Главная · Стоматит · Как осуществляется транспорт кислорода и углекислого газа кровью. Транспорт газов кровью

Как осуществляется транспорт кислорода и углекислого газа кровью. Транспорт газов кровью

ОСНОВНЫЕ ПОЛОЖЕНИЯ ФИЗИОЛОГИИ И ПАТОФИЗИОЛОГИИ

ВНЕШНЕГО ДЫХАНИЯ

Основной функцией системы внешнего дыхания явля­ется оксигенация крови и удаление углекислого газа. Внеш­нее дыхание можно разделить на два этапа: вентиляция лег­ких и газообмен в них. Вентиляция - это процесс вдоха и выдоха. Процесс вдоха обеспечивается сокращением дыха­тельных мышц, основной мышцей вдоха является диафра­гма. Сокращение дыхательных мышц приводит к уменьше­нию внутриплеврального давления на 8-10 см вод. ст. ниже атмосферного давления за счет увеличения объема грудной клетки. Вследствие этого увеличивается объем легких, а давление в альвеолах понижается на 1-2 см вод. ст. ниже атмосферного давления, и воздух на вдохе поступает у аль­веолы. Разницу между внутриплевральным и внутриальвеолярным давлением называют транспульмональным дав­лением, за счет которого и происходит расширение легких.

Для непосредственного сокращения дыхательных мышц необходима импульсация из дыхательного центра, нейроны которого расположены в ретикулярной формации продол­говатого мозга. Нервные импульсы, которые генерируют нейроны дыхательного центра, проходят по проводящим путям спинного мозга, где расположены мотонейроны ды­хательных мышц, далее направляются по нервным волок­нам к нервно-мышечным синапсам и затем стимулируют сокращение дыхательных мышц. Мотонейроны диафрагмы расположены в C I -C V сегментах спинного мозга (респира­торный тракт), где образуют диафрагмальные нервы, кото­рые являются двигательными нервами диафрагмы. Мото­нейроны дыхательных межреберных мышц расположены посегментарно в спинном мозге; импульсы от них, в основном, идут по межре­берным нервам.

Вентиляция легких направлена на поддержание нормального состава аль­веолярного воздуха. Каков нормальный состав альвеолярного воздуха?

Для освещения этого вопроса необходимо остановиться на определении парциального давления газа в смеси газов. Согласно закону Дальтона, смесь газов образует на стенке закрытой емкости давление, которое равняется сумме парциальных давлений всех газов смеси, а парциальное давление каждого газа в смеси прямо пропорционально его концентрации в смеси. Таким образом, если в атмосферном воздухе концентрация кислорода составляет 20,91 %, а ат­мосферное давление на уровне моря - 760 мм рт. ст., то парциальное давление кислорода в атмосфере будет составлять около 1/5 от атмосферного давления, или 150 мм рт. ст. (20 кПа).

Давление альвеолярного воздуха равно атмосферному при температуре те­ла 37 0 С. В нем на водяные пары припадает 47 мм рт. ст., на все другие газы ос­тается 713 мм рт. ст. Вследствие того, что азот является биологически инертным газом, его концентрация в альвеолах такая же, как и в атмосфере, а именно - 79 %. Таким образом, на кислород и углекислый газ остается около 21 % от 713 мм рт. ст. При условиях нормальной вентиляции парциальное давление углекислого газа в альвеолярном воздухе (Р A СО 2) составляет 40 мм рт. ст. (5,3 кПа), тогда:

Р A О 2 = (АлД - 47) х 0,21 - Р A СО 2 ,

где АлД - альвеолярное давление, которое равно атмосферному и составляет с поправкой на дыхательный коэффициент немногим более 100 мм рт. ст., или 13,3 кПа.

Основным показателем адекватности вентиляции легких принято считать Р A СО 2 .

Следующим этапом внешнего дыхания является газообмен в легких. Об­мен кислорода и углекислого газа между альвеолярным воздухом и кровью ле­гочных капилляров осуществляется путем диффузии через альвеолокапиллярную мембрану. Согласно закону диффузии Фика, скорость диффузии (M/t) прямо пропорциональна разности парциальных давлений газов с обеих сторон мембраны (ΔР), площади диффузии (S, в норме - альвеолярная поверхность), коэффициенту диффузии (k), коэффициенту растворимости газа в жидкости (ά, поскольку в легочном интерстиции и на поверхности альвеол присутствует жидкость) и обратно пропорциональна толщине мембраны (х):

M/t = (ΔP x S x k x ά)/x.

ΔР для кислорода равна 60-70 мм рт. ст., углекислого газа - 6 мм рт. ст. Несмотря на это, а также на значительную величину коэффициента диффузии для кислорода, за счет того, что коэффициент растворимости для углекислого газа намного больше, он диффундирует через альвеолокапиллярную мембрану более чем в 20 раз быстрее кислорода. Благодаря широкой поверхности диф­фузии (альвеолярная поверхность в среднем составляет 80 м 2) резервы диф­фузии в легких немалые, поэтому в клинической практике нарушения диффузии, как основной фактор нарушения газообмена, имеют принципиальное зна­чение практически только при отеке легких.

Кроме диффузии, для нормального газообмена в легких необходимо нор­мальное соотношение между альвеолярной вентиляцией и легочной перфу­зией (V A /Q C), которое в норме составляет 0,8-1,0. При условии увеличения V A /Q C вентилируются альвеолы, которые не перфузируются, поэтому разви­вается гипервентиляция с уменьшением Р A СО 2 (гипокапния). При условии уменьшения V A /Q C развивается гипоксемия (уменьшение РО 2 в артериальной крови). Особо опасно уменьшение V A /Q C до 0, когда перфузия альвеол сохра­нена, а вентиляция отсутствует (шунтирование крови справа налево – Qs/Qt, где Qs- венозная примесь, Qt – сердечный выброс), и венозная кровь без оксигенации и отдачи углекислого газа поступает в легоч­ные вены. Виды нарушений вентиляционно-перфузионных соотношений при­ведены на рис. 1.

Рис. 1. Виды нарушений вентиляционно-перфузионных соотношений. Три модели соотношения вентиляции к перфузии в легких: а - норма, б - шунт, в - альвеолярное мертвое пространство.

Если Qs/Qt превышает 10 % сердечного выброса, то возникает гипоксемия, если 40 % - гиперкапния. Наиболее часто увеличение внутрилегочного Qs/Qt в клинической практике возникает при ателектазах легких, пневмонии, ОРДС.

Транспорт кислорода и углекислого газа кровью

1. Вентиляция легких обеспечивает доставку кислорода из воздуха (Р i О 2 = 158 мм рт. ст.) к альвеолярному газу (Р A О 2 = 105-110 мм рт. ст.), выведение СО 2 из альвеолярного газа (Р A СО 2 = 40 мм рт. ст.) в атмосферу.

Вентиляция у здорового человека приспособлена к метаболическим потребностям таким образом, что напряжение углекислоты в альвеолярном воздухе и артериальной крови (Р а СО 2) поддерживается на уровне 37-40 мм рт.ст., а напряжение кислорода в артериальной крови (Р а О 2) – в пределах 95-98 мм рт.ст.

Вентиляция легких зависит от дыхательного объема (в физиологических условиях 400-500 мл) и частоты дыхания (в норме 12-16 в ми). Произведение дыхательного объема на частоту дыхания (ЧД) составляет минутный объем дыхания (МОД).

В процессе дыхания не весь вдыхаемый воздух участвует в газообмене. Часть его, около 1 / 3 МОД, остается в мертвом пространстве (ОМП), которое включает в себя верхние дыхательные пути (глотка, трахея, бронхи) и невентилируемые альвеолы. Только 2 / 3 МОД достигает альвеол, что составляет минутную альвеолярную вентиляцию (МАВ). Зависимость между МОД и МАВ выражается формулой: МАВ = МОД – ОМП × ЧД. Следует отметить, что МАВ более важный показатель внешнего дыхания, чем МОД. Так при одышке свыше 30 в мин, несмотря на большой МОД альвеолярная вентиляция обычно снижается. При более низком МОД и замедлении дыхания МАВ может увеличиваться. Например, при МОД – 8000 мл, ЧД – 40 в мин и ОМП – 150 мл МАВ = 8000 – (150 × 40) = 2000 мл, а при МОД – 6000 мл, ЧД – 10 в мин и ОМП – 150 мл МАВ = 6000 – (150 × 10) = 4500 мл.

