Главная · Зубная боль · Новые технологии в освоении космоса. Безумные космические технологии будущего Новые технологии в космической отрасли

Новые технологии в освоении космоса. Безумные космические технологии будущего Новые технологии в космической отрасли

Услышав словосочетание «космические технологии», большинство жителей Земли, скорее всего, представят себе взлетающую ракету, возможно, Международную космическую станцию или, на худой конец, фантастический космический корабль, неспешно плывущий в кадре через пустоту космоса. Так уж повелось, что большинство наших ассоциаций с этой отраслью мы получили из художественного кинематографа или книг. Те, кто интересуется космонавтикой, знают, что благодаря реальным «космическим технологиям» люди могут добраться до орбиты высоко над Землей или даже запустить станцию к соседней планете.

Кто-то, возможно, вспомнит про GPS, спутниковое телевидение и интернет или даже про метеорологию, а другой просто задастся вопросом: зачем все это нужно, ведь космос так далеко? К счастью, реальность интересней: космос намного ближе к нам, чем вы думаете. Наследие космонавтики подарило нам сотни небольших вещей, которые ежедневно окружают нас в быту и упрощают наши жизни. Сегодня мы расскажем о нескольких из них.

Межконтинентальные ракеты и ваш автомобиль

В 1953 году Норман Ларсен, основатель Rocket Chemical Company, выполнял заказ аэрокосмического подрядчика США компании Convair и разрабатывал новое водоотталкивающее вещество. Популярная корпоративная легенда говорит, что тридцать девять попыток были неудачными, но сороковая дала необходимый результат, в честь чего новую чудо-формулу так и назвали - WD-40 («Водоизместитель-40»).

Convair использовали новую смазку для защиты сверхтонких стенок топливных баков и электроники ракет Atlas во время перевозки и хранения. Межконтинентальные баллистические ракеты Atlas, конечно, разрабатывались как грозное оружие и даже стояли на боевом дежурстве во время Карибского кризиса, но постепенно списывались военными, когда их место занимали более совершенные орудия уничтожения. Заменяемые на ракеты Titan и Minuteman, они передавались NASA для целей вполне научных, а в рамках программы Mercury в 1962 году обеспечили первый американский орбитальный полет астронавта Джона Гленна.

Слева  -  запуск межконтинентальной баллистической ракеты Atlas B. Справа  -  Atlas D с кораблем Mercury Friendship 7 и Джоном Гленном на борту. Фото: USAF \ NASA.



Джон Гленн на орбите. Фото: NASA



Полет космического корабля Mercury в представлении художника

Формула водооталкивающей смазки Нормана Ларсена оказалась настолько удачной, что конструкторы Convair использовали ее и в собственных целях, обрабатывая запчасти личных автомобилей. Осознав потенциальный коммерческий успех, в 1958 году Rocket Chemical Company начинают продажи нового вещества в локальных магазинах в Сан Диего. А в 1969-м компания переименовывается, взяв название самого важного на тот момент предложения в своем портфеле  -  WD-40. Сегодня чудо-смазка продается в более чем половине стран мира и знакома, пожалуй, почти каждому автомобилисту (и просто крепкому хозяйственнику). А в спектре возможных способов ее использования и рекомендаций по применению уже невозможно отличить миф от реальности: от очистки заржавевших деталей до удаления собачьих экскрементов или даже выведения жвачки из волос.

Винтажная упаковка WD-40 и современная

Межпланетные станции и цифровая фотография

В 1992 году Дэниел Голдин, назначенный на место администратора NASA (к слову, прослуживший на этой должности при трех президентах США), обрисовал новый принцип работы агентства через три простых слова: «Быстрее, лучше, дешевле». Этот принцип поставил перед инженерами миссий конкретные задачи (например, миниатюризация цифровых камер с CCD-матрицей, используемых в межпланетных миссиях, без потери научной ценности получаемых снимков).

В результате инженер лаборатории реактивного движения NASA Эрик Фоссум представил CMOS Active-Pixel Sensors. Само по себе использование металл-оксидных полупроводников к девяностым годам XX века не было чем-то новым, как и теоретическая возможность использовать их светочувствительность вкупе с APS, но практическая реализация Голдина совершила переворот на рынке цифровой фотографии. Новые сенсоры потенциально были дешевле в производстве, менее энергозатратны и давали бо́льшие возможности в миниатюризации камеры и работе с изображением.

