Главная · Зубной камень · Особенности липидного жирового обмена у детей новорожденных. Возрастные особенности обменных процессов. Углеводный обмен у детей

Особенности липидного жирового обмена у детей новорожденных. Возрастные особенности обменных процессов. Углеводный обмен у детей

В этой части лекции "Возрастные особенности обмена веществ" речь идет об особенностях обмена липидов.

Особенности обмена липидов.

Потребность организма детей в липидах тем выше, чем меньше возраст ребенка. В первое полугодие жизни потребность в энергии покрывается за счет жиров на 50%. В этом возрасте на каждый килограмм массы тела требуется 6-7г жиров, в возрасте от 6 месяцев до 4 лет - 3,5-4 г, в дошкольном и школьном возрасте - 2,0-2,5г. В возрасте от 6 месяцев до 4 лет суточная потребность в энергии удовлетворяется за счет жиров на 30-40%, а в дошкольном и школьном возрасте - на 25-30%. Суточное количество жира в пище детей от 1 года до 3 лет должно быть 32,7г, от 4 до 7 лет - 39,2г, от 8 до 13 лет - 38,4г, свыше 14 лет - 47г.

При грудном вскармливании усваивается до 98% жиров молока, при искусственном - 85%.

Исследования показали, что во время развития организма количество фосфолипидов в нервной системе увеличивается, а в период старения - уменьшается.

Увеличивается с возрастом количество холестерола плазмы крови. Максимум увеличения достигается у женщин в 40-50 лет, у мужчин - в 60-69 лет. После достижения максимума количество холестерола снижается.

Количество нейтральных жиров во организме растет по мере увеличения возраста, что связывают с уменьшением активности соответствующих ферментов. Изменения содержания в организме различных липидов вызывают постепенные нарушения проницаемости и плотности клеточных мембран, что сопровождается ухудшением функции клеток. Предполагают, что это один из механизмов их старения.

Особенности обмена веществ у детей и иммунологической защиты в детском возрасте.

Обмен веществ у детей значительно отличается от обмена веществ взрослого человека. Еще Гиппократ отметил, что "...растущий организм имеет наибольшее количество природной теплоты и поэтому больше всего требует пищи". И действительно, организму ребенка в условиях интенсивного роста для нормальной жизнедеятельности требуется относительно больше пластических веществ и энергии, образование которых происходит в результате обмена органических соединений, поступающих с пищей. Следовательно, энергетические и окислительные процессы в детском организме идут более напряженно, о чем свидетельствуют показатели основного обмена, величина которого зависит от возраста и конституции человека, интенсивности роста и метаболизма тканей, а также других факторов. У детей во все возрастные периоды, особенно в первые годы жизни, основной обмен намного выше, чем у взрослых. Значительное количество энергии закономерно расходуется на процессы ассимиляции и роста. Необходимо также отметить обусловленное возрастом несовершенство регуляции обменных процессов как со стороны ЦНС и желез внутренней секреции, так и со стороны нейрогуморальных механизмов. Все это определяет нестабильность и сравнительно легко наступающие особенности обмена веществ у детей.

Наряду с указанными общими особенностями в детском возрасте отмечается также своеобразие каждого из основных видов обмена - белкового, углеводного, жирового. Знание их дает возможность правильно ориентироваться в вопросах питания детей первых месяцев и лет жизни, а также патологии, обусловленной нарушениями обменных процессов, в основе которой нередко лежат генетически детерминированные заболевания.

Обмен белков у детей

Обмен белка

Белки являются основным пластическим материалом для построения тканей человека, участвуют в синтезе ряда гормонов, ферментов, иммунных тел, в поддержании равновесия кислот и оснований.

В связи с энергичным ростом, формированием новых клеток и тканей потребность в белках у детей гораздо выше, чем у взрослого человека, и тем значительнее, чем моложе ребенок. Самые высокие показатели усвояемости белка и ретенции азота наблюдаются у детей до 1 года (5,0 - 5,5 г на 1 кг массы тела в сутки, тогда как у детей старше 12 лет - 2,0 - 2,5 г/кг в сутки) и особенно в первые 3 мес жизни, т. е. в период самого интенсивного нарастания массы тела. При вскармливании грудным молоком суточная потребность в белках составляет 2,0 - 2,5 г/кг, при искусственном вскармливании - 3,0 - 4,0 г/кг, оставаясь такой же в течение всего дошкольного периода (у школьников 2 - 2,5 г/кг). За счет белков должно покрываться 10-15% калорий суточного рациона. Энергично идущие пластические процессы объясняют тот факт, что азотистый баланс у детей младшего возраста положительный, в то время как у старших детей и взрослых имеется азотистое равновесие.

Для правильного роста и развития ребенка имеет значение не только количество, но и качество вводимого с пищей белка. Образовавшиеся из него в процессе пищеварения аминокислоты, всасываясь в кровь, должны усваиваться. Именно из них синтезируется затем белок тканей детского организма, свойства синтезируемого белка контролируются генами. Кроме того, в состав тканевых белков входит ряд аминокислот, которые не могут быть синтезированы и поступают в организм в готовом виде. Это так называемые незаменимые аминокислоты, обладающие высокой биологической ценностью. К ним относятся лизин, метионин, триптофан, фенилаланин, валин, лейцин, изолейцин и треонин.

По мнению многих авторов, для детей грудного возраста незаменимой аминокислотой является также гистидин, так как синтез его у ребенка не покрывает нужд растущего организма. Особенно высока потребность в лизине, треонине, валине. Однако следует подчеркнуть, что для синтеза белка необходимо наличие всех незаменимых аминокислот, правильное их соотношение и должная корреляция с другими пищевыми ингредиентами. Этим требованиям лучше всего отвечает женское молоко. В нем преобладают легкоусвояемые мелкодисперсные белки, имеется наиболее оптимальное соотношение основных ингредиентов и незаменимых аминокислот.

Все перечисленное выше не исчерпывает возрастных особенностей азотистого обмена. Неиспользованные аминокислоты подвергаются в печени дезаминированию, в результате чего образуются конечные продукты азотистого обмена (аммиак, мочевина, мочевая кислота и др.), подлежащие удалению с мочой. Повышенное содержание азота, особенно мочевой кислоты эндогенного происхождения, отмечается в моче новорожденных, что на 3-4-й день жизни может приводить к развитию мочекислого инфаркта (закупорка собирательных трубочек почек солями мочевой кислоты) с появлением мутной мочи красноватого цвета за счет уратов и аморфных мочекислых солей.

