реактор на обогащенном уране с бериллиевым замедлителем и гелиевым охлаждением, предполагалась также разработка реакторов на быстрых и промежуточных нейтронах с различным охлаждением, в том числе жидкометаллическим.
Постановление Совета Министров от 16 мая 1950 г. определило строительство трех опытных реакторов (уран-графитового с водяным охлаждением, уран-графитового с газовым охлаждением и уран-бериллиевого с газовым или жидкометаллическим охлаждением). По первоначальному замыслу все они поочередно должны были работать на единую паровую турбину и генератор мощностью 5000 кВт.
Технические проекты следовало выполнить в 1950 году. Так начиналось создание Первой АЭС и стендов-прототипов энергетических установок атомных подводных лодок. Приказом
начальника ПГУ от 08.08.1950 г. директор Лаборатории "В" Д.И.Блохинцев обязывался приступить к подготовительным работам. В общих чертах проектный облик реактора Первой АЭС остался при реализации близким к первоначально предложенному. Реактор с бериллиевым замедлителем реализовался со свинцово-висмутовым охлаждением, уран-бериллиевым топливом и промежуточным спектром нейтронов. Вместо гелий-графитового реактора был создан водо-водяной реактор - основной тип для подводных лодок и ледоколов, а также будущих АЭС. 12 июня 1951 года выходит Постановление СМ СССР о сооружении на территории Лаборатории "В" опытной электрической станции (установки В-10).
По предложению И.В.Курчатова 27 июня 1951 года в Лабораторию "В" были переданы все имеющиеся проектные материалы по уран-графитовому реактору с водяным охлаждением. 12 июля 1951 года Постановлением СМ СССР на Лабораторию "В" возложена задача по разработке и сооружению АЭС с водяным охлаждением.
9 мая 1954 года в лаборатории началась загрузка активной зоны реактора АЭС топливными
каналами. При внесении 61-го топливного канала было достигнуто критическое состояние, в 19 ч. 40 мин. в реакторе началась цепная самоподдерживающаяся реакция деления ядер урана. Состоялся физический пуск атомной электростанции.
26 июня 1954 года в 17 часов 30 минут была открыта задвижка подачи пара на турбогенератор и генератор синхронизирован с сетью Мосэнерго. Состоялся энергетический пуск Первой в мире АЭС, которая проработала 48 лет и открыла дорогу использованию атомной энергии в мирных целях.
27 июня 1954 года первая в мире атомная электростанция с реактором АМ-1 (Атом мирный) мощностью 5 МВт дала промышленный ток и открыла дорогу использованию атомной энергии в мирных целях, успешно проработав почти 48 лет.
29 апреля 2002 года реактор первой АЭС был навсегда заглушен. Станция была остановлена по экономическим соображениям. Опыт ее эксплуатации полностью подтвердил технические и инженерные решения, предложенные специалистами отрасли, что позволило осуществить строительство и пуск в 1964 году Белоярской АЭС электрической мощностью 300 МВт.

Самым холодным за всю историю метеонаблюдений этот день был в 1881 году, когда средняя дневная температура в Москве составила +4,1 градуса Цельсия, а самым тёплым – в 1911 году. В тот день температура поднялась до +31,4 градусов.

Смотрите также:

Побывали на Обнинской АЭС, первой в мире атомной электростанции. АЭС всего лишь с одним реактором АМ-1 («атом мирный») мощностью 5 МВт дала промышленный ток 27 июня 1954 г. в подмосковном поселке Обнинское Калужской обл., на территории так называемой «лаборатории В» (ныне - Государственный научный центр РФ «Физико-энергетический институт имени академика А.И. Лейпунского»).

Станция строилась в условиях строгой секретности, и вдруг 30 июня 1954 г. не только на всю страну – на весь мир прозвучало сообщение ТАСС, потрясшее воображение людей: «В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов».

9 мая 1954 года в 19 часов 07 минут состоялся физический пуск реактора Первой АЭС в присутствии И.В.Курчатова и других членов пусковой комиссии – цепная реакция началась. И лишь в октябре 1954 года вышли на 100% мощности, турбина дала 5 тыс. кВт. Этот период времени – от физического пуска до проектной мощности – был периодом укрощения «дикого зверя». Реактор нужно было изучить, его параметры работы сопоставить с расчетными, постепенно вывести на проектную мощность.

История атомной энергии, начавшаяся в Обнинске, имеет глубокие корни в довоенном и военном времени AM – атом мирный – так назвал И.В.Курчатов реактор Первой АЭС. Станция была построена в чрезвычайно короткие сроки. От эскизного проекта до энергетического пуска прошло немногим более трех лет. Труд создателей Первой АЭС был высоко оценен. Большая группа участников этой работы была награждена орденами и медалями. В 1956 году Д.И.Блохинцев удостоен Золотой Звезды Героя Социалистического Труда, А.К.Красин награжден орденом Ленина. Ленинская премия присуждена в 1957 году Д.И.Блохинцеву. Н.А.Доллежалю, А.К.Красину и В.А.Малых.

Опыт эксплуатации первой, по сути экспериментальной атомной станции полностью подтвердил инженерно-технические решения, предложенные специалистами атомной отрасли, что позволило приступить к реализации широкомасштабной программы по строительству новых АЭС в СССР.

С начала эксплуатации Первой АЭС на ней широко развернулись экспериментальные работы благодаря сооружению экспериментальных петель и каналов. Были изучены режимы кипения воды непосредственно в трубчатых тепловыделяющих элементах реактора, создана петля для изучения теплоотдачи при кипении теплоносителя, осуществлен перегрев пара в самом реакторе. Анализ режимов работы с кипением и перегревом пара дал основу для проектирования крупных энергетических реакторов для Белоярской, Билибинскои, Ленинградской АЭС и многих других.