Первый 10-мегапиксельный CMOS-сенсор Aptina Imaging для компактных цифровых камер. Aptina - правообладатель технологий Photobit. Изображение: Aptina Imaging

Фоссум понял, что его разработка будет востребована и на Земле. В 1995-м он основал компанию Photobit и запатентовал новую технологию. В дальнейшем история компании Photobit - это история поглощений и переименований, а в результате в 2017-м CMOS-матрицы используются почти повсеместно - начиная от мобильных телефонов и заканчивая камерами автомобилей и медицинских приборов. Хотите сделать «селфи»? Вы просто космос!



CMOS-сенсоры используются в камерах ваших смартфонов…



…в ваших зеркалках…



…автомобильных камерах заднего вида…



…и даже медицинских камерах и эндоскопах - и вообще везде, где важны небольшой размер и энергопотребление

Кстати, использование слова «пиксель» впервые было зафиксировано в 1965 году в работе инженера лаборатории реактивного движения Фредерика Биллингсли. Он использовал это слово для описания минимальных элементов изображений, получаемых от станций, отправленных к Луне и Марсу.

Марсианские пузырьки в земном пиве

Сложно представить себе что-то более земное, чем бокал пива в конце тяжелого дня. Кстати, это удовольствие недоступно космонавтам на орбите, но, возможно, это справедливая цена за лучший в известной вселенной вид из окна на нашу планету. Роберт Зубрин  - не астронавт, но американский инженер, основатель «Марсианского общества» и, пожалуй, один из самых ярких сторонников немедленной колонизации землянами соседних миров.

Долгое время он работал над концептами планов доставки людей на Марс и инструментами, которые позволят будущим поселенцам получать часть необходимых ресурсов прямо из атмосферы Красной планеты: кислород или топливо для ракетных двигателей и роверов. Некоторые из разработанных его командой технологий нашли применение на Земле - например, в добыче нефти и природного газа. Но и Зубрину не чуждо все земное - из «приземленной» технологии родилась еще более «приземленная».

Будущим колонистам Марса придется использовать ресурсы планеты для развития колонии. Изображение: NASA

При производстве пива углекислый газ образуется естественным образом, но бо́льшая его часть рассеивается в воздухе еще в процессе приготовления. Крупные производители могут позволить себе установку довольно дорогих систем, задерживающих CO 2 для последующего повторного обогащения. Небольшие пивоварни закупают дополнительный объем у сторонних поставщиков, что в итоге увеличивает себестоимость конечного продукта. Внезапно на помощь приходят технологии, разрабатываемые для будущих колонистов Марса! Компания Зубрина Pioneer Energy представляет довольно необычный для своей деятельности продукт  -  систему обогащения углекислым газом для крафтовых пивоварен. Компактный комплекс задерживает производимый при приготовлении CO 2 и, по подсчетам производителя, может сохранять порядка 5 тонн углекислого газа в месяц и сэкономить до $15 тыс. в год для небольшой пивоварни.

CO 2 Craft Brewery Recovery System. Фото: Pioneer Energy

В 2015-м Pioneer Energy получили десятки заказов на новую систему. Согласно оценкам, потенциальный рынок  -  около 20 тыс. крафтовых пивоварен по всему миру. Встретите ли вы пузырьки, полученные с помощью околокосмических технологий в Беларуси, науке вряд ли известно. Но как это обычно бывает, там, где есть новый подход, удешевляющий ваше производство, довольно быстро появляются другие возможности его применения и аналоги, «не уступающие оригиналу».

Одежда и космические аксессуары

Популярная интернет-легенда гласит, что благодаря космонавтике появились застежки-молнии, липучки, спортивные кроссовки и даже тефлон. На самом деле нет. Современные застежки-молнии были запатентованы еще в 1913 году, а липучки - в 1955-м, хотя последние действительно поначалу использовались как элементы одежды для астронавтов, аквалангистов и горнолыжников. Спортивная обувь, конечно, тоже не изобретение космической эры, но амортизирующая подошва как элемент современных кроссовок появилась в быту землян также благодаря ботинкам астронавтов миссий «Аполлон». Тем не менее отрасль сделала мощный вклад в материалы, которые используются в спецодежде и даже в обиходе обычных людей.

В мире в последние годы стремительно развивается космическая отрасль. Несмотря на многие проблемы, человечество вкладывает каждый год много средств на изучение космоса. Стран, которые это делают можно посчитать по пальцам. Большая доля приходится на американский «NASA».

Рассмотрим основные технологии будущего в космической отрасли:

Ученые «NASA» интенсивно работают над будущими технологиями, которые позволят человечеству быстро и дешево исследовать космос. Агентство выбрало в 2017 году восемь предложений по будущим космическим технологиям, которые специалисты смогут использовать в ближайшие годы.