В последующие дни по мере увеличения количества мочи соли постепенно вымываются. В целом же процентное содержание азота в моче у детей младшего возраста значительно меньше, чем у взрослых, главным образом за счет мочевины, и нарастает с возрастом. Малое содержание мочевины в моче отражает как интенсивность пластических процессов, так и несовершенство белкового обмена (недостаточная синтезирующая функция печени). Последнее наряду с другими возрастными особенностями обмена и функциональной незрелостью почек обусловливает относительное преобладание в моче детей раннего возраста мочевой кислоты, аммиака, аминокислот. По-видимому, своеобразие интермедиарного обмена наряду с другими факторами является причиной креатинурии у детей первых 5 - 6 лет жизни (предполагают, что креатин у них не превращается в креатинин).

Регуляция процессов белкового обмена очень сложна

Усиливают ассимиляцию белков гормоны гипофиза, щитовидной железы, инсулин, андрогены (тестостерон). Анаболическое действие оказывают также витамины (тиамин, никотиновая кислота, рибофлавин, биотин, пантотеновая кислота). Катаболическим эффектом обладают тиреотропный и адренокортикотропный гормоны, глюкокортикоиды, тирозин в больших дозах.

Недостаточное поступление белка в организм, так же как и эндогенное белковое голодание или же потеря протеинов организмом, приводят к снижению или остановке пластических процессов в тканях, нарушению белкового обмена, отрицательному азотистому балансу. В результате приостанавливается рост, развивается дистрофия, полигиповитаминоз, появляется дискоординация функций гормональной и ферментативной систем, отмечаются изменения в ЦНС, печени, почках и других органах. Возможно развитие "голодных" отеков.

Нарушения синтеза белка могут привести к диспротеинемии, что часто наблюдается у детей при различных, особенно лихорадочных, заболеваниях, в основном со сдвигом в сторону повышенного содержания грубодисперсных фракций. Нарушения, обусловленные мутацией гена, нередко сопровождаются появлением аномальных белков с необычными свойствами (например, талас-семия, серповидно-клеточная анемия и другие гемоглобинозы) или отсутствием образования определенного белка с утратой его функции, как это имеет место при гемофилии. Наконец, большую группу генетически детерминированных нарушений образования белковых молекул составляют так называемые энзимопатии. Часть из них характеризуется необычным строением белков-энзимов и, следовательно, изменением функции последних.

Наряду с этим синтез определенного энзима может полностью отсутствовать, а выпадение его функции останавливает дальнейшее превращение вещества в соответствующем звене. Это приводит к избыточному накоплению метаболитов, предшествующему энзиматическому блоку. Наиболее часто встречающейся патологией из группы болезней накопления является фенилкетонурия. В основе ее лежит ферментативный блок на пути превращения фенилаланина в тирозин. Избыточное накопление фенилаланина и его метаболитов в крови сопровождается не только появлением их в моче и нарушением синтеза тирозина, но также и повреждением мозга, что и определяет клиническую картину болезни (прогрессирующая олигофрения с первых месяцев жизни, низкое артериальное давление, кожные аллергические сыпи и другие симптомы). Выявление в моче новорожденных фенилаланина и его метаболитов и назначение соответствующей диеты предотвращают развитие заболевания.

Жировой обмен у детей

Обмен жира и липидов

Жиры и жироподобные вещества - сложные органические соединения, значительно отличающиеся друг от друга по строению и функциональной значимости. В организме человека большая часть их представлена триглицеридами жирных кислот (нейтральные жиры), относящимися к простым липидам, и их производными жирными кислотами, стеринами (холестерин), стероидами, витаминами Е, D, К и др. Большое значение для организма имеют и сложные липиды (фосфолипиды, состоящие из эфиров жирных кислот или спиртов, азотистых оснований и фосфорной кислоты, а также цереброзиды, сфингомиелин).

Жир служит одним из основных источников энергии. В первом полугодии жизни за счет жиров покрывается около 50% всей суточной калорийности, у детей от 6 мес до 4 лет - 30 -40%, у детей школьного возраста - 25 - 30%, у взрослых - около 40 %, что определяет относительно большую потребность в нем. На первом году ребенок должен получать 4 - 6 г, в дошкольном и школьном возрасте - 2,0 - 2,5 г жира на 1 кг массы тела в сутки. Липиды входят в состав клеток различных тканей (головного мозга, половых желез и других органов), образуют прослойки в органах, но основная масса их сосредоточена в подкожной клетчатке в виде жировых депо, где постоянно идут обменные процессы. Богаты жирами брыжейка кишок и сальник. Жир является опорой для внутренних органов и сосудов, защищает их от холода и предохраняет от травм. Ненасыщенные жирные кислоты повышают иммунитет по отношению к инфекционным агентам, улучшают усвояемость белка, оказывают влияние на деятельность ЦНС, регулируют проницаемость сосудов. Дериваты ненасыщенных жирных кислот играют роль гормонов. Фосфолипиды являются транспортной формой для желчных кислот, способствуют синтезу белка в организме, регулируют моторику желудочно-кишечного тракта и отложение балластного жира.

В кишечнике жиры после соединения с желчными кислотами расщепляются под влиянием липаз на глицерин и свободные жирные кислоты, а затем, всасываясь, вновь синтезируются в слизистой оболочке кишечника. Очень небольшая часть эмульгированного жира женского молока всасывается в неизмененной форме. Примерно 7% липидов выделяется с калом в виде жира, жирных кислот и мыл.

Принимая во внимание сравнительно низкую активность желудочно-кишечных ферментов у детей, процент не использованного в процессе пищеварения жира тем больше, чем моложе ребенок. Особенно неблагоприятно сказываются на усвоении жиров недоношенность и искусственное вскармливание. Все составные компоненты липидов, кроме линолевой, линоленовой и архидоновой кислот, могут синтезироваться в организме человека, незаменимые кислоты ребенок должен получать с пищей. Избыток поступившего или синтезированного жира откладывается в жировых депо.

