Главная · Стоматит · Абсолютная погрешность измерений. Как рассчитать абсолютную погрешность измерений? Определение абсолютной и относительной погрешности прямых измерений. Измерение физических величин Какие составляющие имеет погрешность измерения

Абсолютная погрешность измерений. Как рассчитать абсолютную погрешность измерений? Определение абсолютной и относительной погрешности прямых измерений. Измерение физических величин Какие составляющие имеет погрешность измерения

Результатом измерения называется значение величины, найденное путем ее измерения. Полученный результат всегда содержит некоторую погрешность.

Таким образом, в задачу измерений входит не только нахождение самой величины, но также и оценка допущенной при измерении погрешности.

Под абсолютной погрешностью измерения D понимают отклонение результата измерения данной величины A от ее истинного значения A x

D = A – A x . (В.1)

Практически вместо истинного значения которое неизвестно, используют, как правило, действительное значение.

Погрешность, вычисляемая по формуле (В.1), называется абсолютной погрешностью и выражается в единицах измеряемой величины.

Качество результатов измерения обычно удобно характеризовать не абсолютной погрешностью D, а ее отношением к измеряемой величине, которое называют относительной погрешностью и обычно выражают в процентах:

ε = (D / А ) 100 %. (В.2)

Относительной погрешностью ε называется отношение абсолютной погрешности к измеренному значению.

Относительная погрешность ε непосредственно связана с точностью измерения.

Точность измерения – качество измерения, отражающее близость его результатов к истинному значению измеряемой величины. Точность измерения – величина, обратная его относительной погрешности. Высокая точность измерений соответствует малым относительным погрешностям.

Величина и знак погрешности D зависит от качества измерительных приборов, характера и условий измерений и от опытности наблюдателя.

Все погрешности в зависимости от причин их появления делятся на три типа: а ) систематические; б ) случайные; в ) промахи.

Систематическими погрешностями называются погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов.

Систематические погрешности можно разделить на три группы.

1. Погрешности, природа которых известна и величина может быть достаточно точно определена. Такие погрешности называются поправками. Например, а ) при определении длины удлинение измеряемого тела и измерительной линейки, обусловленное изменением температуры; б ) при определении веса – погрешность, вызванная «потерей веса» в воздухе, величина которой зависит от температуры, влажности и атмосферного давления воздуха и т. д.

Источники таких погрешностей тщательно анализируют, величины поправок определяют и учитывают в окончательном результате.

2. Погрешности измерительных приборов δ кл т, Для удобства сравнения приборов между собой введено понятие приведенной погрешности d пр (%)

где А k – некоторое нормированное значение, например, конечное значение шкалы, сумма значений двусторонней шкалы и т. п.

Классом точности прибора d кл т называется физическая величина, численно равная наибольшей допустимой приведенной погрешности, выраженной
в процентах, т. е.

d кл п = d пр max

Электроизмерительные приборы характеризуются обычно классом точности в пределах от 0,05 до 4.

Если на приборе указан класс точности 0,5, то это означает, что показания прибора имеют погрешность до 0,5 % от всей действующей шкалы прибора. Погрешности измерительных приборов не могут быть исключены, но их наибольшее значение D max может быть определено.

Значение максимальной абсолютной погрешности данного прибора вычисляется по его классу точности

(В.4)

При измерении прибором, класс точности которого не указан, абсолютная погрешность измерения равна как правило, половине цены деления наименьшего деления шкалы.

3. К третьему типу относятся погрешности, о существовании которых не подозревают. Например: необходимо измерить плотность какого-то металла, для этого измеряются объем и масс образца.

Если измеряемый образец содержит внутри пустоты, например, пузырьки воздуха, попавшие при отливке, то измерение плотности производится с систематическими погрешностями, величины которых неизвестны.

Случайные погрешности – это такие погрешности, природа и величина которых неизвестна.