В рамках программы II фазы «NASA», определенно все предложения смогут получить двухлетнее финансирование в размере 500 000 долларов США. Средства будут использованы для подготовки концепции и ее представления для агентства.

1. Подходы к созданию в космосе растущей среды обитания

Идея создания вращающегося модуля корпуса, который будет генерировать собственную гравитацию и обеспечивать защиту от космических лучей. Такая станция может быть расширена по мере необходимости в космическом пространстве. Такие интересные концепции наблюдались во многих научно-фантастических фильмах.

2. Продвижение местообитаний человечества на Марс

Это проект Джона Брэдфорса из Spaceworks Engineering. Предполагается создание передовой жилой системы и транспортировку людей на Марс. Система доставит экипаж в оцепенении, то есть в состоянии пониженной температуры и активности.

Эта инновационная концепция релятивистского движения. Его авторы знают о том, что его реализация будет проблематичной, но в то же время они утверждают об этой возможности. Благодаря этому корабль сможет достичь скорости, необходимой для межзвездного путешествия.

4. Разработка плазменного привода

Еще один интересный проект, касающийся строительства нового космического привода. На этот раз это будет плазменный привод, предназначенный для небольшого транспортного средства, свободно перемещающегося в космосе.

5. Демонстрация полета новой спутниковой системы

Предполагает использование двух сверхлегких самолетов, соединенных тонким кабелем. Самолеты, использующие солнечную энергию и ветер, высоко поднимающиеся в атмосфере, могут оставаться в воздухе в течение очень долгого времени. Инструменты, выполняющие различные задачи, от общения до научных исследований, будут размещаться на их бортах. По словам создателей, такое решение будет альтернативой спутникам, а также намного дешевле, чем они.

6. Аэродромный захват магнитосферных ядер для пилотируемых полетов и планетарные глубинные орбитальные системы

Эта система будет использовать дипольное магнитное поле, содержащее намагниченную плазму. В результате взаимодействия с атмосферой планет такое поле будет тормозить посадочный носитель, делая этот маневр намного безопаснее. Эта технология также позволяет замедлить работу автомобиля без нагрева, поскольку он будет защищен плазмой. Магнитный барьер, защищающий транспортное средство, может достигать диаметра 100 метров.

7. Криогенная поверхность

Представляет собой специальное покрытие толщиной 10 миллиметров, которое отражает более 99,9 процента солнечной радиации. Если его разместить на расстоянии одной астрономической единицы от Солнца и от Земли, внутри такой оболочки будет постоянная температура ниже 50 Кельвинов.

Таким образом, можно легко транспортировать, например, жидкий кислород на Марс. Благодаря этому колонизация планеты станет намного проще.

8. Дальнейшая разработка апертуры, точного чрезвычайно большого отражательного телескопа.

Это проект, созданный для больших телескопов. В последние годы зеркала таких устройств должны были чрезвычайно точно быть установлены на Земле. В сложенном виде они должны были вписаться в багажное отделение, а затем развернуты уже в космосе, что является сложной и рискованной операцией.

Благодаря этому проекту будут созданы зеркала, подобные диафрагме, что означает, что они будут занимать много места, чтобы их можно было переносить на большую орбиту. Эти конструкции уже были бы идеально сформированы в пространстве.

Космические туманности

Будущее сферы космических технологий обещает быть настолько интересным, что очень хотелось бы верить в то, что все мы сможем дожить хотя бы до начала реализации тех идей и миссий, о которых сегодня поговорим.

Некоторые представленные здесь концепты выглядят как вполне логичный шаг развития в правильном направлении, другие же кажутся совершенно безумными и даже самоубийственными идеями. Однако и у первых, и у вторых есть реальный шанс.

Магнитный космический поезд Startram

Проект предложенной системы космических запусков Startram, для старта строительства и реализации которого потребуется, по предварительным меркам, около 20 миллиардов долларов, обещает возможность доставки на орбиту грузов весом до 300 000 тонн с очень демократичной ценой в 40 долларов за килограмм полезной нагрузки. Если учесть, что в настоящий момент стоимость доставки 1 кг полезной нагрузки в космос составляет в лучшем случае 11 000 долларов, проект выглядит весьма интересным.