2.Газообмен в легких обеспечивает поступление кислорода из альвеолярного газа в артериальную (капиллярную) кровь (Р А О 2 = 100 мм рт. ст.), СО 2 удаляется из венозной крови легочных капилляров (P v CO 2 = 46 мм рт. ст.) в альвеолярный газ.

3.Малый круг кровообращения обеспечивает доставку кислорода из легких по легочным венам к левому предсердию, СО 2 транспортируется из правого желудочка к альвеолам.

Большой круг кровообращения обеспечивает доставку кислорода по арте­риям к капиллярам (Р С О 2 уменьшается с 100 мм рт. ст. до 40), СО 2 - из капил­ляров (Р с СО 2 - с 40 до 46 мм рт. ст.) в легкие.

Кислород переносится к тканям в виде его соединения с гемоглобином эритроцита и в незначительном количестве растворенным в плазме. Так как 1 г гемоглобина способен связать 1,34 мл О 2 , кислородная емкость крови при нормальном содержании гемоглобина (150 г/л) составляет приблизительно 20 мл О 2 на 100 мл крови, то есть 20 об%. Кроме того, 100 мл крови переносят 0,3 мл кислорода, растворенного в плазме. Даже минимальное количество кислорода, переносимого плазмой, может играть важную роль при возрастании его парциального давления. Повышение Р а О 2 на 1 мм рт.ст. (0,13 кПа) увеличивает содержание кислорода в плазме на 0,003 об%. Таким образом, обычно, в 100 мл крови кислорода содержится около 2 об% (760 × 0,003), а в барокамере при давлении 3 атмосферы около 6 об%. Этого достаточно для обеспечения организма кислородом при выраженной анемии.

У здорового человека не весь гемоглобин связывается с кислородом. Это обусловлено физиологическим артерио-венозным шунтированием в легких, при котором часть крови проходит через невентилируемые альвеолы. Поэтому насыщение (сатурация) крови кислородом (S а О 2) в норме соответствует 96-98%, а не 100%. Величина S а О 2 зависит и от парциального напряжения кислорода в крови (Р а О 2), которое в норме равно 96-98 мм рт.ст. (42,8-43,1 кПа). Между изменениями Р а О 2 и S а О 2 нет полного соответствия, так как S а О 2 даже при дыхании 100% кислородом под давленим 2-3 атмосферы может достигнуть только 100%, а Р а О 2 при этом повысится до 400-600 мм рт.ст. (53-80 кПа), то есть в 3-4 раза.

4.Транскапиллярный обмен газов: кислород переходит из капиллярной крови в интерстициальную жидкость, а затем - в клетки, где в митохондриях, благодаря механизмам тканевого дыхания (НАД, ФАД, цитохромы, цитохромоксидаза), окисляет водород с образованием воды и энергии, которая аккуму­лируется в АТФ; СО 2 , образующийся в цикле Кребса, переходит в капиллярную кровь.

Обмен кислорода на тканевом уровне обеспечивается сохранением градиента давления, что приводит к переходу О 2 из тканевых капилляров путем диффузии к месту утилизации (митохондрии клеток).

При недостатке кислорода организм компенсирует его дефицит, переключаясь на менее эффективный тип дыхания – анаэробный.

В упрощенной схеме оба пути можно представить следующим образом. Анаэробный путь: глюкоза – пировиноградная кислота – молочная кислота + 2 молекулы АТФ (16 кал. свободной энергии). Аэробный путь: глюкоза – пировиноградная кислота - СО 2 + Н 2 О + 38 молекул АТФ (304 кал. свободной энергии).

Следовательно, большая часть проблем реанимации связана с необходимостью поддержания напряжения О 2 в клетках на уровне, способствующем синтезу АТФ путем аэробного метаболизма. Клеточную гипоксию можно определить как состояние, при котором аэробный метаболизм нарушен.

Углекислота транспортируется кровью в трех основных видах – в растворенном, с бикарбонатом и в соединении с белками (главным образом с гемоглобином) в форме карбаминовых соединений. Если альвеолярная вентиляция становится недостаточной для элиминации выработанной организмом углекислоты, Р а СО 2 повышается (возникает гиперкапния).

Таким образом, благодаря системе внешнего дыхания кислород поступает в кровь, а СО 2 выводится из нее; далее сердце перекачивает кровь, насыщен­ную кислородом, к тканям, а кровь, насыщенную углекислым газом, - к лег­ким.

Транспорт кислорода (DO 2) зависит от сердечного индекса (СИ) и содержания кислорода в артериальной крови (CaO 2).

DO 2 = СИ х CaO 2 ,

CaO 2 = Р A О 2 x k + Hb x SaO 2 x G,

где: k - коэффициент растворимости кислорода (0,031 мл/мм рт. ст./л), G - константа Гюфнера (равна количеству кислорода в мл, которое может присоединить 1 г гемоглобина; в среднем составляет 1,36 (1,34-1,39) мл/г).

При условии СИ = 2,5-3,5 л/мин/м 2 , транспорт кислорода составляет: DO 2 = 520-720 мл/мин/м 2 .

Необходимо отметить, что множество патологических состояний, которые нуждаются в оказании неотложной медпомощи, сопровождаются дефицитом доставки и потребления кислорода, что обусловлено недостаточностью дыха­ния, нарушением кровообращения или анемией. В зависимости от механизма нарушений транспорта кислорода к тканям различают несколько видов гипок­сии.

Кроме своей основной, дыхательной, функции легкие осуществляют нереспираторные (недыхательные) функции механического и метаболического характера, которые связывают легкие с другими системами организма.

Нереспираторные (недыхательные) функции легких:

· защитная – легкие задерживают до 90% вредных механических и токсических продуктов (частицы диаметром болем 2 мкм), которые поступают из окружающей среды (важную роль при этом играют слизь дыхательных путей, которая содержит лизоцим и иммуноглобулины, макрофаги и альвеолоциты I та II типа);

· очистительная (фильтрационная) – легкие очищают кровь от механических примесей (агрегатов клеток, капель жира, мелких тромбов, бактерий, крупных атипичных клеток), которые задерживаются в них и подвергаються деструкции и метаболизму;

· фибринолитическая и антикоагулянтная – улавливание легкими тромбов, поддержание фибринолитической и антикоагулянтной активности крови;

· деструкция белков и жиров – легкие богаты протеолитическими и липолитическими ферментами; в легких продуцируется сурфактант – комплекс липопротеидов, который способствует стабильности альвеолярной ткани;

· участие в водном балансе – легкие удаляют за сутки (посредством перспирации) около 500 мл воды, поддерживая нормальную осмолярность крови и тканей удалением СО 2 и соответственным изменением уровня осмотически активних карбонатов (15-30 мосмоль/сутки); вместе с тем, различные жидкости могут активно всасываться в легких, например адреналин уже через 30 с определяется в крови;

· избирательная деструкция биологически активных веществ (серотонин, гистамин, ангиотензин, ацетилхолин, норадреналин, кинины и простагландины), которые, выполнив свою роль в тканях, подлежат удалению из крови;

· детоксикационная функция – в легких осуществляется метаболизм некоторых лекарственных препаратов – аминазина, индерала, сульфаниламидов и др.;

· участие в теплопродукции и теплоотдачи – суточный теплообмен легких в нормальных условиях составляет 350 ккал, а в условиях критического состояния может быть увеличен в несколько раз;

· гемодинамическая функция – легкие являются резервуаром и одновременно прямым шунтом между правой и левой половинами сердца.

В нормальных условиях для выполнения этих функций необходимо не менее 10% общего поглощенного организмом О 2 . Во время критических состояний это количество возрастает во много раз.

Двуокись углерода, образующаяся в тканях, транспортируется кровью тремя способами.

    в виде гидрокарбоната НСОз - плазмы крови и цитоплазмы эритроцитов, образующегося в результате диссоциации угольной кислоты:

Н 2 О + СО 2 = Н 2 СО 3 = Н + + НСО 3 - Таким способом транспортируется около 4/5 всего углекислого газа.

    в виде химического со­единения с дезоксигенированным гемоглобином - карбогемоглобина (около 15 %).

