Главная · Зубной камень · Полезная работа формула физика. Механическая работа

Полезная работа формула физика. Механическая работа

Коэффициент полезного действия показывает отношение полезной работы, которая выполняется механизмом или устройством, к затраченной. Часто за затраченную работу принимают количество энергии, которое потребляет устройство для того, чтобы выполнить работу.

Вам понадобится

  1. - автомобиль;
  2. - термометр;
  3. - калькулятор.

Инструкция

  1. Для того чтобы рассчитать коэффициент полезного действия (КПД) поделите полезную работу Ап на работу затраченную Аз, а результат умножьте на 100% (КПД=Ап/Аз∙100%). Результат получите в процентах.
  2. При расчете КПД теплового двигателя, полезной работой считайте механическую работу, выполненную механизмом. За затраченную работу берите количество теплоты, выделяемое сгоревшим топливом, которое является источником энергии для двигателя.
  3. Пример. Средняя сила тяги двигателя автомобиля составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.
  4. В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.
  5. Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.
  6. Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

Какая формула у полезной работы?

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу Аз и полезную работу Ап. Если, например, наша цель-поднять груз массой m на высоту Н, то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:
Ап =FH= mgH
Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Что такое работа в физике определение формула. нн

Помогите расшифровать формулу по физике

КПД тепловых двигателей.физика (формулы,определения,примеры) напишите! физика (формулы,определения,примеры) напишите!

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.

Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)

Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)

В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)

В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?

Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

Одно из важнейших понятий механики – работа силы .

Работа силы

Все физические тела в окружающем нас мире приводятся в движение с помощью силы. Если на движущееся тело в попутном или противоположном направлении действует сила или несколько сил со стороны одного или нескольких тел, то говорят, что совершается работа .

То есть, механическая работу совершает действующая на тело сила. Так, сила тяги электровоза приводит в движение весь поезд, тем самым совершая механическую работу. Велосипед приводится в движение мускульной силой ног велосипедиста. Следовательно, эта сила также совершает механическую работу.

В физике работой силы называют физическую величину, равную произведению модуля силы, модуля перемещения точки приложения силы и косинуса угла между векторами силы и перемещения.

A = F · s · cos (F, s) ,

где F модульсилы,

s – модуль перемещения.

Работа совершается всегда, если угол между ветрами силы и перемещения не равен нулю. Если сила действует в направлении, противоположном направлению движения, величина работы имеет отрицательное значение.

Работа не совершается, если на тело не действуют силы, или если угол между приложенной силой и направлением движения равен 90 о (cos 90 o = 0).

Если лошадь тянет телегу, то мускульная сила лошади, или сила тяги, направленная по ходу движения телеги, совершает работу. А сила тяжести, с которой извозчик давит на телегу, работы не совершает, так как она направлена вниз, перпендикулярно направлению перемещения.

Работа силы – величина скалярная.

Единица работы в системе измерений СИ - джоуль. 1 джоуль – это работа, которую совершает сила величиной в 1 ньютон на расстоянии 1 м, если направления силы и перемещения совпадают.

Если на тело или материальную точку действуют несколько сил, то говорят о работе, совершаемой их равнодействующей силой.

В случае, если приложенная сила непостоянна, то её работа вычисляется как интеграл:

Мощность

Сила, приводящая в движение тело, совершает механическую работу. Но как совершается эта работа, быстро или медленно, иногда очень важно знать на практике. Ведь одна и та же работа может быть совершена за разное время. Работу, которую выполняет большой электромотор, может выполнить и маленький моторчик. Но ему для этого понадобится гораздо больше времени.

В механике существует величина, характеризующая быстроту выполнения работы. Эта величина называется мощностью .

Мощность – это отношение работы, выполненной за определённый промежуток времени, к величине этого промежутка.

N = A /∆ t

По определению А = F · s · cos α , а s/∆ t = v , следовательно

N = F · v · cos α = F · v ,

где F – сила, v скорость, α – угол между направлением силы и направление скорости.

То есть мощность – это скалярное произведение вектора силы на вектор скорости движения тела .

В международной системе СИ мощность измеряется в ваттах (Вт).

Мощность в 1 ватт – это работа в 1 джоуль (Дж), совершаемая за 1 секунду (с).

Мощность можно увеличить, если увеличить силу, совершающую работу, или скорость, с которой эта работа совершается.

В физике понятие "работа" имеет другое определение, чем то, которое используется в повседневной жизни. В частности, термин "работа" используется, когда физическая сила заставляет объект перемещаться. В общем, если мощная сила заставляет объект перемещаться очень далеко, то выполняется много работы. И если сила - небольшая или объект не перемещается очень далеко, - то только небольшая работа. Сила может быть рассчитана по формуле: Работа = F × D × косинус(θ) , где F = сила (в Ньютонах), D = смещение (в метрах), и θ = угол между вектором силы и направлением движения.