Для реализации проекта Startram не потребуются ракеты, топливо или ионные двигатели. Вместо всего этого здесь будет использоваться технология магнитного отталкивания. Стоит отметить, что концепт поезда на магнитной подушке далеко не нов. На Земле уже функционируют составы, которые двигаются по магнитному полотну со скоростью около 600 километров в час. Однако на пути всех этих маглевов (использующихся преимущественно в Японии) находится одно серьезное препятствие, которое ограничивает их максимальную скорость. Для того чтобы такие поезда смогли раскрыть свой полный потенциал и достигать максимально возможной скорости, нам необходимо избавиться от атмосферного воздействия, которое замедляет их движение.

Проект Startram предлагает решение этого вопроса путем строительства длинного навесного вакуумного тоннеля на высоте около 20 километров. На такой высоте сопротивление воздуха становится менее выраженным, что позволит производить космические запуски на гораздо более высоких скоростях и с гораздо меньшим сопротивлением. Космические аппараты в буквальном смысле будут выстреливаться в космос, без необходимости в преодолении атмосферы. Строительство такой системы потребует около 20 лет работы и инвестиций на общую сумму в 60 миллиардов долларов.

Ловец астероидов

Среди любителей научной фантастики в свое время жарко горели споры об антинаучном способе и явно недооцененной сложности посадки на астероид, показанной в знаменитом американском фантастическом триллере «Армагеддон». Даже в NASA как-то отметили, что нашли бы вариант получше (и реальней), чтобы попробовать спасти Землю от неминуемой гибели. Более того, аэрокосмическое агентство недавно выделило грант на разработку и строительство «ловца комет и астероидов». Космический аппарат специальным мощным гарпуном будет цепляться к выбранному космическому объекту и за счет силы своих двигателей оттягивать эти объекты от опасной траектории сближения с Землей.

Кроме того, аппарат можно будет использовать для ловли астероидов с прицелом дальнейшей добычи полезных ископаемых на них. Космический объект будет притягиваться гарпуном и отводиться в нужное место, например, на орбиту Марса или Луны, где будут располагаться орбитальные или наземные базы. После чего к астероиду будут отправляться группы добычи.

Солнечный зонд

Как и на Земле, на Солнце тоже есть свои ветра и шторма. Однако в отличие от земных, солнечные ветра способны не просто испортить вашу прическу, они способны вас в буквальном смысле испарить. На многие вопросы о Солнце, ответов на которые нет до сих пор, по мнению аэрокосмического агентства NASA, сможет ответить «Солнечный зонд», который отправится к нашему светилу в 2018 году.

Космический аппарат должен будет приблизится к Солнцу на расстояние около 6 миллионов километров. Это приведет к тому, что зонду придется испытать на себе воздействие радиационной энергии такой мощности, какую не испытывал ни один рукотворный космический аппарат. Защититься от воздействия губительной радиации зонду, по мнению инженеров и ученых, поможет карбоно-композитный тепловой экран толщиной 12 сантиметров.

Однако NASA не может просто направить зонд сразу к Солнцу. Космическому аппарату придется сделать как минимум семь орбитальных пролетов вокруг Венеры. А на это у него уйдет около семи лет. Каждый оборот будет ускорять зонд и подстраивать траекторию для правильного курса. После последнего облета зонд направится к орбите Солнца, на расстояние 5,8 миллиона километров от его поверхности. Таким образом он станет наиболее приближенным к Солнцу рукотворным космическим объектом. Нынешний рекорд принадлежит космическому зонду «Гелиос-2», который находится на расстоянии примерно 43,5 миллиона километров от Солнца.

Марсианский форпост

Открывающиеся перспективы будущих полетов на Марс и Европу грандиозны. В NASA верят, что если им не помешают никакие мировые катаклизмы и падения убийственных астероидов, то агентство отправит человека на марсианскую поверхность в течение ближайших двух десятилетий. В NASA даже уже успели представить концепт будущего марсианского форпоста, строительство которого планируется начать где-то в конце 2030-х годов.

Радиус планируемой исследовательской области будет составлять около 100 километров. Здесь будут располагаться жилые модули, научные комплексы, стоянка марсианских роверов, а также горно-шахтное оборудование для команды из четырех человек. Энергия для комплекса частично будет добываться благодаря нескольким компактным ядерным ректорам. Кроме этого, электричество будут добывать солнечные панели, которые, конечно же, будут становиться малоэффективными на случай марсианских песчаных бурь (отсюда и необходимость в компактных реакторах).

Со временем в этой области поселится множество научных команд, которым придется самостоятельно выращивать пищу, собирать марсианскую воду и даже создавать на месте ракетное топливо для полетов обратно на Землю. К счастью, множество полезных и необходимых материалов для строительства марсианской базы содержится прямо в марсианском грунте, поэтому везти некоторые вещи для основания первой марсианской колонии не придется.