    так же как и О 2 , СО 2 переносится в фи­зически растворенном состоянии (3-6% общего количества СО 2). Содержание физически растворенной двуокиси углерода в артериальной крови составляет 0,026 мл в 1 мл крови, что в 9 раз превышает количество физически растворенного кислорода.

5. Транспорт кислорода и углекислого газа в тканях.

Кислород проникает из крови в клетки тканей путем диффузии, обуслов­ленной разностью (градиентом) его парциальных давлений по обе стороны, так называемого гематопаренхиматозного барьера . Так, среднее Ро 2 артериальной крови составляет около 100 мм рт. ст., а в клетках, где кислород непрерывно утилизируется, стремится к нулю.

Напряжение кислорода в тканях в среднем составляет 20-40 мм рт. ст. Однако эта величина в различных участках живой ткани отнюдь не одинакова. Наибольшее значение Ро 2 фиксируется вблизи артериального конца кровенос­ного капилляра, наименьшая - в самой удаленной от капилляра точке («мерт­вый угол»).

Функция газотранспортной системы организма в конечном счете направлена на поддержание парциального давления кислорода на клеточной мембране не ниже критического , т. е. минимального, необходимого для работы ферментов дыхательной цепи в митохондриях. Для клеток, интенсивно потребля­ющих кислород, критическое Ро 2 составляет около 1 мм рт. ст.

Вместе с тем следует иметь в виду, что напряжение О 2 в тканях зависит не только от снабжения кислородом, но и от его потребления клетками. Наиболее чувствительны к недостатку кислорода клетки кардиомиоцитов и нейроны мозга, где окислительные про­цессы очень интенсивны (реанимация, инфаркт). В отличие от этих клеток, скелетные мыш­цы относительно устойчивы к кратковременному прекращению кислородного снабжения, т.к. они могут использовать анаэробные процессы получения энергии, а также содержат (особенно красные волокна) миоглобин.

Перенос СО 2 из клеток тканей в кровь тоже происходит главным образом путем диффузии, т. е. в силу разности напряжений СО 2 по обе стороны гематопаренхиматозного барьера. Среднее артериальное значение Рсо 2 в среднем составляет 40 мм рт. ст., а в клетках может достигать 60 мм рт. ст. Локальное парциальное давление углекислого газа и, следовательно, скорости его диффузионного транспорта в значительной мере определяются продукцией СО 2 (т. е. интенсивностью окислительных процессов) в данном органе.

По той же причине Рсо 2 и Ро 2 в различных венах не одинаковы. Так, в крови, оттекающей от работающей мышцы, напряжение О 2 гораздо ниже, а напряжение СО 2 гораздо выше, чем, например, в крови, оттекающей от соеди­нительной ткани.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Терапии

"Транспорт газов кровью"

Выполнила: студентка V курса

Проверил: к. м. н., доцент

План

    • Литература

1. Транспорт кислорода

Кислород транспортируется артериальной кровью в двух формах: связанный с гемоглобином внутри эритроцита и растворенный в плазме.

Эритроцит происходит из недифференцированной костномозговой ткани. При созревании клетка утрачивает ядро, рибосомы и митохондрии. Вследствие этого эритроцит не способен к выполнению таких функций, как клеточное деление, окислительное фосфорилирование и синтез белка. Источником энергии для эритроцита служит преимущественно глюкоза, метаболизируемая в цикле Эмбдена-Миергофа, или гексозомонофосфатном шунте.

Наиболее важным внутриклеточным белком для обеспечения транспорта О 2 и СО 2 является гемоглобин, представляющий собой комплексное соединение железа и порфирина. С одной молекулой гемоглобина связываются максимально четыре молекулы О 2 .

Гемоглобин, полностью загруженный О 2 , называется оксигемоглобином , а гемоглобин без О 2 или присоединивший менее четырех молекул О 2 - деоксигенированным гемогл о бином .

Основной формой транспорта О 2 является оксигемоглобин. Каждый грамм гемоглобина может максимально связать 1,34 мл О 2 . Соответственно, кислородная емкость крови находится в прямой зависимости от содержания гемоглобина:

О 2 емкость крови = [ Hb ] 1,34 О 2 Hb /100 мл крови .

У здоровых людей с содержанием гемоглобина 150 г/л кислородная емкость крови составляет 201 мл О 2 крови.

Кровь содержит незначительное количество кислорода, не связанного с гемоглобином, а растворенного в плазме. Согласно закону Генри, количество растворенного О 2 пропорционально давлению О 2 и коэффициенту его растворимости. Растворимость О 2 в крови очень мала: только 0,0031 мл растворяется в 0,1 л крови на 1 мм рт. ст. Таким образом, при напряжении кислорода 100 мм рт. ст. в 100 мл крови содержится только 0,31 мл растворенного О 2 .

СаО 2 = [ (1,34 ) [ Hb ] (Sa О 2 )] + [ (Pa ) (0,0031 )] (3.22).

Кривая диссоциации гемоглобина. Сродство гемоглобина к кислороду возрастает по мере последовательного связывания молекул О 2 , что придает кривой диссоциации оксигемоглобина сигмовидную или S-образную форму.

Верхняя часть кривой (РаО 2 60 мм рт. ст) плоская. Это указывает на то, что SaО 2 и, следовательно, СаО 2 , остаются относительно постоянными, несмотря на значительные колебания РаО 2 . Повышение СаО 2 или транспорта О 2 может быть достигнуто за счет увеличения содержания гемоглобина или растворения в плазме (гипербарическя оксигенация).

РаО 2 , при котором гемоглобин насыщен кислородом на 50% (при 37 0 рН=7,4), известно как Р 50 . Эта общепринятая мера сродства гемоглобина к кислороду. Р 50 крови человека составляет 26,6 мм рт. ст.

Однако оно может изменяться при различных метаболических и фармакологических условиях, воздействующих на процесс связывания кислорода гемоглобином. К ним относят следующие факторы: концентрацию ионов водорода, напряжение углекислого газа, температуру, концентрацию 2,3-дифосфоглицерата (2,3-ДФГ) и др.

Изменение сродства гемоглобина к кислороду, обусловленное колебаниями внутриклеточной концентрации водородных ионов, называется э ф фектом Бора . Снижение рН сдвигает кривую вправо, повышение рН - влево. Форма кривой диссоциации оксигемоглобина такова, что этот эффект более выражен в венозной крови, чем в артериальной. Данный феномен облегчает освобождение кислорода в тканях, практически не сказываясь на потреблении кислорода (в отсутствии тяжелой гипоксии).

2. Транспорт двуокиси углерода

Двуокись углерода оказывает двоякое действие на кривую диссоциации оксигемоглобина. С одной стороны, содержание СО 2 влияет на внутриклеточный рН (эффект Бора). С другой, накопление СО 2 вызывает образование карбаминовых соединений вследствие ее взаимодействия с аминогруппами гемоглобина.

Эти карбаминовые соединения служат в качестве аллостерических эффекторов молекулы гемоглобина и непосредственно влияют на связывание О 2 .

Низкий уровень карбаминовых соединений вызывает сдвиг кривой вправо и снижение сродства гемоглобина к О 2 , что сопровождается увеличение высвобождения О 2 в тканях. По мере роста РаСО 2 сопутствующее ему увеличение карбаминовых соединений сдвигает кривую влево, повышая связывание О 2 гемоглобином.

Органические фосфаты, в частности 2,3-дифосфоглицерат (2,3-ДФГ), образуются в эритроцитах в процессе гликолиза. Продукция 2,3 - ДФГ увеличивается во время гипоксемии, что является важным механизмом адаптации. Ряд условий, вызывающих снижение О 2 в периферических тканях, таких как анемия, острая кровопотеря, застойная сердечная недостаточность и т.д. характеризуются увеличением продукции органических фосфатов в эритроцитах.

При этом уменьшается сродство гемоглобина к О 2 и повышается его высвобождение в тканях. И наоборот, при некоторых патологических состояниях, таких как септический шок и гипофосфатемия, наблюдается низкий уровень 2,3-ДФГ, что приводит к сдвигу кривой диссоциации оксигемоглобина влево.

Температура тела влияет на кривую диссоциации оксигемоглобина менее выражено и клинически значимо, чем описанные выше факторы. Гипертермия вызывает повышение Р 50 , т.е. сдвиг кривой вправо, что является благоприятной приспособительной реакцией не повышенный кислородный запрос клеток при лихорадочных состояниях. Гипотермия, напротив, снижает Р 50 , т.е. сдвигает кривую диссоциации влево.