Случайные погрешности измерений возникают вследствие одновременного воздействия на объект измерений нескольких независимых величин, изменение которых носят флуктуационный характер. Исключить случайные погрешности из результатов измерений невозможно. Можно лишь на основании теории случайных погрешностей указать пределы, между которыми находятся истинное значение измеряемой величины, вероятность нахождения в этих пределах истинного значения и его наиболее вероятное значение.

Промахи – это погрешности наблюдения. Источником промахов является недостаток внимания экспериментатора.

Следует понять и запомнить:

1) если систематическая погрешность является определяющей, то есть её величина существенно больше случайной погрешности, присущей данному методу, то достаточно выполнить измерение один раз;

2) если случайная погрешность является определяющей, то измерение следует производить несколько раз;

3) если систематическая D си и случайная D сл погрешности сравнимы, то общая D общ погрешность измерений вычисляется на основании закона сложения погрешностей, как их геометрическая сумма

Термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов . При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность . Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал , доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
  • Средняя квадратическая погрешность:
  • Средняя квадратическая погрешность среднего арифметического:

Классификация погрешностей

По форме представления

  • Абсолютная погрешность - ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины X m e a s . При этом равенство:

ΔX = | X t r u e X m e a s | ,

где X t r u e - истинное значение, а X m e a s - измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина X m e a s распределена по нормальному закону , то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение . Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность - отношение абсолютной погрешности к тому значению, которое принимается за истинное:

Относительная погрешность является безразмерной величиной, либо измеряется в процентах .

  • Приведенная погрешность - относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где X n - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то X n определяется равным верхнему пределу измерений;
- если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность - безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность - погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность - погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений - погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F (x 1 ,x 2 ...x n ) , где x i - непосредственно измеряемые независимые величины, имеющие погрешность Δx i , тогда:

См. также

  • Измерение физических величин
  • Система автоматизированного сбора данных со счетчиков по радиоканалу

Литература

  • Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. - М.: Наука. Главная редакция физико-математичекой литературы, 1983. - 704 с.

Wikimedia Foundation . 2010 .

ВВЕДЕНИЕ

Любые измерения, как бы тщательно их ни выполняли, сопровождаются погрешностями (ошибками), т. е. отклонениями измеренных величин от их истинного значения. Это объясняется тем, что в процессе измерений непрерывно меняются условия: состояние внешней среды, мерного прибора и измеряемого объекта, а также внимание исполнителя. Поэтому при измерении величины всегда получают ее приближенное значение, точность которого требуется оценить. Возникает и другая задача: выбрать прибор, условия и методику, чтобы выполнить измерения с заданной точностью. Эти задачи помогает решить теория ошибок, которая изучает законы распределения погрешностей, устанавливает критерии оценки и допуски к точности измерений, способы определения вероятнейшего значения определяемой величины, правила предвычисления ожидаемых точностей.

12.1. ИЗМЕРЕНИЯ И ИХ КЛАССИФИКАЦИЯ

Измерением называют процесс сравнения измеряемой величины с другой, принятой за единицу измерения известной величиной.
Все величины, с которыми мы имеем дело, подразделяют на измеренные и вычисленные. Измеренной величиной называют ее приближенное значение, найденное путем сравнения с однородной единицей меры. Так, последовательно укладывая землемерную ленту по заданному направлению и подсчитывая число уложений, находят приближенное значение длины участка.
Вычисленной величиной называют ее значение, определенное по другим измеренным величинам, функционально с ней связанным. Например, площадь участка прямоугольной формы есть произведение его измеренных длины и ширины.
Для обнаружения промахов (грубых ошибок) и повышения точности результатов одну и ту же величину измеряют несколько раз. По точности такие измерения подразделяют на равноточные и неравноточные. Равноточные - однородные многократные результаты измерения одной и той же величины, выполненные одним и тем же прибором (или разными приборами одного и того же класса точности), одинаковыми способом и числом приемов, в идентичных условиях. Неравноточные - измерения, выполненные при несоблюдении условий равноточности.
При математической обработке результатов измерений большое значение имеет число измеренных величин. Например, чтобы получить величину каждого угла треугольника, достаточно измерить лишь два из них - это и будет необходимое число величин. В общем случае для решения любой топографо-геодезической задачи необходимо измерить некоторое минимальное число величин, обеспечивающее решение поставленной задачи. Их называют числом необходимых величин или измерений. Но чтобы судить о качестве измерений, проконтролировать их правильность и повысить точность результата, измеряют и третий угол треугольника - избыточный . Числом избыточных величин (k ) называют разность между числом всех измеренных величин (п ) и числом необходимых величин (t ):