Ровер NASA ATHLETE

Ровер ATHLETE (All-Terrain Hex-Limbed Extraterrestrial Explorer), похожий на паука, однажды займется колонизацией Луны. Благодаря своей особой подвеске, состоящей из шести независимых ног, способных поворачиваться во все стороны, ровер может передвигаться по грунту любой сложности. При этом наличие колес позволяет ему быстрее двигаться по более ровной поверхности.

Этот гексопод может оснащаться самым разным научным и рабочим оборудованием и при необходимости легко справляется с ролью передвижного крана. На фотографии выше, например, на ATHLETE установлен жилой модуль. Другими словами, ровер можно еще и использовать в качестве передвижного дома. Высота ATHLETE составляет около 4 метров. При этом он способен поднимать и перевозить объекты весом до 400 килограммов. И это при земной гравитации!

Самое важное преимущество ATHLETE заключается в подвеске, которая наделяет его невероятной подвижностью и способностью выполнять сложную работу по доставке тяжелых объектов, в отличие от неподвижных посадочных модулей, которые использовались в прошлом и используются сейчас. Одним из вариантов использования ATHLETE является и 3D-печать. Установка на него 3D-принтера позволит использовать ровер в качестве мобильного печатного оборудования лунных жилищ.

3D-напечатанные марсианские дома

Чтобы приблизить момент начала подготовки полета человека на Марс, NASA организовало архитектурный конкурс, задачей которого является разработка и спонсирование технологий 3D-печати, которые позволят методом трехмерной печати строить марсианские дома.

Единственное условие конкурса заключалось в использовании материалов, которые широко доступны для добычи на Марсе. Победителями стали две дизайнерские компании из Нью-Йорка, Team Space Exploration Architecture и Clouds Architecture Office, предложившие свой концепт марсианского дома ICE HOUSE. В качестве основы концепт предлагает использование льда (отсюда и название). Строительство зданий будет производиться в ледяных зонах Марса, куда будут отправляться посадочные модули, загруженные множеством компактных роботов, которые будут собирать грязь и лед для возведения сооружений вокруг этих модулей.

Стенки сооружений будут выполнены из смеси воды, геля и кремнезема. Как только материал замерзнет благодаря низким температурам на поверхности Марса, получится весьма себе подходящее для жилища помещение с двойными стенками. Первая стенка будет состоять из ледяной смеси и предоставлять дополнительную защиту от радиации, роль второй стенки будет выполнять сам модуль.

Продвинутый коронограф

Глубокому изучению солнечной короны (внешний слой атмосферы звезды, состоящий из заряженных частиц) мешает одно обстоятельство. И этим обстоятельством, как бы иронично это ни звучало, является само Солнце. Решением проблемы может являться так называемый объемный солнечный затемнитель, шар размером чуть больше теннисного мяча, выполненный из сверхтемного сплава титана. Суть затемнителя заключается в следующем: он устанавливается перед спектрографом, направленным на Солнце, и создает тем самым миниатюрное солнечной затмение, оставляя только солнечную корону.

В настоящий момент аэрокосмическое агентство NASA на своих космических аппаратах SOHO и STEREO использует плоские солнечные затемнители, однако плоский дизайн таких устройств создает некоторую расплывчатость изображения и лишние искажения. Решение этой проблемы подсказал сам космос. Земля, как известно, обладает своим собственным солнечным затемнителем, находящимся примерно в 400 000 километрах от нас. Этим затемнителем, конечно же, является Луна, благодаря которой мы время от времени становимся свидетелями солнечного затмения.

Объемный затемнитель NASA должен будет воспроизводить эффект лунного затмения, конечно же, только для космического аппарата, который будет исследовать Солнце, однако находясь на расстоянии двух метров от его спектрографа, затемнитель поможет исследовать солнечную корону без каких-либо проблем, помех и искажений.

Технологии Honeybee Robotics

Небольшая западная частная компания Honeybee Robotics, занимающаяся разработкой и производством различных космических технологий, недавно получила от аэрокосмического агентства NASA заказ на проведение двух новых технологических разработок для космической программы Asteroid Redirect System. Основная цель программы заключается в изучении астероидов и поиске способов борьбы с возможными угрозами их столкновения с Землей в будущем. Помимо этого, компания занимается разработкой и других не менее интересных вещей.