Процессы липогенеза и липолиза тесно связаны с углеводным обменом, так как на содержание липидов в организме влияет не только количество их в пище, но и синтез из углеводов. В детском возрасте этот синтез жиров идет наиболее интенсивно. Преимущественно углеводное питание (каши) очень быстро приводит к значительной весовой прибавке. При этом необходимо заметить, что жиры, образовавшиеся из углеводов, качественно ниже ассимилированных пищевых жиров, так как не содержат незаменимых жирных кислот. В условиях недостатка углеводов расщепление жиров, идущее на покрытие энергии, сопровождается образованием избыточного количества кетоновых тел, так как полное сгорание жира возможно только в присутствии углеводов.

Склонность к кетозу составляет еще одну из особенностей обмена у детей. Кетоз легко развивается при увеличении в пище кетогенных ингредиентов, легком голодании, различных заболеваниях, стрессовых ситуациях и сопровождается кетонурией. Источником образования жира в организме могут служить и белки, но в детском возрасте этот процесс выражен незначительно даже при очень высоком их содержании в пище.

Сразу после рождения уровень общих липидов крови низкий, но быстро нарастает в первые недели жизни. Содержание холестерина в сыворотке крови у детей в возрасте 1 года составляет 2,6 - 3,38 ммоль/л, фосфолипидов - 1,8 - 2,2 ммоль/л и мало изменяется в последующие периоды жизни. Среди липидов преобладают ненасыщенные жирные кислоты, наибольший удельный вес имеют линолевая, олеиновая и пальмитиновая кислоты. Наличие у недоношенных новорожденных липидов с высокой точкой плавления является одной из причин возникновения у них затвердений подкожной клетчатки (склеремы) в различных участках тела, но чаще в области нижних конечностей. Повышенное содержание липидов крови (липемия) может быть алиментарного происхождения, но обычно наблюдается у детей при поражении почек с нефротическим синдромом, диабете, гипотиреозе и других заболеваниях.

Регуляция жирового обмена осуществляется нейрогуморальными механизмами. Ведущее значение имеет ЦНС, которая через пищевой центр влияет на пищеварительные органы и возбуждает аппетит. Разностороннее действие на жировой обмен оказывают инсулин, гормоны щитовидной (тироксин), половых желез и коры надпочечников (кортикостероиды). Инсулин способствует переходу сахара в гликоген и жир, вызывает гипогликемию и тем самым возбуждает пищевой центр. Кроме того, он тормозит образование углеводов из жиров, препятствует выходу жира из депо. Тироксин усиливает основной обмен, вызывая распад жиров. Снижение функции половых желез вызывает ожирение. Кортикостероиды усиливают переход углеводов в жиры.

Наиболее частой патологией жирового обмена у детей является избыточное отложение жира (ожирение) вследствие различных причин (перекорм, дисфункции эндокринных желез, церебрального происхождения). Возможны и нарушения противоположного характера, сопровождающиеся исхуданием, что нередко является следствием лихорадочного состояния с анорексией и нарушением всасывания. Причиной исхудания у детей могут быть гипертиреоз, невропатия, липодистрофия и др.

Большую группу нарушений липидного обмена составляют липоидозы, по патогенетической сущности относимые к болезням накопления (наследуемая патология, обусловленная ферментативными нарушениями в метаболизме липидов). При этом уровень липидов крови остается в пределах нормы. Избыточное их отложение обнаруживается в органах ретикулоэндотелия - печени, селезенке, лимфатических узлах, костном мозге и т. д. Примерами могут служить: болезнь Гоше, характеризующаяся избыточным отложением аномальных цереброзидов, болезнь Нимана - Пика, обусловленная накоплением сфингомиелина, амавротическая идиотия, связанная с повышенным содержанием ганглиозидов преимущественно в нервной системе.

Углеводный обмен у детей

Обмен углеводов

Углеводы в организме человека находятся как в свободном состоянии, так и в связи с белками, жирами и другими веществами в виде гликопротеинов, гликозаминогликанов (мукополисахаридов) и липоглико-протеинов. Они выполняют весьма важные и разнообразные функции, основной из которых является энергетическая. За счет сгорания углеводов у грудных детей покрывается около 40% суточной калорийности, с возрастом этот процент возрастает. У старших школьников из углеводов образуется более 50% всей необходимой энергии. Углеводы являются и пластическим материалом, входя в состав основного вещества соединительной ткани в виде мукополисахаридов. Последние обнаруживаются в составе цитомембран, в том числе клеток крови, в наружной поверхности слизистых оболочек, через которые в клетку поступают питательные вещества и кислород. Значительная роль принадлежит углеводам в биосинтезе нуклеиновых кислот, формировании специфичности групп крови, иммунологических процессах и т. д.

В первые месяцы жизни ребенок получает углеводы в виде дисахаридов грудного молока (лактозы), а позднее - тростникового и молочного сахаров, содержащихся в пище, крахмала, расщепляющегося в полости рта и желудке до мальтозы. Дисахариды обладают сравнительно большей энергетической ценностью и меньшей осмолярностью по сравнению с крахмалом и другими сахарами, что является оптимальным для резорбции пищевых веществ. Расщепление дисахаридов на моносахариды - глюкозу, галактозу, фруктозу - происходит в тонком кишечнике под влиянием ферментов мальтазы, лактазы, инвертазы. Галактоза, содержащаяся в лактозе, всасывается в кишечнике значительно быстрее, чем фруктоза и глюкоза. Определенная часть углеводов расщепляется в кишечнике путем брожения, вызванного бактериями.

Ассимиляция углеводов в детском возрасте выше, чем у взрослых. У грудных детей усваивается около 99 % углеводов независимо от характера вскармливания. Уровень сахара крови является постоянной константой даже у здоровых новорожденных. В норме у детей дошкольного и школьного возраста он составляет 3,33 - 6,66 ммоль/л, у новорожденных - 0,5 - 4,5 ммоль/л и поддерживается соответствующей секрецией инсулина и других гормонов - его антагонистов (адреналин, глюкагон, гормон роста, кортикостероиды). При этом большое значение имеют состав пищи, энергетические затраты организма, интенсивность метаболических процессов; выявляется тесная взаимосвязь с обменом жиров. При недостатке углеводов усиливаются липолиз и сгорание жиров, повышается гликонеогенез. Избыток всосавшихся моносахаридов откладывается в форме гликогена (полимеризованной глюкозы) в печени и мышцах. Синтез гликогена и его расщепление происходит с участием процессов фосфорилирования.