k = п - t

В топографо-геодезической практике избыточные измеренные величины обязательны. Они позволяют обнаруживать ошибки (погрешности) в измерениях и вычислениях и повышают точность определяемых величин.

По физическому исполнению измерения могут быть прямые, косвенные и дистанционные.
Прямые измерения являются простейшими и в историческом плане первыми видами измерений, например, измерение длин линий землемерной лентой или рулеткой.
Косвенные измерения основываются на использовании некоторых математических зависимостей между искомыми и непосредственно измеряемыми величинами. Например, площадь прямоугольника на местности определяют, измерив длины его сторон.
Дистанционные измерения основываются на использовании ряда физических процессов и явлений и, как правило, связаны с использованием современных технических средств: светодальномеров, электронных тахеометров, фототеодолитов и т.д.

Измерительные приборы, используемые в топографо-геодезическом производстве, можно разделить на три основных класса :

  • высокоточные (прецизионные);
  • точные;
  • технические.

12.2. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

При многократном измерении одной и той же величины каждый раз получают несколько отличающиеся результаты, как по абсолютной величине, так и по знакам, каким бы опытом не обладал исполнитель и какими бы высокоточными приборами он не пользовался.
Погрешности различают: грубые, систематические и случайные.
Появление грубых погрешностей (промахов ) связано с серьезными ошибками при производстве измерительных работ. Эти ошибки легко выявляются и устраняются в результате контроля измерений.
Систематические погрешности входят в каждый результат измерений по строго определенному закону. Они обусловлены влиянием конструкции измерительных приборов, погрешностями градуировки их шкал, износом и т. д. (инструментальные погрешности) иливозникают из-за недоучета условий измерений и закономерностей их изменений, приближенности некоторых формул и др. (методические погрешности). Систематические погрешности делятся на постоянные (неизменные по знаку и вели чине) и переменные (изменяющие свою величину от одного измерения к другому по определенному закону).
Такие погрешности заранее определимы и могут быть сведены к необходимому минимуму путем введения соответствующих поправок.
Например , заранее может быть учтено влияние кривизны Земли на точность определения вертикальных расстояний, влияние температуры воздуха и атмосферного давления при определении длин линий светодальномерами или электронными тахеометрами, заранее можно учесть влияние рефракции атмосферы и т. д.
Если не допускать грубых погрешностей и устранять систематические, то качество измерений будет определяться только случайными погрешностями. Эти погрешности неустранимы, однако их поведение подчиняется законам больших чисел. Их можно анализировать, контролировать и сводить к необходимому минимуму.
Для уменьшения влияния случайных погрешностей на результаты измерений прибегают к многократным измерениям, к улучшению условий работы, выбирают более совершенные приборы, методы измерений и осуществляют тщательное их производство.
Сопоставляя ряды случайных погрешностей равноточных измерений можно обнаружить, что они обладают следующими свойствами:
а) для данного вида и условий измерений случайные погрешности не могут превышать по абсолютной величине некоторого предела;
б) малые по абсолютной величине погрешности появляются чаще больших;
в) положительные погрешности появляются так же часто, как и равные им по абсолютной величине отрицательные;
г) среднее арифметическое из случайных погрешностей одной и той же величины стремится к нулю при неограниченном увеличении числа измерений.
Распределение ошибок, соответствующее указанным свойствам, называется нормальным (рис. 12.1).

Рис. 12.1. Кривая нормального распределения случайных погрешностей Гаусса

Разность между результатом измерения некоторой величины (l ) и ее истинным значением (X ) называют абсолютной (истинной) погрешностью .