СО, связываясь с гемоглобином (образуя карбоксигемоглобин), ухудшает оксигенацию периферических тканей посредством двух механизмов. Во-первых, СО непосредственно уменьшает кислородную емкость крови. Во-вторых, снижая количество гемоглобина, доступного для связывания О 2 ; СО снижает Р 50 и сдвигает кривую диссоциации оксигемоглобина влево.

Окисление части двухвалентного железа гемоглобина до трехвалентного приводит к образованию метгемоглобина. В норме у здоровых людей метгемоглобин составляет менее 3% общего гемоглобина. Низкий его уровень поддерживается внутриклеточными ферментными механизмами восстановления.

Метгемоглобинемия может наблюдаться как следствие врожденной недостаточности этих восстановительных ферментов или образования аномальных молекул гемоглобина, резистентных к ферментативному восстановлению (например, гемоглобин М).

3. Доставка кислорода и двуокиси углерода

Доставка кислорода ( 2 ) представляет собой скорость транспорта кислорода артериальной кровью, которая зависит от кровотока и содержания О 2 в артериальной крови. Системная доставка кислорода (DО 2), рассчитывается как:

DO 2 = СаО 2 х Q t (мл/мин ) или

DO 2 = ([ (Hb ) 1,34 % насыщения ] + [ 0,0031 PaO 2 ) Q t (мл/мин ) = 20 мл О 2 /100 мл крови 5000 мл/мин = 1000 мл О 2 /мин .

Доставку и потребление кислорода часто рассчитывают с учётом площади поверхности тела. При сердечном индексе, составляющем 3 л/ (мин * м -2) (Q t делённый на площадь поверхности тела) нормальное значение DО 2 = 540 мл/ (мин м 2). Если обычный показатель сердечного выброса составляет от 2,5 до 3,5 л/мин/м 2 , то нормальная величина DО 2 колеблется от 520 до 720 мл/мин/м 2 .

Существует тонкое сопряжение между артериальным содержанием О 2 , сердечным выбросом, тканевой утилизацией О 2 и содержанием О 2 в смешанной венозной крови.

Некоторые заболевания, такие как РДСВ и сепсис, сопровождаются нарушением сопряжения между утилизацией О 2 периферическими тканями и доставкой кислорода. Утилизация снижается, когда доставка падает ниже некоторого порога.

Отношение между этими переменными выражается правилом Фика, которое устанавливает, что потребление О 2 (объем в 1 мин) является произведение минутного сердечного выброса и артериовенозной разницы О 2:

Потребление О 2 = VO 2 = Q (CaO 2 - CvO 2 ) .

В условия основного обмена взрослый человек потребляет около 250 мл О 2 в минуту, с учетом площади поверхности тела - 110-160 мл/ (мин * м 2). Однако скорость утилизации О 2 различными тканями неодинакова.

Содержание кислорода в смешанной венозной крови представляет собой усредненную величину для венозной крови от всех органов - и низким, и с высоким уровнями экстракции О 2 .

Возросшая кислородная потребность при фиксированном минутном сердечном выбросе вызывает увеличение артерио-венозной разницы по О 2 . Кроме того, нормальный компенсаторный ответ на снижение кровотока проявляется также в виде увеличения поглощения кислорода, достаточного для поддержания VO 2 на нормальном уровне.

Иными словами, падение сердечного выброса компенсируется увеличением разницы SaO 2 - SvO 2 , и VO 2 остаётся неизменным. Следовательно, артериовенозную разницу можно рассматривать как меру адекватности доставки кислорода, а снижение SvO 2 отражает увеличение экстракции кислорода.

При нормальном потреблении кислорода около 250 мл/мин и сердечном выбросе 5000 мл/мин нормальная артериовенозная разница, согласно этому уравнению, составит 5 мл О 2 /100 мл крови. При этом нормальный коэффициент экстракции О 2 [ (СаО 2 - CvO 2) /CaO 2 ] составит 25%, т.е.5 мл/20 мл.

Таким образом, в норме организм потребляет только 25% кислорода, переносимого гемоглобином. Когда потребность в О 2 превосходит возможность его доставки, то коэффициент экстракции становится выше 25%. Наоборот, если доставка О 2 превышает потребность, то коэффициент экстракции падает ниже 25%.

Если доставка кислорода снижена умеренно, потребление кислорода не изменяется благодаря увеличению экстракции О 2 (насыщение гемоглобина кислородом в смешанной венозной крови снижается). В этом случае VO 2 не зависит от доставки.

По мере дальнейшего снижения DO 2 достигается критическая точка, в которой VO 2 становится прямо пропорциональна DO 2 . Состояние, при котором потребление кислорода зависит от доставки, характеризуется прогрессирующим лактат-ацидозом, обусловленным клеточной гипоксией. Критический уровень DO 2 наблюдается в различных клинических ситуациях.

Например, его значение 300 мл/ (мин * м 2) отмечено после операций в условиях искусственного кровообращения и у больных с острой дыхательной недостаточностью.

Напряжение углекислого газа в смешанной венозной крови (PvCO 2) в норме составляет примерно 46 мм рт. ст., что является конечным результатом смешивания крови, притекающей из тканей с различными уровнями метаболической активности.

Венозное напряжение углекислого газа в венозной крови меньше в тканях с низкой метаболической активностью (например, в коже) и больше в органах с высокой метаболической активностью (например, в сердце).

Двуокись углерода легко диффундирует. Ее способность к диффузии в 20 раз превышает таковую у кислорода. СО 2 , по мере образования в процессе клеточного метаболизма, диффундирует в капилляры и транспортируется к легким в трех основных формах: в виде растворенной СО 2 , в виде аниона бикарбоната и в виде карбаминовых соединений.

СО 2 очень хорошо растворяется в плазме. Количество растворенной фракции определяется произведением парциального давления СО 2 и коэффициента растворимости (=0,3 мл/л крови /мм рт. ст). Около 5% общей двуокиси углерода в артериальной крови находится в форме растворенного газа.

Анион бикарбоната является преобладающей формой СО 2 (около 90%) в артериальной крови. Бикарбонатный анион является продуктом реакции СО 2 с водой с образованием Н 2 СО 3 и ее диссоциации:

СО 2 + Н 2 О Н 2 СО 3 Н + + НСО 3 - (3.25).

Реакция между СО 2 и Н 2 О протекает медленно в плазме и очень быстро в эритроцитах, где присутствует внутриклеточный фермент карбонгидраза. Она облегчает реакцию между СО 2 и Н 2 О с образованием Н 2 СО 3 . Вторая фаза уравнения протекает быстро без катализатора.

По мере накопления НСО 3 - внутри эритроцита анион диффундирует через клеточную мембрану в плазму. Мембрана эритроцита относительно непроницаема для Н + , как и вообще для катионов, поэтому ионы водорода остаются внутри клетки. Электрическая нейтральность клетки в процессе диффузии СО 2 в плазму обеспечивает приток ионов хлора из плазмы в эритроцит, что формирует так называемый хл о ридный сдвиг (сдвига Гамбургера ).

Часть Н + , остающихся в эритроцитах, забуферируется, соединяясь с гемоглобином. В периферических тканях, где концентрация СО 2 высока и значительные количества Н + накапливаются эритроцитами, связывание Н + облегчается деоксигенацией гемоглобина.

Восстановленный гемоглобин лучше связывается с протонами, чем оксигенированный. Таким образом, деоксигенация артериальной крови в периферических тканях способствует связыванию Н + посредством образования восстановленного гемоглобина.

СО 2 + Н 2 О + Hb О 2 > HbH + + HCO 3 + О 2

Это увеличение связывания СО 2 с гемоглобином известно как эффект Холдейна . В легких процесс имеет противоположное направление. Оксигенация гемоглобина усиливает его кислотные свойства, и высвобождение ионов водорода смещает равновесие преимущественно в сторону образования СО 2:

О 2 + НСО 3 - + Hb Н + > СО 2 + Н 2 О + Hb О 2

Наиболее широко для обеспечения достаточного газообмена при ОДН используют ингаляцию О 2 . С этой целью применяют различные устройства, такие как: носовые канюли, негерметичные маски, маски Вентури и др. Недостаток носовых катетеров и обычных лицевых масок в том, что точное значение FiO 2 остается неизвестным.