Углеводный обмен у детей характеризуется высокой интенсивностью. Повышенные энергетические затраты в связи с ростом и формированием детского организма определяют высокие потребности его в углеводах, тем более что синтез последних из белков и жиров у детей сравнительно низкий. В грудном возрасте ребенку необходимо 12-14 г углеводов на 1 кг массы в сутки.

В последующие годы эта величина зависит от особенностей конституции, характера пищи детей и колеблется от 8 до 15 г/кг в сутки. Предел выносливости к углеводам у детей относительно выше (в грудном возрасте пищевая глюкозурия наступает при одномоментном введении ребенку 8- 12 г глюкозы на 1 кг массы тела, в то время как у взрослых - при введении около 3 г/кг), что, по-видимому, обусловлено сравнительно,пегко происходящими процессами гликогенеза.

Это же подтверждается характером гликемической кривой: в условиях приблизительно одной и той же нагрузки максимальный подъем ее у детей ниже, чем у взрослых. Высокие энергетические потребности детей определяют сравнительно небольшие отложения гликогена в печени. В то же время у них отмечается высокий гликогенолиз (расщепление гликогена до глюкозы) и гликолиз, т. е. расщепление глюкозы с образованием молочной и пировиноградной кислот. В результате усиленного гликолиза в крови у детей может обнаруживаться повышенное количество молочной кислоты. Часть ее ресинтезируется в гликоген печенью, другая превращается в пировиноградную кислоту, окисляется и является источником главной части энергии, потребляемой организмом.

Роль липидов для детского организма определяется многообразными функциями.

Важными из которых являются энергетическая, пластическая, обеспечение структуры и функций биологических мембран.

Потребность ребенка в липидах превышает потребность в белках и зависит от возраста.

Потребность в липидах в зависимости от возраста

Ребенок, находящийся на естественном вскармливании, должен получать на 1 кг массы тела 5-6,5 г жира (6,5-6 г в первом полугодии и 6 – 5 г – во втором). Очень существенным является правильное и оптимальное соотношение белков, жиров и углеводов и при естественном вскармливании оно составляет 1: 3: 6, а с момента получения прикорма 1:2: 4 соответственно и 1:1: 4 в более старшем возрасте.

Оптимальное количество жира абсолютно необходимо для полного использования белков пищи для пластических и других функций. Избыток жира в рационе также нежелателен, т.к. это может послужить причиной кетоза, угнетения функций поджелудочной железы.

Основным источником энергии для плода являются углеводы, но после рождения-триацилглицерины. Установлено, что у новорожденного потребность в энергии покрывается за счет жиров на 80-90%, у детей в возрасте до года на 50%, в более старшем возрасте на 30-35%. Особое внимание должно уделяться качественному составу жиров, используемых в питании детей, что обеспечивает полноценность жира. С этой целью рекомендуется правильное сочетание в пище жиров растительного и животного происхождения, (первые обеспечивают организм полиненасыщенными жирными кислотами, вторые благоприятствуют всасыванию жирорастворимых витаминов). Показана целесообразность включения в рацион детей от 1 года до 3 лет сливочного масла пополам с нерафинированным подсолнечным. Потребность детей в полиненасыщенных жирных кислотах также изменяется с возрастом и обеспечивается в основном линолевой кислотой (содержится в рыбьем жире, подсолнечном и кукурузном масле).

Потребности новорожденного в жирах полностью покрываются молоком матери, в котором содержание жира – 3,5-3,7%; как известно, жир молока находится уже в эмульгированном состоянии и там же содержится липаза, активность которой в 15-25 раз выше желудочно-панкреатической.

У детей важную роль в переваривании липидов играет желудочная липаза, кроме того, жир молока находится в эмульгированном состоянии. Важно отметить, что количество соляной кислоты в желудочном соке значительно меньше, чем у взрослого. У детей грудного возраста в желудке гидролизуется от 25 до 50% жира. С возрастом жир в желудке переваривается с меньшей интенсивностью, так как меняется пищевой рацион, увеличивается кислотность желудочного сока.

У новорожденных активность панкреатической липазы низкая, мало у них и желчных кислот. У детей количество желчных кислот значительно меньше, чем у взрослых. Это объясняется тем, что активность ферментных систем, способствующих синтезу желчных кислот из холестерина, недостаточная. Холестерин используется для пластических целей. Главной желчной кислотой является таурохолевая, т.к. она обладает еще и бактерицидным действием.

Следствием низкой активности липолитических ферментов желудочно-кишечного тракта, малого количества желчных кислот у детей грудного возраста является высокое содержание в испражнениях непереваренного жира.

Состав ТАГ новорожденных и взрослых (в %)

ПРИЛОЖЕНИЕ ДЛЯ ПЕДИАТРИЧЕСКОГО ФАКУЛЬТЕТА

Особенности состава липопротеинов у детей

Для периода новорожденности характерно определенное соотношение фракций липопротеидов (ЛП).

Прежде всего, содержание ЛП у детей ниже, чем у взрослых; отсутствуют хиломикроны, значительно меньше липопротеидов очень низкой плотности (ЛПОНП). Основную фракцию ЛП составляют ЛПВП (а - ЛП), которые транспортируют большую часть циркулирующего холестерина.

С возрастом уровень ЛПВП снижается, а ЛПНП - повышается и 2-14 годам уже не изменяется. Имеются существенные различия в качественном составе классов ЛП. По данным А.А.Никифоровой с соавт. (1980) ЛПОНП новорожденных характеризуется большим содержанием белка и меньшим - ТАГ, чем ЛПОНП взрослых. В ЛПНП более высокое содержание ТАГ (50% всех ТАГ пуповинной крови), белка и свободного холестерина. Состав ЛПВП новорожденных отличается большим содержанием фосфолипидов, свободного холестерина (количество его в 2 раза выше, чем у взрослых) и меньшим содержанием белка и триацилглицеринов.