Например, одной из таких разработок является космическая пушка, которая будет выпускать по астероидам специальные снаряды и отстреливать куски от космического объекта. Отстрелив таким образом кусочек астероида, специальный космический аппарат поймает его своими роботизированными клешнями и переправит на лунную орбиту, где исследованием его структуры ученые смогут заняться уже более подробно. NASA планирует испытать это устройство на одном из трех астероидов: Итокава, Бенну или 2008 EV5.

Второй разработкой является так называемый космический нанобур для сбора образцов грунта с астероидов. Вес бура составляет всего 1 килограмм, а по размерам он чуть больше среднестатистического смартфона. Бур будет использоваться либо роботами, либо астронавтами. С помощью него будет производиться забор необходимого количества грунта для его дальнейшего анализа.

Солнечный спутник SPS-ALPHA

SPS-ALPHA представляет собой орбитальный космический аппарат, работающий на солнечной энергии и состоящий из десятков тысяч тонких зеркал. Накапливаемая энергия будет конвертироваться в микроволны и отправляться обратно на специальные земные станции, где оттуда уже будет передаваться на линии электропередач для питания целых городов.

Данный проект является, пожалуй, одним из самых сложных в плане реализации среди представленных в сегодняшней подборке. Во-первых, описываемая платформа SPS-ALPHA будет по размерам гораздо больше Международной космической станции. Ее строительство потребует очень много времени, целую армию астронавтов-инженеров и вложение колоссальных средств. Ввиду гигантских размеров, платформу придется строить прямо на орбите. С другой стороны, элементы платформы будут производиться из относительно дешевых и несложных с точки зрения массового производства материалов, а значит проект автоматически переходит из «невозможного» в «очень сложный», что, в свою очередь, открывает надежду на то, что однажды его реализацией действительно займутся.

Проект «Objective Europa»

Проект «Objective Europa» является самой сумасшедшей из когда-либо предложенных идей космических исследований. Его главной целью является отправка человека на Европу, одну из лун Юпитера, на борту специальной субмарины, благодаря которой будет производиться поиск возможной жизни в подледном океане спутника.

Безумства данному проекту добавляет еще и тот факт, что эта миссия в один конец. Любому астронавту, который решит отправиться на Европу, фактически придется согласиться пожертвовать своей жизнью во благо науки, получив при этом возможность ответить на самый сокровенный вопрос современной астрономии: есть ли в космосе жизнь, помимо земной?

Идея проекта «Objective Europa» принадлежит Кристину фон Бенгстону. В настоящий момент Бенгстон проводит краудсорсинговую компанию по привлечению средств в этот проект. Сама субмарина будет оснащена самыми современными технологиями. Здесь будет и сверхмощный бур, и многомерные тяговые двигателями, и мощнейшие прожектора, и, возможно, пара многофункциональных роботизированных рук. Подводной лодке, как и космическому аппарату, который доставит ее к Европе, потребуется мощная защита от радиации.

Выбор места посадки будет играть решающее значение. Толщина льда Европы практически по всей ее поверхности составляет несколько километров, поэтому аппарат лучше всего будет сажать рядом с разломами и трещинами, где ледяная корка не такая прочная и толстая. Проект, конечно же, вызывает очень много вопросов, в том числе морального характера.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Космические технологии в нашей жизни Казённое общеобразовательное учреждение Воронежской области «Бобровская школа-интернат для обучающихся с ограниченными возможностями здоровья» Подготовила и провела учитель ВКК Никулина А.И.

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Тяга к неизведанному Страсть человечества к познанию нескончаема и по сути является основой нашей цивилизации. Испокон веков человек с удивительным упорством, несмотря ни на какие препятствия, стремится познавать всё вокруг. Космос и звёзды всегда манили человечество. На разных этапах, в разное время появлялись прогрессивные научные теории. Галилей, Коперник и другие учёные внесли свой вклад в приближение мечты человечества – покорение космоса. Галилео Галилей 1564-1642 Никола́й Копе́рник 1473-1543

4 слайд

Описание слайда:

Выход на орбиту Основываясь на теоретических наработках великого учёного Циолковского, проделав огромную работу, советские конструкторы под руководством С.П. Королёва осуществили пилотируемый полёт. Началась новая эра в истории нашей планеты К. Э. Циолковский 1857-1935 C. П. Королёв 1906-1966 12 апреля 1961 года землянину впервые удалось вырваться из уз земного притяжения. На космическом корабле Восток-1 старший лейтенант Юрий Алексеевич Гагарин облетел вокруг Земли.

5 слайд

Описание слайда:

Зачем нам нужен космос? Мы совершенно не задумываемся, насколько важен космос в нашей жизни сегодня. А тем временем «космические достижения» используются нами в повседневной жизни довольно часто. Космос и сопутствующие технологии прочно проникают в жизнь каждого современного человека.