Для приблизительной оценки концентрации О 2 при использовании носового катетера можно пользоваться следующим правилом: при скорости потока 1 л/мин FiO 2 составляет 24%; увеличение скорости на 1 л/мин повышает FiO 2 на 4%. Скорость потока не должна превышать 5 л/мин. Маска Вентури обеспечивает точные значения FiO 2 (обычно 24, 28, 31, 35, 40 или 50%).

Маску Вентури часто используют при гиперкапнии: она позволяет подобрать РaO 2 таким образом, чтобы максимально снизить задержку CO 2 . Маски без возвратного дыхания имеют клапаны, препятствующие смешиванию вдыхаемого и выдыхаемого воздуха. Такие маски позволяют создать FiO 2 до 90%.

Литература

"Неотложная медицинская помощь", под ред. Дж.Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И. Кандрора, д. м. н. М.В. Неверовой, д-ра мед. наук А.В. Сучкова, к. м. н. А.В. Низового, Ю.Л. Амченкова; под ред. д.м.н. В.Т. Ивашкина, д.м.н. П.Г. Брюсова; Москва "Медицина" 2001

Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. - М.: Медицина. - 2000. - 464 с.: ил. - Учеб. лит. для слушателей системы последипломного образования. - ISBN 5-225-04560-Х

Подобные документы

    Кислотно-щелочное состояние крови. Вторая и третья фазы свертывания крови, фибринолиз. Особенности проведения возбуждения по сердечной мышце. Состав и ферментативное действие желудочного сока. Механизм газообмена между легкими и кровью, кровью и тканями.

    контрольная работа , добавлен 17.01.2010

    Система легочной вентиляции - обновление воздуха в альвеолах, где он вступает в контакт с кровью в легочных капиллярах. Давление газов в воде и тканях. Диффузия газов через респираторную мембрану. Химические формы транспортирования двуокиси углерода.

    реферат , добавлен 31.03.2009

    Строение и функции носовой полости. Внутреннее строение легкого. Система органов дыхания. Обмен газов между воздушной средой и легкими. Транспортировка газов кровью. Обмен газов между легкими и кровью. Органы дыхательных путей. Бронхиолы и альвеолы.

    презентация , добавлен 30.03.2013

    Диффузия газов в легких. Транспорт газов кровью. Внутреннее или тканевое дыхание. Воздухоносные пути и альвеолы легких. Костно-мышечный каркас грудной клетки и плевра. Нейрогуморальный аппарат регуляции. Изменения формы грудной клетки при вдохе и выдохе.

    презентация , добавлен 13.12.2013

    Функции крови: основные физико-химические константы, форменные элементы; группы, правила переливания; свертывание крови, регуляция гемостаза. Физиология дыхания: транспорт кислорода и углекислого газа кровью, влияние содержания газов на внешнее дыхание.

    методичка , добавлен 07.02.2013

    Строение и функции воздухоносных путей, полости носа, гортани, трахеи, легких, плевры. Вентиляция легких и внутрилегочной объем газов, факторы, влияющие на него. Принципы регуляции дыхания. Транспорт газов кровью. Исследование воздухоносных путей.

    курсовая работа , добавлен 10.04.2014

    Первичные легочные объемы и емкости. Нервная регуляция дыхания. Транспорт кислорода кровью. Взаимодействие нейронов дыхательного центра. Носовое и ротовое дыхание. Мотонейроны спинного мозга. Показатели вентиляции легких. Силы, препятствующие вдоху.

    презентация , добавлен 15.02.2014

    Функциональная дыхательная система и ее элементы. Структура и строение системы внешнего дыхания. Дыхательные мышцы как двигатель вентиляции. Транспорт газов кровью. Нейронный состав дыхательного центра, центральные и периферические хеморецепторы.

    презентация , добавлен 18.06.2013

    Общая характеристика системы. Антенатальный период. Структурно-функциональная характеристика системы дыхания. Транспорт газов кровью. Дыхательные движения. Постнатальный период: внешнее дыхание, дыхание при мышечной работе, газообмен, регуляция дыхания.

    реферат , добавлен 27.12.2007

    Процесс взаимодействия гемоглобина с молекулами кислорода. Роль молекулярного кислорода в дыхательном процессе. Результаты абсорбционного эксперимента. Статистический анализ люминесценции пористых образцов, окрашенных раствором красителей и гемоглобина.

— это физиологический процесс, обеспечивающий поступление в организм кислорода и удаление углекислого газа. Дыхание протекает в несколько стадий:

  • внешнее дыхание (вентиляция легких);
  • (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);
  • транспорт газов кровью;
  • обмен газов в тканях (между кровью капилляров большого круга кровообращения и клетками тканей);
  • внутреннее дыхание (биологическое окисление в митохондриях клеток).

Изучает первые четыре процесса. Внутреннее дыхание рассматривается в курсе биохимии.

2.4.1. Транспорт кровью кислорода

Функциональная система транспорта кислорода — совокупность структур сердечно-сосудистого аппарата, крови и их регуляторных механизмов, образующих динамическую саморегулирующуюся организацию, деятельность всех составных элементов которой создает диффузионные ноля и градиенты pO2 между кровью и клетками тканей и обеспечивает адекватное поступление кислорода в организм.

Целью ее функционирования является минимизация разности между потребностью и потреблением кислорода. Оксидазный путь использования кислорода , сопряженный с окислением и фосфорилированием в митохондриях цепи тканевого дыхания, является наиболее емким в здоровом организме (используется около 96-98 % потребляемого кислорода). Процессы транспорта кислорода в организме обеспечивают также и его антиоксидантную защиту .

  • Гипероксия — повышенное содержание кислорода в организме.
  • Гипоксия - пониженное содержание кислорода в организме.
  • Гиперкапния — повышенное содержание углекислого газа в организме.
  • Гиперкапнемия — повышенное содержание углекислого газа в крови.
  • Гипокапния — пониженное содержание углекислого газа в организме.
  • Гипокаппемия - пониженное содержание углекислого газа в крови.

Рис. 1. Схема процессов дыхания

Потребление кислорода — количество кислорода, поглощаемое организмом в течение единицы времени (в покое 200- 400 мл/мин).

Степень насыщения крови кислородом — отношение содержания кислорода в крови к ее кислородной емкости.

Объем газов, находящихся в крови, принято выражать в объемных процентах (об%). Этот показатель отражает количество газа в миллилитрах, находящееся в 100 мл крови.

Кислород транспортируется кровью в двух формах:

  • физического растворения (0,3 об%);
  • в связи с гемоглобином (15-21 об%).

Молекулу гемоглобина, не связанную с кислородом, обозначают символом Нb, а присоединившую кислород (оксигемоглобин) — НbO 2 . Присоединение кислорода к гемоглобину называют оксигенацией (сатурацией), а отдачу кислорода — де- оксигенацией или восстановлением (десатурацией). Гемоглобину принадлежит основная роль в связывании и транспорте кислорода. Одна молекула гемоглобина при полной оксигена- ции связывает четыре молекулы кислорода. Один грамм гемоглобина связывает и транспортирует 1,34 мл кислорода. Зная содержание гемоглобина в крови, легко рассчитать кислородную емкость крови.

Кислородная емкость крови — это количество кислорода, связанного с гемоглобином, находящимся в 100 мл крови, при его полном насыщении кислородом. Если в крови содержится 15 г% гемоглобина, то кислородная емкость крови составит 15 . 1,34 = 20,1 мл кислорода.

В нормальных условиях гемоглобин связывает кислород в легочных капиллярах и отдает его в тканевых благодаря особым свойствам, которые зависят от ряда факторов. Основным фактором, влияющим на связывание и отдачу гемоглобином кислорода, является величина напряжения кислорода в крови, зависящая от количества растворенного в ней кислорода. Зависимость связывания гемоглобином кислорода от его напряжения описывается кривой, получившей название кривой диссоциации оксигемоглобина (рис. 2.7). На графике но вертикали отмечен процент молекул гемоглобина, связанных с кислородом (%НbO 2), по горизонтали — напряжение кислорода (рO 2). Кривая отражает изменение %НbO 2 в зависимости от напряжения кислорода в плазме крови. Она имеет S-образный вид с перегибами в области напряжения 10 и 60 мм рт. ст. Если рО 2 в плазме становится больше, то оксигенация гемоглобина начинает нарастать почти линейно нарастанию напряжения кислорода.