Наследственнаягиперхиломикронеми или гиперлипопротеинемия обусловлена врожденной недостаточностью липопротеинлипазы жировой ткани. При

этом заболевании развивается хиломикронемия и высокий уровень триацилглицеринов (выше 2г/100мл плазмы).

Наследственная семейная гиперхиломикронемия - врожденное заболевание. В большинстве случаев молекулярное нарушение состоит в отутствии или недостатке активных рецепторов ЛПНП. При этом в плазме имеет место высокий уровень холестерина и ЛПНП, что может быть причиной раннего атеросклероза. Имеются гомо- и гетерозиготные формы заболевания. Большинство гомозиготных больных гиперхолестеринемией погибают в детстве из-за поражения коронарных сосудов. Характерно развитие ксантоматоза - многочисленные доброкачественные жировые опухоли (ксантомы кожи, сухожилий, костной ткани).

Абеталипопротеинемия - генетическое заболевание, характеризующееся отсутствием в плазме ЛПНП, демиелинизацией нервных волокон. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, наблюдается акантоцитоз - деформация эритроцитов (зубчатые эритроциты).

Наследственная недостаточность ЛПВП (болезнь Танжера) - характеризуется отсутствием в плазме ЛПВП. При этом уровень холестерина и фосфолипидов плазмы снижен, во многих тканях - избыток эфиров холестерина.

Особенности жирового обмена в детском возрасте. Поступивший с пищей жир в пищеварительном тракте расщепляется на глицерин и жирные кислоты, которые всасываются в основном в лимфу и лишь частично в кровь. В организме из этих веществ, а также из продуктов обмена углеводов и белков синтезируется жир, который используется организмом прежде всего как богатый источник энергии.

При распаде жира выделяется в 2 раза больше энергии, чем при распаде равного количества белков и углеводов. Кроме того, жир является обязательной составной частью клеточных структур: цитоплазмы, ядра и клеточной мембраны, особенно нервных клеток. Не израсходованный в организме жир откладывается в запас в виде жировых отложений.
Некоторые непредельные жирные кислоты, необходимые организму (линолевая, линоленовая и арахидоновая), должны поступать в организм в готовом виде, так как он не способен их синтезировать. Содержатся непредельные жирные кислоты в растительных маслах. Больше всего их в льняном и конопляном масле, но много линолевой кислоты и в подсолнечном масле. Этим объясняется высокая питательная ценность маргарина, в котором содержится значительное количество растительных жиров.
С жирами в организм поступают растворимые в них витамины (витамины A, D, Е и др.), имеющие для человека жизненно важное значение. На 1 кг массы взрослого человека в сутки должно поступать с пищей 1,25 г жиров (80-100 г в сутки).
Обмен углеводов и его возрастные особенности.

Углеводы являются основным источником энергии. Наибольшее количество углеводов содержится в злаках, картофеле. Богаты углеводами также овощи и фрукты. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками организма. Неиспользуемая глюкоза в печени синтезируется в гликоген - полисахарид, откладывающийся в печени и мышцах и являющийся резервом углеводов в организме. При отсутствии углеводов в пище они могут вырабатываться из продуктов распада белков и жиров. Особенно чувствительной к снижению уровня глюкозы в крови (глипогликемии) является центральная нервная система. Уже незначительное снижение сахара в крови вызывает слабость, головокружение, при значительном падении углеводов наступают разные вегетативные расстройства, судороги, потеря сознания.

Углеводы обладают способностью быстро распадаться и окисляться. Быстрота распада глюкозы и возможность быстрого извлечения и переработки ее резерва - гликогена создают условия для экстренной мобилизации энергетических ресурсов при резком эмоциональном возбуждении, интенсивных мышечных нагрузках.
Значение глюкозы для организма не исчерпывается ее ролью как источника энергии. Она входит в состав нуклеиновых кислот, в состав цитоплазмы и, следовательно, необходима для образования новых клеток, особенно в период роста.
В детском организме, в период его роста и развития, углеводы выполняют не только роль основных источников энергии, но и важную пластическую роль при формировании клеточных оболочек, вещества соединительной ткани. Углеводы участвуют в окислении продуктов белкового и жирового обмена, чем способствуют поддержанию кислотно-щелочного равновесия в организме.

В организме ребенка с первого полугодия жизни за счет жиров покрывается примерно на 50 % потребность в энергии. Без жиров невозможна выработка общего и специфического иммунитета. Обмен жиров у детей неустойчив, при недостатке в пище углеводов или при усиленном их расходе быстро истощаются депо жира.
Всасывание жиров у детей идет интенсивно. При грудном вскармливании усваивается до 90 % жиров молока, при искусственном – 85–90 %. У более взрослых детей жиры усваиваются на 95–97 %.
Для более полноценного использования жира в пище детей обязательно должны присутствовать углеводы, так как при их недостатке в питании происходит неполное окисление жиров и в крови накапливаются кислые продукты обмена.
Потребность организма в жирах на 1 кг массы тела тем выше, чем меньше возраст ребенка. С возрастом увеличивается абсолютное количество жира, необходимое для нормального развития детей. От 1 до 3 лет суточная потребность в жире составляет 32,7 г, от 4 до 7 лет – 39,2 г, от 8 до 13 лет – 38,4 г.

Обмен углеводов у детей.

У детей обмен углеводов совершается с большой интенсивностью, что объясняется высоким уровнем обмена веществ в детском организме. Углеводы в детском организме служат не только основным источником энергии, но и выполняют важную пластическую роль при формировании клеточных оболочек, вещества соединительной ткани. Участвуют углеводы и в окислении кислых продуктов белкового и жирового обмена, чем способствуют поддержанию кислотно-щелочного равновесия в организме.
Интенсивный рост детского организма требует значительных количеств пластического материала – белков и жиров, поэтому образование углеводов у детей из белков и жиров ограничено. Суточная потребность в углеводах у детей высокая и составляет в грудном возрасте 10–12 г на 1 кг массы тела. В последующие годы потребное количество углеводов колеблется от 8–9 до 12–15 г на 1 кг массы. Ребенку в возрасте от 1 до 3 лет нужно давать с пищей в сутки в среднем 193 г углеводов, от 4 до 7 лет – 287 г, от 9 до 13 лет – 370 г, от 14 до 17 лет – 470 г, взрослому – 500 г.
Усваиваются углеводы детским организмом лучше, чем взрослым (у грудных детей – на 98–99 %). Вообще дети отличаются относительно большей выносливостью к повышенному содержанию сахара в крови, нежели взрослые. У взрослых глюкоза появляется в моче, если ее поступает 2,5–3 г на 1 кг массы тела, а у детей это происходит лишь при поступлении 8-12 г глюкозы на 1 кг массы тела. Прием незначительных количеств углеводов с пищей может вызвать у детей увеличение сахара в крови в два раза, но уже через 1 ч содержание сахара в крови начинает снижаться и через 2 ч полностью нормализуется.