Шаги

Часть 1

Нахождения значения работы в в одном измерении
  1. Найдите направление вектора силы и направление движения. Чтобы начать, важно сначала определить в каком направлении движется объект, а также откуда применяется сила. Имейте в виду, что объекты не всегда движутся в соответствии с силой, приложенной к ним, - например, если вы потяните небольшую тележку за ручку, то вы применяете диагональную силу (если вы выше, чем тележка), чтобы переместить ее вперед. В этом разделе, однако, мы будем иметь дело с ситуациями, в которых сила (усилие) и перемещение объекта имеют одинаковое направление. Для получения информации о том, как найти работу, когда эти предметы не имеют одинакового направления, читайте ниже.

    • Чтобы сделать этот процесс легким для понимания, давайте следовать примеру задачи. Скажем, игрушечный вагон тянется прямо вперед поездом перед ним. В этом случае вектор силы и направление движения поезда указывают на одинаковый путь - вперед . В следующих шагах мы будем использовать эту информацию, чтобы помочь найти работу, выполненную объектом.
  2. Найдите смещение объекта. Первую переменную D или смещение, которая нам нужна для формулы работы, как правило, легко найти. Смещение - это просто расстояние, на которое сила заставила объект переместиться от его исходного положения. В учебных задачах эта информация, как правило, либо дана (известна), либо ее можно вывести (найти) из другой информации в задаче. В реальной жизни все, что вам нужно сделать, чтобы найти смещение, это измерить расстояние движения объектов.

    • Обратите внимание, что единицы измерения расстояния должны быть в метрах в формуле для вычисления работы.
    • В нашем примере игрушечного поезда, предположим, что находим работу, выполненную поездом, когда он проходит по трассе. Если он стартует в определенной точке и останавливается в месте около 2 метров по трассе, то мы можем использовать 2 метра для нашего значения "D" в формуле.
  3. Найдите силу, применяющуюся к объекту. Далее найдите величину силы, которая используется для перемещения объекта. Это является мерой "прочности" силы - чем больше ее величина, тем сильнее она толкает объект и тем быстрее он ускоряет свой ход. Если величина силы не предусмотрена, ее можно вывести из массы и ускорения перемещения (при условии, что нет других конфликтующих сил, действующих на него) с помощью формулы F = M × A.

    • Обратите внимание, что единицы измерения силы должны быть в Ньютонах для вычисления формулы работы.
    • В нашем примере, предположим, что не знаем величину силы. Тем не менее, давайте допустим, что знаем , что игрушечный поезд имеет массу 0,5 кг и что сила заставляет его ускоряться со скоростью 0,7 метров/секунду 2 . В этом случае можем найти величину путем умножения M × A = 0.5 × 0.7 = 0.35 Ньютон .
  4. Умножьте Сила× Расстояние. После того, как узнаете величину силы, действующую на ваш объект, и расстояние, на которое он был перемещен, остальное будет сделать легко. Просто умножьте эти два значения друг на друга, чтобы получить значение работы.

    • Пора решить наш пример задачи. При значении силы 0,35 Ньютон и значении смещения - 2 метра, наш ответ является вопросом простого умножения: 0.35 × 2 = 0.7 Джоулей .
    • Вы, возможно, заметили, что в формуле, приведенной в введении, есть дополнительная часть к формуле: косинус (θ). Как обсуждалось выше, в этом примере сила и направление движения применяются в одном направлении. Это означает, что угол между ними равен 0 o . Поскольку косинус (0) = 1, то мы не должны включать его - мы просто умножаем на 1.
  5. Обозначьте ответ в Джоулях. В физике значения работы (и нескольких других величин) почти всегда даются в единице измерения, которая называется Джоуль. Один джоуль определяется как 1 Ньютон силы применяющейся на 1 метр, или другими словами, 1 Ньютон × метр. Это имеет смысл, - так как вы умножаете расстояние на силу, это логично, что ответ, который вы получите, будет иметь единицу измерения, равную умножению единицы величины вашей силы и расстояния.

    Часть 2

    Вычисление работы с помощью угловой силы
    1. Найдите силу и смещение, как обычно. Выше мы имели дело с задачей, в которой объект движется в том же направлении, что и сила, которая прилаживается к нему. На самом деле не всегда так бывает. В тех случаях, когда сила и движение объекта находятся в двух разных направлениях, разница между этими двумя направлениями также должна быть учтена в уравнении для получения точного результата. Для начала найдите величину силы и смещения объекта, как вы это обычно делаете.

      • Давайте посмотрим на другой пример задачи. В этом случае, предположим, что мы тянем игрушечный поезд вперед, как в примере задачи выше, но, на этот раз мы на самом деле тянем вверх под диагональным углом. В следующем шаге будем принимать это во внимание, но сейчас будем придерживаться основ: перемещения поезда и величины силы, действующей на него. Для наших целей, скажем, сила имеет величину 10 Ньютон и что он проехал те же 2 метра вперед, как раньше.
    2. Найдите угол между вектором силы и перемещением. В отличие от приведенных выше примеров с силой, которая находится в другом направлении, чем движение объекта, необходимо найти разницу между этими двумя направлениями в виде угла между ними. Если эта информация не предоставляется вам, то возможно, потребуется измерить угол самостоятельно или вывести его из другой информации в задаче.