Рис. 2. Кривые диссоциации: а — при одинаковой температуре (Т = 37 °С) и различном рСО 2 ,: I- оксимиоглобина нрн нормальных условиях (рСО 2 = 40 мм рт. ст.); 2 — окенгемоглобина при нормальных условиях (рСО 2 , = 40 мм рт. ст.); 3 — окенгемоглобина (рСО 2 , = 60 мм рт. ст.); б — при одинаковом рС0 2 (40 мм рт. ст.) и различной температуре

Реакция связывания гемоглобина с кислородом является обратимой, зависит от сродства гемоглобина к кислороду, которое, в свою очередь, зависит от напряжения кислорода в крови:

При обычном парциальном давлении кислорода в альвеолярном воздухе, составляющем около 100 мм рт. ст., этот газ диффундирует в кровь капилляров альвеол, создавая напряжение, близкое к парциальному давлению кислорода в альвеолах. Сродство гемоглобина к кислороду в этих условиях повышается. Из приведенного уравнения видно, что реакция сдвигается в сторону образования окенгемоглобина. Оксигенация гемоглобина в оттекающей от альвеол артериальной крови достигает 96-98%. Из-за шунтирования крови между малым и большим кругом оксигенация гемоглобина в артериях системного кровотока немного снижается, составляя 94-98%.

Сродство гемоглобина к кислороду характеризуется величиной напряжения кислорода, при котором 50% молекул гемоглобина оказываются оксигенированными. Его называют напряжением полунасыщения и обозначают символом Р 50 . Увеличение Р 50 свидетельствует о снижении сродства гемоглобина к кислороду, а его снижение — о возрастании. На уровень Р 50 влияют многие факторы: температура, кислотность среды, напряжение СО 2 , содержание в эритроците 2,3-дифосфоглицерата. Для венозной крови Р 50 близко к 27 мм рт. ст., а для артериальной — к 26 мм рт. ст.

Из крови сосудов микроциркуляторного русла кислород но его градиенту напряжения постоянно диффундирует в ткани и его напряжение в крови уменьшается. В то же время напряжение углекислого газа, кислотность, температура крови тканевых капилляров увеличиваются. Это сопровождается снижением сродства гемоглобина к кислороду и ускорением диссоциации оксигемоглобина с высвобождением свободного кислорода, который растворяется и диффундирует в ткани. Скорость высвобождения кислорода из связи с гемоглобином и его диффузии удовлетворяет потребности тканей (в том числе высокочувствительных к недостатку кислорода), при содержании НbО 2 в артериальной крови выше 94%. При снижении содержания НbО 2 менее 94% рекомендуется принимать меры к улучшению сатурации гемоглобина, а при содержании 90% ткани испытывают кислородное голодание и необходимо принимать срочные меры, улучшающие доставку в них кислорода.

Состояние, при котором оксигенация гемоглобина снижается менее 90%, а рО 2 крови становится ниже 60 мм рт. ст., называют гипоксемией.

Приведенные на рис. 2.7 показатели сродства Нb к О 2 , имеют место при обычной, нормальной температуре тела и напряжении углекислого газа в артериальной крови 40 мм рт. ст. При возрастании в крови напряжения углекислого газа или концентрации протонов Н+ сродство гемоглобина к кислороду снижается, кривая диссоциации НbО 2 , сдвигается вправо. Такое явление называют эффектом Бора. В организме повышение рСО 2 , происходит в тканевых капиллярах, что способствует увеличению деоксигснации гемоглобина и доставке кислорода в ткани. Снижение сродства гемоглобина к кислороду происходит также при накоплении в эритроцитах 2,3-дифосфоглицерата. Через синтез 2,3-дифосфоглицерата организм может влиять на скорость диссоциации НbO 2 . У пожилых людей содержание этого вещества в эритроцитах повышено, что препятствует развитию гипоксии тканей.

Повышение температуры тела снижает сродство гемоглобина к кислороду. Если температура тела снижается, то кривая диссоциации НbО 2 , сдвигается влево. Гемоглобин активнее захватывает кислород, но в меньшей мере отдает его тканям. Это является одной из причин, почему при попадании в холодную (4-12 °С) воду даже хорошие пловцы быстро испытывают непонятную мышечную слабость. Развивается переохлаждение и гипоксия мышц конечностей по причине как уменьшения в них кровотока, так и сниженной диссоциации НbО 2 .

Из анализа хода кривой диссоциации НbО 2 видно, что рО 2 в альвеолярном воздухе может быть снижено с обычного 100 мм рт. ст. до 90 мм рт. ст., а оксигенация гемоглобина будет сохраняться на совместимом с жизнедеятельностью уровне (уменьшится лишь на 1-2%). Такая особенность сродства гемоглобина к кислороду дает возможность организму приспосабливаться к снижению вентиляции легких и понижению атмосферного давления (например, жить в горах). Но в области низкого напряжения кислорода крови тканевых капилляров (10-50 мм рт. ст.) ход кривой резко меняется. На каждую единицу снижения напряжения кислорода деоксигенируется большое число молекул оксигемоглобина, увеличивается диффузия кислорода из эритроцитов в плазму крови и за счет повышения его напряжения в крови создаются условия для надежного обеспечения тканей кислородом.

На связь гемоглобина с килородом влияют и другие факторы. На практике важно учитывать то, что гемоглобин обладает очень высоким (в 240-300 раз большим, чем к кислороду) сродством к угарному газу (СО). Соединение гемоглобина с СО называют карбоксигелюглобином. При отравлении СО кожа пострадавшего в местах гиперемии может приобретать вишнево-красный цвет. Молекула СО присоединяется к атому железа гема и тем самым блокирует возможность связи гемоглобина с кислородом. Кроме того, в присутствии СО даже те молекулы гемоглобина, которые связаны с кислородом, в меньшей степени отдают его тканям. Кривая диссоциации НbО 2 сдвигается влево. При наличии в воздухе 0,1% СО более 50% молекул гемоглобина превращается в карбоксигемогло- бин, а уже при содержании в крови 20-25% НbСO человеку требуется врачебная помощь. При отравлении угарным газом важно обеспечить пострадавшему вдыхание чистого кислорода. Это увеличивает скорость диссоциации НbСO в 20 раз. В условиях обычной жизни содержание НbСOв крови составляет 0-2%, после выкуренной сигареты оно может возрасти до 5% и более.

При действии сильных окислителей кислород способен образовывать прочную химическую связь с железом гема, при которой атом железа становится трехвалентным. Такое соединение гемоглобина с кислородом называют метгемоглобином. Оно не может отдавать кислород тканям. Метгемоглобин сдвигает кривую диссоциации оксигемоглобина влево, ухудшая таким образом условия высвобождения кислорода в тканевых капиллярах. У здоровых людей в обычных условиях из-за постоянного поступления в кровь окислителей (перекисей, нитропронзводных органических веществ и т.д.) до 3% гемоглобина крови может быть в виде метгемоглобина.

Низкий уровень содержания этого соединения поддерживается благодаря функционированию антиоксидантных ферментных систем. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитариых ферментов дегидрогеназ. При недостаточности этих систем или при избыточном попадании в кровоток веществ (например, фенацетина, противомалярийных лекарственных препаратов и т.д.), обладающих высокими оксидантными свойствами, развивается мстгсмоглобинсмия.

Гемоглобин легко взаимодействует и со многими другими растворенными в крови веществами. В частности, при взаимодействии с лекарственными препаратами, содержащими серу, может образовываться сульфгемоглобин, сдвигающий кривую диссоциации оксигемоглобина вправо.

В крови плода преобладает фетальный гемоглобин (HbF), обладающий большим сродством к кислороду, чем гемоглобин взрослого. У новорожденного в эритроцитах содержится до 70% фстального гемоглобина. Гемоглобин F заменяется на НbА в течение первого полугодия жизни.

В первые часы после рождения рО 2 артериальной крови составляет около 50 мм рт. ст., а НbО 2 - 75-90%.