Водный обмен

В организме ребенка преобладает внеклеточная вода, это обусловливает большую гидролабильность детей, то есть способность быстро терять и быстро накапливать воду. Потребность в воде на 1 кг массы тела с возрастом уменьшается, а абсолютное ее количество возрастает. Трехмесячному ребенку требуется 150–170г воды на 1 кг массы, в 2 года – 95г, в 12–13 лет – 45г. Суточная потребность в воде у годовалого ребенка 800 мл, в 4 года – 950-1000 мл, в 5–6 лет – 1200 мл, в 7-10 лет – 1350 мл, в 11–14 лет – 1500 мл.

Значение минеральных солей в процессе роста и развития ребенка.

С наличием минеральных веществ связано явление возбудимости и проводимости в нервной системе. Минеральные соли обеспечивают ряд жизненно важных функций организма, таких как рост и развитие костей, нервных элементов, мышц; определяют реакцию крови (рН), способствуют нормальной деятельности сердца и нервной системы; используются для образования гемоглобина (железо), соляной кислоты желудочного сока (хлор); поддерживают определенное осмотическое давление.
У новорожденного минеральные вещества составляют 2,55 % от массы тела, у взрослого – 5 %. При смешанном питании взрослый человек получает все необходимые ему минеральные вещества в достаточном количестве с пищей, и только поваренную соль добавляют к пище человека при ее кулинарной обработке. Растущий детский организм особенно нуждается в дополнительном поступлении многих минеральных веществ.
Минеральные вещества оказывают важное влияние на развитие ребенка. С кальциевым и фосфорным обменом связаны рост костей, сроки окостенения хрящей и состояние окислительных процессов в организме. Кальций влияет на возбудимость нервной системы, сократимость мышц, свертываемость крови, белковый и жировой обмен в организме. Фосфор нужен не только для роста костной ткани, но и для нормального функционирования нервной системы, большинства железистых и других органов. Железо входит в состав гемоглобина крови.
Наибольшая потребность в кальции отмечается на первом году жизни ребенка; в этом возрасте она в восемь раз больше, чем на втором году жизни, и в 13 раз больше, чем на третьем году; затем потребность в кальции снижается, несколько повышаясь в период полового созревания. У школьников суточная потребность в кальции – 0,68-2,36 г, в фосфоре – 1,5–4,0 г. Оптимальное соотношение между концентрацией солей кальция и фосфора для детей дошкольного возраста составляет 1: 1, в возрасте 8-10 лет – 1: 1,5, у подростков и старших школьников – 1: 2. При таких отношениях развитие скелета протекает нормально. В молоке имеется идеальное соотношение солей кальция и фосфора, поэтому включение молока в рацион питания детей обязательно.
Потребность в железе у детей выше, чем у взрослых: 1–1,2 мг на 1 кг массы в сутки (у взрослых – 0,9 мг). Натрия дети должны получать 25–40 мг в сутки, калия – 12–30 мг, хлора – 12–15 мг.

23 вопросТерморегуляция

ТЕРМОРЕГУЛЯЦИЯ , физиологический процесс, обеспечивающий поддержание постоянной температуры в организме теплокровных животных и человека. Постоянство температуры – результат саморегуляции организма, необходимой для нормальной жизнедеятельности. Температура тела зависит от теплопродукции и теплоотдачи. Теплопродукция, т. е. выработка тепла в организме, зависит от интенсивности обмена веществ. Теплоотдача с поверхности тела во внешнюю среду осуществляется несколькими способами. Сосудистая теплоотдача заключается в изменении наполнения сосудов кожи кровью и скорости её протекания за счёт расширения или сужения просвета сосуда. Повышение кровенаполнения усиливает теплоотдачу, а уменьшение – снижает. Теплоотдача осуществляется также за счёт излучения и испарения воды с потом (при испарении пота с поверхности кожи выделяется избыток тепла, что обеспечивает нормальную температуру тела). Часть тепла выделяется с выдыхаемым воздухом, а также с мочой и калом.

Если процесс теплопродукции преобладает над процессом теплоотдачи, происходит перегревание организма, вплоть до теплового удара . Если процесс теплоотдачи преобладает над теплопродукцией, наступает переохлаждение организма.

В терморегуляции принимают участие нервные и гуморальные механизмы. Температурные колебания окружающей среды действуют на терморецепторы, импульсы от которых поступают в головной мозг и активизируют центр терморегуляции, расположенный в области гипоталамуса . Возбуждение этого центра приводит к изменению теплопродукции и теплоотдачи и температура тела остаётся постоянной в пределах 36,5-37 °C. У новорождённых и грудных детей терморегуляция окончательно не сформирована (теплоотдача преобладает над теплопродукцией). Нарушение терморегуляции наблюдается при лихорадке, сопровождающей воспалительные и инфекционные болезни, расстройствах кровообращения (в тёплую погоду старики жалуются на зябкость, особенно ног и поясницы), возрастных изменениях эндокринной системы (в климактерический период многие женщины испытывают чувство жара), употреблении алкоголя.