Экскурсию вел старейший сотрудник станции. Он здесь со дня основания.

Большой технический опыт, приобретенный на основе эксплуатации Первой АЭС, и широкий экспериментальный материал послужили фундаментом для дальнейшего развития ядерной энергетики. Так было задумано, и этому способствовали конструктивные особенности реактора Обнинской АЭС. Они обеспечили большие экспериментальные возможности реактора при хороших нейтронно-физических параметрах.

В конструкции реактора предусмотрены четыре горизонтальных канала для материаловедческих целей. Два использованы для производства искусственных радиоактивных изотопов и два – для исследования влияния облучения нейтронами на свойства различных материалов.

Один из горизонтальных каналов, выведенных из активной зоны реактора, был использован для проведения исследований атомно-кристаллических и магнитных структур твердых тел методом дифракции нейтронов. Результаты исследований кристаллических и магнитных структур хрома, выполненных на нейтронном дифрактометре, получили общее признание и были квалифицированы как научное открытие.

Таким образом, реактор Первой АЭС стал одной из основных исследовательских реакторных баз. На его проектных экспериментальных установках и на вновь созданных 17-ти экспериментальных петлях было организовано изготовление изотопной продукции, проводились нейтронно-физические измерения в области физики твердого тела, реакторного материаловедения и другие комплексные исследования до последнего дня работы станции.

Сенсационные сообщения в средствах массовой информации всего мира о пуске Первой АЭС пробудили особый интерес к великому достижению науки и техники в Советском Союзе. Особенно этот интерес возрос среди научного мира и руководителей государств после Первой Женевской конференции по мирному использованию атомной энергии осенью 1955 года. С докладом выступал Д.И.Блохинцев. Вопреки установленным правилам окончание доклада было встречено бурной овацией.


Пульт.

Вскоре после пуска атомная электростанция стала доступна для широкой общественности. Делегация Британского управления по атомной энергии в книге отзывов выразила свое восхищение работой профессору Блохинцеву и его коллегам. Делегация ГДР оставила запись о том, что посещение АЭС считает большой честью для себя. Немецкий физик Герц в книге для гостей записал: «Я уже много слышал и читал об атомных электростанциях, но то, что увидел здесь, превзошло все мои ожидания...».

Среди гостей, в разное время посетивших Обнинскую АЭС, были выдающиеся ученые, политические и общественные деятели: Д.Неру и И.Ганди, А.Сукарно, В.Ульбрихт, Ким Ир Сен, И. Броз Тито, Ф.Жолио-Кюри, Г.Сиборг, Ф.Перрен, 3.Эклунд, Г.К.Жуков, Ю.А.Гагарин, члены правительства нашей страны – Г.М.Маленков, Л.М.Каганович, В.М.Молотов и многие другие.

За первые 20 лет работы Первую АЭС посетили около 60 тысяч человек.

Развертка пульта.


Красная кнопка АЗ (Аварийная Защита), была нажата всего один раз в 2002 году. Она заглушила реактор.

Все имеет свою продолжительность жизни, постепенно изнашивается и устаревает морально и физически. За 48 лет безаварийной эксплуатации Первая атомная электростанция выработала свой ресурс, прослужив на 18 лет дольше запланированного времени.

17ч. 45 мин. 26 июня 1954 года – пар подан на турбину.
27 июня 1954 года – пуск Первой АЭС, сообщение газеты «Правда».
11 ч. 31 мин. 29 апреля 2002 года – станция остановлена, цепная реакция прекращена.

В настоящее время Обнинская АЭС выведена из эксплуатации. Её реактор был заглушен 29 апреля 2002 года, успешно проработав почти 48 лет. Станция была остановлена исключительно по экономическим соображениям, поскольку поддержание ее в безопасном состоянии с каждым годом становилось все дороже и дороже, станция давно находилась на государственных дотациях, а проводимые на ней научно-исследовательские работы и наработка изотопов для нужд российской медицины покрывали лишь около 10% расходов на эксплуатацию. При этом первоначально Минатом России планировал заглушить реактор АЭС лишь к 2005 г., после выработки 50-летнего ресурса.


Реакторный зал.


Реактор, часть защитных плит снято.


Сюда погружают стержни с отработанным топливом.


Пульт управления краном, переносящим стержни с отработанным топливом. Оператор смотрит через кварцевое стекло толщиной около 50 см.

В последние годы работы АЭС ее любовно называли «старушкой». Она действительно стала мамой и бабушкой следующим поколениям АЭС, более мощным и совершенным. Под научным руководством ФЭИ построена Первая АЭС, а затем при ее участии созданы важные и известные многим объекты: транспортабельная ядерная энергетическая установка ТЭС–3, опытные быстрые реакторы в ФЭИ – БР–5, БР–10 и БОР–60 в Димитровграде, транспортные ЯЭУ с жидкометаллическим теплоносителем для атомных подводных лодок, первый в мире энергетический реактор на быстрых нейтронах с натриевым охлаждением БН–350, АЭС с реактором на быстрых нейтронах БН–600 – 3-й блок Белоярской станции, Билибинская АТЭЦ, работающая в условиях Крайнего Севера в режиме переменных нагрузок по теплу и электричеству, космические реакторы-преобразователи типа «Топаз» и «Бук».


А это картина, доволь точно показывает, как шла работа на станции.

---------------------

Фотографии сделаны Мой и Димой