6 слайд

Описание слайда:

Связь и телевидение Многие из нас сегодня смотрят сотни телевизионных каналов со всей планеты, звонят в любую точку мира, ориентируются по городу при помощи «навигаторов» . Всё это было бы невозможно без орбитальной группировки спутников на орбите нашей планеты.

7 слайд

Описание слайда:

Одежда Многие из привычных нам сегодня в одежде вещей так или иначе связаны с космической отраслью. Термобельё, например, разрабатывалось как часть экипировки космонавта. Специальная полиуретановая пена, используемая сегодня в кроссовках, также изначально разрабатывалась для ботинок космонавтов.

8 слайд

Описание слайда:

Развитие медицины Огромное влияние на развитие медицины оказала космическая программа. Целые отрасли подготовки космонавтов нашли свое применение в здравоохранении. Например, на основе костюма «Пингвин», уменьшающего вредное воздействие невесомости на организм космонавта, создан универсальный костюм «Регент» для помощи в реабилитации больных, перенёсших острые нарушения мозгового кровообращения или черепно-мозговую травму.

9 слайд

Описание слайда:

Реабилитация пациентов Одной из областей медицины, где «космические достижения» применяются наиболее широко, является реабилитация пациентов. Наряду с уже упомянутым костюмом «Регент» можно назвать в качестве примера уникальный прибор «Коврит». Прибор помогает людям, перенесшим инсульт, вернуться к нормальной жизни, восстановив работу мышц.

10 слайд

Описание слайда:

Иммерсионная ванна МЕДСИМ Ванна, изначально разработанная как система имитации невесомости, способствует выздоровлению пациентов неврологического и кардиологического профилей. Также она активно применяется в качестве восстановительной процедуры после операций, в спортивной медицине. Для поддержания психологического здоровья, восстановления сил, эмоционального восстановления космонавтов разработан комплекс психорелаксации «РЕЛАКСРОТОНДА» Психологическое оздоровление

11 слайд

Описание слайда:

Миниатюрные вспомогательные насосы для сердца Насосы были разработаны при помощи технологии, моделирующей течение жидкостей в ракетных двигателях. Алгоритмы обработки изображений Удивительное применение нашли алгоритмы, разработанные для обработки и анализа изображений с телескопов. Они оказались применимы в диагностике раковых заболеваний. Это лишь малая часть примеров того, как космические технологии продвинули здравоохранение вперёд в самых разных сферах

12 слайд

Описание слайда:

Бытовые приборы Огромное количество бытовых приборов, элементов приборов вряд ли бы появилось, если бы не космические разработки. Все мы знаем и пользуемся для приготовления пищи сковородами с антипригарным (тефлоновым) покрытием. Но мало кто знает, что тефлоновое покрытие изначально разрабатывалось для покрытия космических аппаратов.

13 слайд

Описание слайда:

Фильтры для очистки воды Присутствующие почти на каждой кухне фильтры изначально создавались для очистки воды на космической станции Делая ремонт во дворе, в саду, с фасада дома, мы используем беспроводные электроинструменты. Первоначально подобные инструменты были разработаны для ведения ремонтных работ на орбите. Беспроводные инструменты

Передовые технологии чаще всего создаются для космической отрасли или на стыке с ней. Впоследствии многие из них обретают «вторую жизнь», становясь неотъемлемой частью жизни землян. Как это происходит и почему некоторые продукты космических технологий буквально перерождаются на Земле, разбиралась «Лента.ру».

Среди многих людей, которые едва разбираются в космической тематике, бытует мнение, что пилотируемая космонавтика -отрасль, исключительно нацеленная на престиж страны и довольно бесполезная с практической точки зрения. Ведь после высадки астронавтов на Луну человечество не продвинулось дальше МКС, а тем временем беспилотные аппараты добрались аж до Плутона. Но это совсем не так: именно для космоса создаются самые современные технологии, которые после испытаний и некоторых изменений попадают на Землю, где становятся массовым продуктом.

Козырные карты

Практически у каждого на смартфоне установлены картографические сервисы. При этом немногие задумываются, как эти карты появились и почему они настолько точные. Объяснение этому есть, оно довольно простое: добиться такой точности при столь огромных масштабах удалось благодаря космическим аппаратам, которые на протяжении многих лет проводят дистанционное зондирование Земли.