МЕХАНИЗМЫ ТЕПЛОПРОДУКЦИИ
Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиза АТФ. При гидролизе питательных веществ часть осво­божденной энергии аккумулируется в АТФ, а часть рассеивается в виде теплоты (первичная теплота). При использовании энергии, аккумулированной в АГФ, часть энергии идет на выполнение полезной работы, часть рассеивается в виде тепла (вторичная теплота). Таким образом, два потока теплоты - первичной и вторичной - являются теплопродукцией. При высокой температуре среды или соприкосновении человека с горячим телом, часть тепла организм может получать извне (экзогенное тепло).
При необходимости повысить теплопродукцию (например, в условиях низкой темпера­туры среды), помимо возможности получения тепла извне, в организме существуют меха­низмы, повышающие продукцию тепла.
Классификация механизмов теплопродукции:
1.Сократительный термогенез - продукция тепла в результате сокращения скелетных мышц:
а) произвольная активность локомоторного аппарата;
б) терморегуляционный тонус;
в) холодовая мышечная дрожь, или непроизвольная ритмическая активность скелет­ных мышц.
2.Несократительный термогенез, или недрожательный термогенез (продукция тепла в результате активации гликолиза, гликогенолиза и липолиза):
а)в скелетных мышцах (за счет разобщения окислительного фосфорилирования);
б) в печени;
в) в буром жире;
г) за счет специфико-динамического действия пищи.
Сократительный термогенез
При сокращении мышц возрастает гидролиз АТФ, и поэтому возрастает поток вторич­ной теплоты, идущей на согревание тела. Произвольная мышечная активность, в основном, возникает под влиянием коры больших полушарий. Опыт человека показывает, что в усло­виях низкой температуры среды необходимо движение. Поэтому реализуются условнорефлекторные акты, возрастает произвольная двигательная активность. Чем она выше, тем выше теплопродукция. Возможно повышение ее в 3-5 раз по сравнению с величиной ос­новного обмена. Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса. Впервые его выявили в 1937 г. у животных, а в 1952 г. - у человека. С помощью метода электромиографии показано, что при повышении тонуса мышц, вызванного переохлаждением, повышается электрическая активность мышц. С точки зрения механики сокращения, герморегуляционный тонус пред­ставляет собой микровибрацию. В среднем, при его появлении, теплопродукция возрастает на 20-45% от исходного уровня. При более значительном переохлаждении терморегуля­ционный тонус переходит в мышечную холодовую дрожь. Терморегуляционный тонус эко­номнее, чем мышечная дрожь. Обычно в его создании участвуют мышцы головы и шеи.
Дрожь, или холодовая мышечная дрожь, представляет собой непроизвольную ритмиче­скую активность поверхностно расположенных мышц, в результате которой теплопродук­ция возрастает по сравнению с исходным уровнем в 2-3 раза. Обычно вначале возникает дрожь в мышцах головы и шеи, затем - туловища и, наконец, конечностей. Считается, что эффективность теплопродукции при дрожи в 2,5 раза выше, чем при произвольной деятель­ности.
Сигналы от нейронов гипоталамуса идут через «центральный дрожатель­ный путь» (тектум и красное ядро) к альфа-мотонейронам спинного мозга, откуда сигналы идут к соответствующим мышцам, вызывая их активность. Курареподобные вещества (миорелаксанты) за счет блокады Н-холинорецепторов блокируют развитие терморегуляционного тонуса и холодовой дрожи. Это используется для создания искусственной гипотер­мии, а также учитывается при проведении оперативных вмешательств, при которых приме­няются миорелаксанты.
Несократительный термогенез
Он осуществляется путем повышения процессов окисления и снижения эффективности сопряжения окислительного фосфорилирования. Основным местом продукции тепла явля­ются скелетные мышцы, печень, бурый жир. За счет этого вида термогенеза теплопродук­ция может возрасти в 3 раза.
В скелетных мышцах повышение несократителыюго термогенеза связано с уменьшени­ем эффективности окислительного фосфорилирования за счет разобщения окисления и фо­сфорилирования, в печени - в основном, путем активации гликогенолиза и последующего окисления глюкозы. Бурый жир повышает теплопродукцию за счет липолиза (под влияни­ем симпатических воздействий и адреналина). Бурый жир расположен в затылочной облас­ти, между лопатками, в средостении по ходу крупных сосудов, в подмышечных впадинах. В условиях покоя около 10% тепла образуется в буром жире. При охлаждении роль бурого жира резко повышается. При холодовой адаптации (у жителей арктических зон) возрастает масса бурого жира и ее вклад в общую теплопродукцию.
Регуляция процессов несократительного термогенеза осуществляется путем активации симпатической системы и продукции гормонов щитовидной железы (они разобщают окислительное фосфорилирование) и мозгового слоя надпочечников.
МЕХАНИЗМЫ ТЕПЛООТДАЧИ
Основная масса тепла образует­ся во внутренних органах. Поэтому внутренний поток тепла для удале­ния из организма должен подойти к коже. Перенос тепла от внутренних органов осуществляется за счет теплопроведения (таким способом пе­реносится менее 50% тепла) и кон­векции, т. е. тепломассапереноса. Кровь в силу своей высокой тепло­емкости являетсяхорошим провод­ником тепла.
Второй поток тепла - это поток, направленный от кожи в среду. Его называют наружным потоком. Рас­сматривая механизмы теплоотдачи, обычно имеют ввиду именно этот поток.
Отдача тепла в среду осуществ­ляется с помощью 4 основных меха­низмов:
1)испарения;
2)теплопроведения;
3)теплоизлучения;
4)конвекции