У пожилых людей напряжение кислорода в артериальной крови и насыщение гемоглобина кислородом постепенно снижается. Величину этого показателя рассчитывают по формуле

рO 2 = 103,5-0,42 . возраст в годах.

В связи с существованием тесной связи между насыщением кислородом гемоглобина крови и напряжением в ней кислорода был разработан метод пульсоксиметрии , получивший широкое применение в клинике. Этим методом определяют насыщение гемоглобина артериальной крови кислородом и его критические уровни, при которых напряжение кислорода в крови становится недостаточным для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание (рис. 3).

Современный пульсоксиметр состоит из датчика, включающего светодиодный источник света, фотоприемника, микропроцессора и дисплея. Свет от светодиода направляется через ткань пальца кисти (стопы), мочки уха, поглощается оксигемоглобином. Непоглощенная часть светового потока оценивается фотоприемником. Сигнал фотоприемника обрабатывается микропроцессором и подается на экран дисплея. На экране отображается процентное насыщение гемоглобина кислородом, частота пульса и пульсовая кривая.

На кривой зависимости насыщения гемоглобина кислородом видно, что гемоглобин артериальной крови, опекающей из альвеолярных капилляров (рис. 3), полностью насыщенкислородом (SaO2 = 100%), напряжение кислорода в ней составляет 100 мм рт. ст. (рО2, = 100 мм рт. ст.). После диссоциации оксигсмоглобина в тканях кровь становится деоксигенированной и в смешанной венозной крови, возвращающейся в правое предсердие, в условиях покоя гемоглобин остается насыщенным кислородом на 75% (Sv0 2 = 75%), а напряжение кислорода составляет 40 мм рт. ст. (pvO2 = 40 мм рт. ст.). Таким образом, в условиях покоя ткани поглотили около 25% (≈250 мл) кислорода, высвободившегося из оксигсмоглобина после его диссоциации.

Рис. 3. Зависимость насыщения кислородом гемоглобина артериальной крови от напряжения в ней кислорода

При уменьшении всего лишь на 10% насыщения гемоглобина артериальной крови кислородом (SaO 2 , <90%), диссоциирующий в тканях оксигемоглобин не обеспечивает достаточного напряжения кислорода в артериальной крови для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание.

Одной из важных задач, которая решается при постоянном измерении пульсоксиметром насыщения гемоглобина артериальной крови кислородом, является обнаружение момента, когда насыщение снижается до критического уровня (90%) и пациенту необходимо оказание неотложной помощи, направленной на улучшение доставки кислорода в ткани.

Транспорт кровью углекислого газа и его связь с кислотно-щелочным состоянием крови

Углекислый газ транспортируется кровью в формах:

  • физического растворения — 2,5-3 об%;
  • карбоксигемоглобина (НbСО 2) — 5 об%;
  • бикарбонатов (NaHCO 3 и КНСO 3) — около 50 об%.

В оттекающей от тканей крови содержится 56-58 об% СО 2 , а в артериальной — 50-52 об%. При протекании через тканевые капилляры кровь захватывает около 6 об% СО 2 , а в легочных капиллярах этот газ диффундирует в альвеолярный воздух и удаляется из организма. Особенно быстро идет обмен СО 2 , связанного с гемоглобином. Углекислый газ присоединяется к аминогруппам в молекуле гемоглобина, поэтому карбоксигемоглобин называют еще карбаминогемоглобином. Большая часть углекислого газа транспортируется в виде натриевых и калиевых солей угольной кислоты. Ускоренному распаду угольной кислоты в эритроцитах при прохождении их по легочным капиллярам способствует фермент карбоангидра- за. При рСО2 ниже 40 мм рт. ст. этот фермент катализирует распад Н 2 СO 3 на Н 2 0 и С0 2 , способствуя удалению углекислого газа из крови в альвеолярный воздух.

Накопление углекислого газа в крови свыше нормы называют гиперкапнией , а понижение гипокапнией. Гиперкаппия сопровождается сдвигом рН крови в кислую сторону. Это обусловлено тем, что углекислый газ, соединяясь с водой, образует угольную кислоту:

CO 2 + H 2 O = H 2 CO 3

Угольная кислота диссоциирует согласно закону действующих масс:

Н 2 СО 3 <-> Н + + HCO 3 - .

Таким образом, внешнее дыхание через влияние на содержание углекислого газа в крови принимает непосредственное участие в поддержании кислотно-щелочного состояния в организме. За сутки с выдыхаемым воздухом из организма человека удаляется около 15 ООО ммоль угольной кислоты. Почки удаляют приблизительно в 100 раз меньше кислот.

где рН — отрицательный логарифм концентрации протонов; рК 1 — отрицательный логарифм константы диссоциации (К 1) угольной кислоты. Для ионной среды, имеющейся в плазме, рК 1 =6,1.

Концентрацию [СО2] можно заменить напряжением [рС0 2 ]:

[С0 2 ] = 0,03 рС0 2 .

Тогда рН = 6,1 + lg / 0,03 рСО 2 .

Подставив эти значения, получим:

рН = 6,1 + lg24 / (0,03 . 40) = 6,1 + lg20 = 6,1 + 1,3 = 7,4.

Таким образом, пока соотношение / 0,03 рС0 2 равно 20, рН крови будет 7,4. Изменение этого соотношения происходит при ацидозе или алкалозе, причинами которых могут быть нарушения в системе дыхания.

Различают изменения кислотно-щелочного состояния, вызванные нарушениями дыхания и метаболизма.

Дыхательный алкалоз развивается при гипервентиляции легких, например при пребывании на высоте в горах. Недостаток кислорода во вдыхаемом воздухе приводит к возрастанию вентиляции легких, а гипервентиляция — к избыточному вымыванию из крови углекислого газа. Соотношение / рС0 2 сдвигается в сторону преобладания анионов и рН крови увеличивается. Увеличение рН сопровождается усилением выведения почками бикарбонатов с мочой. При этом в крови будет обнаруживаться меньшее, чем в норме, содержание анионов HCO 3 - или так называемый «дефицит оснований».

Дыхательный ацидоз развивается из-за накопления в крови и тканях углекислого газа, обусловленного недостаточностью внешнего дыхания или кровообращения. При гиперкапнии показатель соотношения / рСО 2 , снижается. Следовательно, снижается и рН (см. выше приведенные уравнения). Это подкисление может быть быстро устранено усилением вентиляции.

При дыхательном ацидозе почки увеличивают выведение с мочой протонов водорода в составе кислых солей фосфорной кислоты и аммония (Н 2 РО 4 - и NH 4 +). Наряду с усилением секреции протонов водорода в мочу увеличивается образование анионов угольной кислоты и усиление их реабсорбции в кровь. Содержание HCO 3 - в крови возрастает и рН возвращается к норме. Это состояние называют компенсированным дыхательным ацидозом. О его наличии можно судить по величине рН и нарастанию избытка оснований (разности между содержанием в исследуемой крови и в крови с нормальным кислотно-щелочным состоянием.

Метаболический ацидоз обусловлен поступлением в организм избытка кислот с пищей, нарушениями метаболизма или введением лекарственных препаратов. Увеличение концентрации водородных ионов в крови приводит к возрастанию активности центральных и периферических рецепторов, контролирующих рН крови и ликвора. Учащенная импульсация от них поступает к дыхательному центру и стимулирует вентиляцию легких. Развивается гипокапиия. которая несколько компенсирует метаболический ацидоз. Уровень в крови снижается и это называют дефицитом оснований.

Метаболический алкалоз развивается при избыточном приеме внутрь щелочных продуктов, растворов, лекарственных веществ, при потере организмом кислых продуктов обмена или избыточной задержке почками анионов . Дыхательная система реагирует на повышение соотношения /рС0 2 гиповентиляцией легких и повышением напряжения углекислого газа в крови. Развивающаяся гиперкапния может в определенной мере компенсировать алкалоз. Однако объем такой компенсации ограничен тем, что накопление углекислого газа в крови идет не более, чем до напряжения 55 мм рт. ст. Признаком компенсированного метаболического алкалоза является наличие избытка оснований.

Взаимосвязь между транспортом кислорода и углекислого газа кровью

Имеется три важнейших пути взаимосвязи транспорта кислорода и углекислого газа кровью.

Взаимосвязь по типу эффекта Бора (увеличение рСО-, снижает сродство гемоглобина к кислороду).