Так как мониторинг из космоса ведется на постоянной основе, благодаря спутниковым технологиям удается, например, предупреждать стихийные бедствия и оценивать ущерб от них. В частности - наводнения и лесные пожары. В случае последних, особенно когда они происходят в удаленных районах, свежие спутниковые снимки особенно актуальны, ведь они показывают масштаб пожаров и направление распространения огня. Вкупе с метеорологическими прогнозами подобная информация позволяет оперативно разработать стратегию борьбы с возгораниями.

Фото: Алексей Максименко / Globallookpress.com

Кроме всего прочего, дистанционное зондирование Земли позволяет проводить мониторинги сельскохозяйственного, природоохранного и строительного характера, в том числе и выявляя законодательные нарушения.

Всеми этими делами за пределами планеты занимается Государственная корпорация «РОСКОСМОС». Но не каждому известно, что Корпорация активно работает и на Земле.

Атомное качество

Одно из предприятий, входящих в структуру РОСКОСМОСА и работающих по широкому профилю, - это Корпорация ВНИИЭМ. Созданный в 1941 году для разработки и быстрейшего выпуска электротехнических средств для обороны Москвы ВНИИЭМ сравнительно быстро укрупнился и стал одним из главных научно-производственных предприятий Советского Союза, а затем и России.

Сейчас один из главных продуктов ВНИИЭМ - системы управления АЭС. Еще в советские времена предприятие создало электронную «начинку» для Ленинградской, Курской и Чернобыльской атомных электростанций. А сейчас ВНИИЭМ разрабатывает комплексы электрооборудования системы управления и защиты для водо-водяных энергетических реакторов. Устанавливаются подобные системы и за рубежом, например на иранской АЭС «Бушер».

Фото: Ahmad Halabisaz / Zumapress / Globallookpress.com

Еще одна не менее интересная разработка ВНИИЭМ - бесконтактные электродвигатели постоянного тока. Их внутренняя полость надежно изолирована от внешней среды, что существенно расширяет область их применения. Например, бесконтактные электродвигатели, первоначально предназначенные исключительно для космической отрасли, теперь широко применяются и в других экстремальных условиях, например под водой. Помимо бесконтактных электродвигателей есть и электронасосы, которые способны выполнять даже самые сложные задания в суровых условиях.

Также ВНИИЭМ производит электротехнические и конструкционные материалы самого широкого применения, среди которых - композиционные материалы с впечатляющими характеристиками и с сохранением высоких изоляционных свойств при сверхвысоких температурах.

В стороне от вполне «бытовых» разработок не остался и известный Центр им. Хруничева, тоже входящий в периметр РОСКОСМОСА. А в частности - его «дочка», Усть-Катавский вагоностроительный завод им. С.М. Кирова, основанный в 1758 году, одно из старейших предприятий России. Сейчас здесь производят трамвайные вагоны, в том числе и самые современные, которые вскоре будут ездить по улицам крупнейших городов России.

А еще завод выпускает целую серию оборудования для топливно-энергетического комплекса, в том числе газорегулирующее и насосное оборудование, а также трубопроводную арматуру, пользующиеся огромным спросом на «земных» предприятиях.

Лестницы в небо

Существует и такое предприятие, как АО «Государственный ракетный центр имени академика В.П. Макеева», где производят не только боевые ракетные комплексы, но и вполне гражданскую продукцию. Например, пожарные автоподъемники - без таких приспособлений бороться с пожарами и спасать жизни людей во многих случаях не представлялось бы возможным. Отдельно стоит отметить, что автоподъемники предназначены для работы на высоте вплоть до 50 метров.

В ракетном центре также производят и такие необычные для России изделия, как ветроэнергетические установки с вертикальной осью вращения. Интеграция подобных разработок в соответствующих районах страны позволит не только серьезно сэкономить на электричестве, но и уменьшить ущерб, который люди наносят природе.

Кроме того, на предприятии налажено производство не менее уникального горно-шахтного оборудования, оборудования для нефтеперерабатывающей промышленности, а также гидравлических монтажных инструментов.

Входящий в состав РОСКОСМОСА Златоустовский машиностроительный завод не ограничивается созданием оборудования для космоса и передовых образцов оружия. Так, именно там производят современные электрические и газоэлектрические, а также настольные плиты. Такие продукты определенно могут пригодиться в любом домашнем хозяйстве.

Помимо этого, на заводе налажено производство медицинского оборудования и радиаторов. Последние отличаются повышенной тепловой мощностью и помогают в создании энергоэффективной отопительной системы.

Так что космос везде вокруг нас, и предприятия РОСКОСМОСА этому проникновению активно способствуют.