Механизмы теплоотдачи и управление выделением тепла.
К – кора, Кж – кожа, ЦГт – центры гипоталамуса, Сдц – сосудодвигательный центр, Пм – продолговатый мозг, См – спинной мозг, Гф – гипофиз, ТГ – тиреотропный гормон, Жвс – железы внутренней секреции, Гм – гормоны, Птр – пищеварительный тракт, Кс – кровеносные сосуды, Л – легкие, а, б – поток афферентной импульсации.
Вклад каждого механизма в теплоотдачу определяется состоянием среды и скоро­стью продукции тепла в организме. В условиях температурного комфорта основная масса тепла отдается за счет теплопроведения, теплоизлучения и конвекции и лишь 19-20% - с помощью испарения. При высокой температуре среды до 75-90% тепла отдается за счет испарения.
Теплопроведение - это способ отдачи тепла телу, которое непосредственно контакти­рует с телом человека. Чем ниже температура этого тела, чем выше температурный гради­ент, тем выше скорость потери тепла за счет этого механизма. Обычно этот способ отдачи тепла ограничен одеждой и воздушной прослойкой, которые являются хорошими изолято­рами тепла, а также подкожным жировым слоем. Чем толще этот слой, тем меньше вероят­ность передачи тепла к холодному телу.
Теплоизлучение - отдача тепла с участков кожи, не прикрытых одеждой. Происходит путем длинноволнового инфракрасного излучения, поэтому такой вид теплоотдачи еще называют радиационной теплоотдачей. В условиях температурного комфорта за счет этого механизма отдается до 60% тепла. Эффективность теплоизлучения зависит от градиента температуры (чем он выше, тем больше тепла отдается), от площади, с которой происходит излучение, от числа объектов, находящихся в среде, которые поглощают инфракрасные лучи.
Конвекция. Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. Таким способом - за счет тепломассапереноса отдается в условиях температурного комфорта до 15% тепла.
Во всех перечисленных механизмах большую роль играет кожный кровоток: когда его интенсивность возрастает за счет снижения тонуса гладкомышечных клеток артериол и закрытия артериовенозных шунтов - отдача тепла существенно возрастает. Этому также способствует увели­чение объема циркулирующей крови: чем больше его значение, тем выше возможность переноса тепла в среду. На холоде происходят противоположные процессы - уменьшается кожный кровоток, в том числе за счет прямого переброса артериальной крови из артерий в вены, минуя капилляры, уменьшается объем циркулирующей крови, меняется и поведенческая реакция: человек или жи­вотное инстинктивно занимает позу «калачиком», т. к. в этом случае площадь отдачи тепла уменьшается на 35%, у животных к этому добавляется и реакция - «гусиная кожа» - подъем волос кожи (пилоэрекция), что повышает ячеистость накожного покрова и снижает возможность отдачи тепла.
На долю кистей рук приходится небольшая часть поверхности тела - всего 6%, но их кожей отдается до 60% тепла при помощи механизма сухой теплоотдачи (теплоизлучение, конвекция).
Испарение. Отдача тепла происходит за счет траты энергии (0,58 ккал на 1 мл воды) на испарение воды. Различают два вида испарения, или перспирации: неощущаемую и ощущаемую пер­спирацию.
а)неощущаемая перспирация - это испарение воды со слизистых дыхательных путей и воды, которая просачивается через эпителий кожного покрова (тканевой жидкости). За сут­ки через дыхательные пути испаряется в норме до 400 мл воды, т. е. отдается 400x0,58ккал=232ккал/сутки. При необходимости эта величина может быть увеличена за счет так назы­ваемой тепловой одышки, которая обусловлена влиянием нейронов центра теплоотдачи на дыхательные нейроны ствола мозга.
В среднем за сутки через эпидермис просачивается около 240 мл воды. Следовательно, за счет этого отдается 240 0,58ккал=139ккал/сутки. Эта величина не зависит от процессов регуляции и различных факторов среды.
Оба вида неощущаемой перспирации за сутки позволяют отдать (400 + 240) 0,58 = 371 ккал.
б)ощущаемая перспирация (отдача тепла путем испарения пота). В среднем за сутки при комфортной температуре среды выделяется 400-500 мл пота, следовательно, отдает­ся до 300 ккал. Однако при необходимости объем потоотделения может возрасти до 12 л/сутки, т. е. путем потоотделения можно отдать почти 7000 ккал в сутки. За час потовые железы могут продуцировать до 1,5 л, а по некоторым источникам - до 3 л пота.
Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность воздуха (насыщенность воздуха водяными парами), тем выше эффективность потоотделения как механизма отдачи тепла. При 100% насыщения воздуха парами воды испарение невозможно.
Потовые железы состоят из концевой части, или тела, и потового протока, который от­крывается наружу потовой порой. По характеру секреции потовые железы делятся на эккриновые (мерокриновые) и апокриновые. Апокриновые железы локализуются, главным образом, в подмышечной впадине, в лобковой области, а также в области половых губ, промежности, околососковом круге молочной железы. Апокриновые железы секретируют жирное вещество, богатое органическими соединениями. Вопрос об их иннервации диску­тируется - одни утверждают, что она адренергическая симпатическая, другие считают, что она вообще отсутствует и продукция секрета зависит от гормонов мозгового вещества над­почечников (адреналина и норадреналина).
Видоизмененными апокриновыми железами являются ресничные железы, расположен­ные в веках у ресниц, а также железы, продуцирующие ушную серу в наружном слуховом проходе, и железы носа (преддверные железы). В испарении, однако, апокриновые железы не участвуют. Эккриновые, или мерокриновые, потовые железы расположены в коже почти всех областей тела. Всего их более 2 млн. (хотя есть люди, у которых они почти полностью отсутствуют). Больше всего потовых желез на ладонях и подошвах (свыше 400 на 1 см 2) и в коже лобка (около 300 на 1см 2). Скорость потообразования, также как и включение в актив­ность потовых желез, в разных участках тела очень широко варьирует.
По химическому составу пот - это гипотонический раствор: он содержит 0,3% хлористо­го натрия (в крови - почти 0,9%), мочевину, глюкозу, аминокислоты, аммоний, малые коли­чества молочной кислоты. рН пота варьирует от 4,2 до 7, в среднем рН = 6. Удельный вес - 1,001-1,006. Так как пот - это гипотоническая среда, то при обильном потоотделении боль­ше теряется воды, чем солей, и в крови может происходить повышение осмотического давле­ния. Таким образом, обильное потоотделение чревато изменением водно-солевого обмена.
Потовые железы иннервируются симпатическими холинергическими волокнами - в их окончаниях выделяется ацетилхолин, который взаимодействует с М-холинорецепторами, повышая продукцию пота. Преганглионарные нейроны расположены в боковых столбах спин­ного мозга на уровне Th 2 -L 2 , а постганглионарные нейроны - в симпатическом стволе.
При необходимости повышения теплоотдачи путем потоиспарения происходит актива­ция нейронов коры, лимбической системы и, главным образом, гипоталамуса. От гипоталамических нейронов сигналы идут к нейронам спинного мозга и постепенно вовлекают раз­личные участки кожи в процесс потоотделения: вначале лицо, лоб, шею, потом - тулови­ще и конечности.