      • В нашем примере задачи, предположим, что сила, которая применяется, равна приблизительно 60 o выше горизонтальной плоскости. Если поезд все еще движется прямо вперед (то есть, по горизонтали), то угол между вектором силы и движения поезда будет равен 60 o .
    3. Умножьте Force × Distance × Cosine(θ). После того, как узнаете смещение объекта, величину силы, действующей на него, и угол между вектором силы и его движением, решение почти такое же легкое, как и без того, чтобы принимать угол во внимание. Просто возьмите косинус угла (для этого может потребоваться научный калькулятор) и умножьте его на силу и перемещение, чтобы найти ответ на свою задачу в Джоулях.

      • Решим пример нашей задачи. С помощью калькулятора находим, что косинус 60 o равен 1/2. Включив это в формулу, можем решить задачу следующим образом: 10 Ньютонов × 2 метра × 1/2 = 10 Джоулей .

    Часть 3

    Использование значения работы
    1. Измените формулу, чтобы найти расстояние, силу или угол. Формула работы, указанная выше, является не просто полезной для нахождения работы - она также ценна для нахождения любых переменных в уравнении, когда вы уже знаете значение работы. В этих случаях просто выделите переменную, которую ищете, и решите уравнение в соответствии с основными правилами алгебры.

      • Например, предположим, что мы знаем, что наш поезд тянут с силой в 20 Ньютон под диагональным углом более 5 метров пути для выполнения 86,6 Джоулей работы. Тем не менее, мы не знаем, угла вектора силы. Чтобы найти угол, мы просто выделим эту переменную и решим уравнение следующим образом: 86.6 = 20 × 5 × Косинус(θ) 86.6/100 = Косинус(θ) Arccos(0.866) = θ = 30 o
    2. Разделите на время, проведенное в движении, чтобы найти мощность. В физике работа тесно связана с другим типом измерения под названием "мощность". Мощность - это просто способ определения количества скорости, с которой работа проводится в определенной системе в течение долгого периода времени. Таким образом, чтобы найти мощность, все, что вам нужно сделать, это разделить работу, используемую для перемещения объекта на время, которое требуется для завершения перемещения. Измерения мощности обозначаются в единицах - Вт (которые равны Джоуль/секунду).

      • Например, для примера задачи в указанном выше шаге, предположим, что перемещение поезда на 5 метров заняло 12 секунд. В этом случае, все, что нужно сделать, это разделить работу, выполненную для перемещения его на 5 метров (86,6 Дж), на 12 секунд, чтобы найти ответ для вычисления мощности: 86.6/12 = "7.22 Вт .
    3. Используйте формулу TME i + W nc = TME f , чтобы найти механическую энергию в системе. Работа также может быть использована, чтобы найти количество энергии, содержащееся в системе. В приведенной выше формуле TME i = начальная полная механическая энергия в системе TME f = окончательная полная механическая энергия в системе и W nc = работа, выполненная в системах связи за счет не-консервативных сил. . В этой формуле, если сила применяется в направлении движения, то она - положительная, а если давит на (против) него, то она - отрицательная. Заметим, что обе переменные энергии можно найти по формуле (½)mv 2 , где m = масса и V = объем.

      • Например, для примера задачи в двух шагах выше, предположим, что поезд изначально имел общую механическую энергию 100 Дж. Поскольку сила в задаче тянет поезд в направлении, которое он уже проходил, она - положительная. В этом случае конечная энергия поезда - TME i + W nc = 100 + 86.6 = 186.6 Дж .
      • Обратите внимание, что не-консервативные силы - это силы, чья мощность для воздействия на ускорение объекта зависит от пути, пройденного объектом. Трение является хорошим примером - объект, который толкнули по короткому, прямому пути, будет ощущать последствия трения в течение короткого времени, в то время как объект, который толкнули по длинному, извилистому пути к такому же конечному местонахождению, в целом будет ощущать больше трения.
    • Если вам удастся решить задачу, то улыбнитесь и порадуйтесь за себя!
    • Тренируйтесь в решении как можно большего числа задач, это гарантирует полное понимание.
    • Продолжайте практиковаться, и пробуйте снова, если вам не удастся в первый раз.
    • Изучите следующие моменты, касающиеся работы:
      • Работа, проделанная силой, может быть либо положительной, либо отрицательной. (В этом смысле термины "положительные или отрицательные" несут свой математический смысл, а обычное значение).
      • Выполненная работа является отрицательной, когда сила действует в противоположном к перемещению направлении.
      • Выполненная работа является положительной, когда сила действует в направлении перемещения.

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа - это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример - это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A - работа,
F - сила,
s - пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы - 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример - это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.