Взаимосвязь по типу эффекта Холдэна . Она проявляется в том, что при деоксигенации гемоглобина увеличивается его сродство к углекислому газу. Высвобождается дополнительное число аминогрупп гемоглобина, способных связывать углекислый газ. Это происходит в тканевых капиллярах и восстановленный гемоглобин может в больших количествах захватывать углекислый газ, выходящий в кровь из тканей. В соединении с гемоглобином транспортируется до 10% от всего переносимого кровью углекислого газа. В крови легочных капилляров гемоглобин оксигенируется, его сродство к углекислому газу снижается и около половины этой легко обмениваемой фракции углекислого газа отдастся в альвеолярный воздух.

Еще один путь взаимосвязи обусловлен изменением кислотных свойств гемоглобина в зависимости от его соединения с кислородом. Величины констант диссоциации этих соединений в сопоставлении с угольной кислотой имеют такое соотношение: Hb0 2 > Н 2 С0 3 > Нb. Следовательно, НbО2 обладает более сильными кислотными свойствами. Поэтому после образования в легочных капиллярах он забирает катионы (К+) от бикарбонатов (КНСО3) в обмен на ионы Н + . В результате этого образуется H 2 CO 3 При повышении концентрации угольной кислоты в эритроците фермент карбоангидраза начинает разрушать ее с образованием СО 2 и Н 2 0. Углекислый газ диффундирует в альвеолярный воздух. Таким образом, оксигенация гемоглобина в легких способствует разрушению бикарбонатов и удалению аккумулированного в них углекислого газа из крови.

Превращения, описанные выше и происходящие в крови легочных капилляров, можно записать в виде последовательных символических реакций:

Деоксигенация Нb0 2 в тканевых капиллярах превращает его в соединение с меньшими, чем у Н 2 С0 3 , кислотными свойствами. Тогда вышеприведенные реакции в эритроците текут в обратном направлении. Гемоглобин выступает поставщиком ионов К" для образования бикарбонатов и связывания углекислого газа.

Транспорт газов кровью

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода

Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.

Рис. 4. Кривая диссоциации оксигемоглобина

Кривая диссоциации имеет S-образную форму и состоит из двух частей — крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оке и гемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина — легко насыщаться кислородом даже при небольших давлениях и легко его отдавать — очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 5).

Рис. 5. Кривые насыщения гемоглобина кислородом при разных условиях:

А — в зависимости от реакции среды (рН); Б — от температуры; В — от содержания солей; Г — от содержания углекислого газа. По оси абцисс — парциальное давление кислорода (в мм рт. ст.). по оси ординат — степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 5, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального
давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 5, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 5, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа

Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ — 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНСО, — 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина — 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НСО 3 - переходит в плазму крови. Взамен ионов НСО 3 - в эритроциты из плазмы входят ионы СI - , отрицательные заряды которых уравновешиваются ионами K+. В плазме крови увеличивается количество бикарбоната натрия (NaНСО 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Оксигемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин — более сильная кислота, чем угольная, а дезоксигемоглобин — более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНbO 2 . В тканевых капиллярах КНbО 2 , отдает кислород и превращается в КНb. Из него угольная кислота как более сильная вытесняет ионы К + :

КНb0 2 + H 2 CO 3 = КНb + 0 2 + КНСО 3

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К+), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется СО2,. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НСОГ входят в эритроциты, а ионы СI - входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.

Рис. 6. Процессы, происходящие в эритроците при поглощении или отдаче кровью кислорода и углекислого газа

В венозной крови содержится около 580 мл / л С02. В крови он содержится в трех формах: связанный в виде угольной кислоты и ее солей, связанный с и в растворенном виде.
С02 образуется в тканях при окислительных процессах. В большинстве тканей Рсо2 составляет 50-60 мм рт. ст. (6,7-8 кПа). В крови, поступающей в артериальное конец капилляров, РаCO2 составляет около 40 мм рт. ст. (5,3 кПа). Наличие градиента заставляет С02 диффундировать из тканевой жидкости до капилляров. Чем активнее в тканях осуществляются процессы окисления, тем больше создается СОТ и тем больше Ртк.со2. Интенсивность окисления в различных тканях различна. В венозной крови, оттекающей от ткани, Pvco приближается к 50 мм рт. ст. (6,7 кПа). А в крови, оттекающей от почек, Pvco2 составляет около 43 мм рт. ст. Поэтому в смешанной венозной крови, поступающей в правого предсердия, в состоянии покоя Pvco2 равна 46 мм рт. ст. (6,1 кПа).
С02 растворяется в жидкостях активнее, чем 02. При РCO2 равный 40 мм рт. ст. (5,3 кПа), в 100 мл крови растворено 2,4-2,5 мл СОГ, что составляет примерно 5% от общего количества газа, который транспортируется кровью. Кровь, проходящая через легкие, отдает далеко не весь С02. Большая часть его остается в артериальной крови, поскольку соединения, которые образуются на основе С02, участвуют в поддержании кислотно-основного равновесия крови - одного из параметров гомеостаза.
Химически связанный С02 находится в крови в одной из трех форм:
1) угольная кислота (Н2С03):
2) бикарбонатный ион (НСОИ)
3) карбогемоглобин (ННЬС02).
В форме угольной кислоты переносится только 7% СОГ, бикарбонатных ионов - 70%, карбогемоглобин - 23%.
С02, который проникает в кровь, сначала подвергается гидратации с образованием угольной кислоты: С02 + Н20 Н2СОз.
Эта реакция в плазме крови происходит медленно. В эритроците, куда С02 проникает по градиенту концентрации, благодаря специальному ферменту - карбоангидразы - этот процесс ускоряется примерно в 10 000 раз. Поэтому эта реакция происходит в основном в эритроцитах. Создаваемая здесь угольная кислота быстро диссоциирует на Н + и НСО3-, чему способствует постоянное образование угольной кислоты: Н2С03 Н + + НСО3-.
При накоплении НСО3-в эритроцитах создается его градиент с плазмой. Возможность выхода НСО3-в плазму определяется условий: выход НСО3-должен сопровождаться одновременным выходом катиона или поступлением другого аниона. Мембрана эритроцита хорошо пропускает отрицательные, но плохо - положительные ионы. Чаще образования и выход НСО3-из эритроцитов сопровождается поступлением в клетку СИ "". Это перемещение называют хлоридным сдвигом.
В плазме крови НСО3-"взаимодействуя с катионами, создает соли угольной кислоты. В виде солей угольной кислоты транспортируется около 510 мл / л С02.
Кроме того, СОТ может связываться с белками: частично - с белками плазмы, но главным образом - с гемоглобином эритроцитов. При этом сог взаимодействует с белковой частью гемоглобина - глобина. Гем же остается свободным и сохраняет способность гемоглобина находиться одновременно в связи как с С02, так и 02. Таким образом, одна молекула НЬ может транспортировать оба газа.
В крови альвеолярных капилляров все процессы осуществляются в противоположном направлении. Главная из химических реакций - дегидратация - происходит в эритроцитах при участии той же карбоангидразы: Н + + НСО3 Н2С03 Н20 + С02.
Направление реакции определяется непрерывным выходом С02 с эритроцита в плазму, а из плазмы в альвеолы. В легких в связи с постоянным его выделением происходит реакция диссоциации карбогемоглобин:
ННЬС02 +02 ННЬ02 + С02-> НЬ02 + Н + + С02.
Взаимосвязь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации оксигемоглобина влияет на содержание С02 в крови. Эта зависимость связана с тем, что дезоксигемоглобином является слабой кислотой, чем оксигемоглобин, и может присоединять более Н + Вследствие этого при уменьшении содержания оксигемоглобина повышается степень диссоциации Н2СОз, а следовательно, увеличивается транспорт С02 кровью. Эта зависимость называется эффектом Холдейна.
Взаимосвязь обмена двуокиси углерода и кислорода ярко обнаруживается в тканях и легких. К тканям поступает оксигенированный кровь. Здесь под влиянием С02 усиливается диссоциация гемоглобина. Поэтому поступление кислорода в ткани способствует ускорению поглощения С02 кровью.
В легких происходят обратные процессы. Поступление 02 снижает сродство крови к С02 и облегчает диффузию С02 в альвеолы. Это, в свою очередь, активизирует ассоциации гемоглобина с кислородом.