Δ = l - X

Истинное (абсолютно точное) значение измеряемой величины получить невозможно, даже используя приборы самой высокой точности и самую совершенную методику измерений. Лишь в отдельных случаях может быть известно теоретическое значение величины. Накопление погрешностей приводит к образованию расхождений между результатами измерений и действительными их значениями.
Разность суммы практически измеренных (или вычисленных) величин и теоретического ее значения называется невязкой . Например, теоретическая сумма углов в плоском треугольнике равна 180º, а сумма измеренных углов оказалась равной 180º02"; тогда погрешность суммы измеренных углов составит +0º02". Эта погрешность будет угловой невязкой треугольника.
Абсолютная погрешность не является, полным показателем точности выполненных работ. Например, если некоторая линия, фактическая длина которой составляет 1000 м , измерена землемерной лентой с ошибкой 0,5 м , а отрезок длиною 200 м - с ошибкой 0,2 м , то, несмотря на то, что абсолютная погрешность первого измерения больше второго, все же первое измерение было выполнено с точностью в два раза более высокой. Поэтому вводят понятие относительной погрешности :

Отношение абсолютной погрешности измеряемой величины Δ к измеренной величине l называют относительной погрешностью .

Относительные погрешности всегда выражаются дробью с числителем, равным единице (аликвотная дробь). Так, в приведенном выше примере относительная погрешность первого измерения составляет

а второго

12.3 МАТЕМАТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ РАВНОТОЧНЫХ ИЗМЕРЕНИЙ ОДНОЙ ВЕЛИЧИНЫ

Пусть некоторая величина с истинным значением X измерена равноточно n раз и получены результаты: l 1 , l 2 , l 3 ,l i (i = 1, 2, 3, … n ), которые часто называют рядом измерений. Требуется найти наиболее надежное значение измеренной величины, которое называют вероятнейшим , и оценить точность результата.
В теории погрешностей наиболее вероятным значением для ряда равноточных результатов измерений принимают среднее арифметическое , т. е.

(12.1)

При отсутствии систематических погрешностей арифметическое среднее по мере неограниченного возрастания числа измерений стремится к истинному значению измеряемой величины.
Чтобы усилить влияние более крупных погрешностей на результат оценки точности ряда измерений, пользуются среднеквадратической погрешностью (СКП ). Если известно истинное значение измеряемой величины, а систематическая погрешность пренебрежимо мала, то средняя квадратическая погрешность (m ) отдельного результата равноточных измерений определяется по формуле Гаусса:

m = (12.2) ,

где Δ i - истинная погрешность.

В геодезической практике истинное значение измеряемой величины в большинстве случаев заранее неизвестно. Тогда среднюю квадратическую погрешность отдельного результата измерений вычисляют по вероятнейшим погрешностям (δ ) отдельных результатов измерений (l i ); по формуле Бесселя:

m = (12.3)

Где вероятнейшие погрешности (δ i ) определяются как отклонение результатов измерений от арифметического среднего

δ i = l i - µ

Часто рядом с вероятнейшим значением величины записывают и ее среднюю квадратическую погрешность (m ), например 70°05" ± 1". Это означает, что точное значение угла может быть больше или меньше указанного на 1". Однако эту минуту нельзя ни добавить к углу, ни вычесть из него. Она характеризует лишь точность получения результатов при данных условиях измерений.

Анализ кривой нормального распределения Гаусса показывает, что при достаточно большом числе измерений одной и той же величины случайная погрешность измерения может быть:

  • больше средней квадратической m в 32 случаях из 100;
  • больше удвоенной средней квадратической 2m в 5 случаях из 100;
  • больше утроенной средней квадратической 3m в 3 случаях из 1000.

Маловероятно, чтобы случайная погрешность измерения оказалась больше утроенной средней квадратической, поэтому утроенную среднюю квадратическую погрешность считают предельной:

Δ пред. = 3m

Предельной погрешностью называется такое значение случайной погрешности, появление которого при данных условиях измерений маловероятно.

В качестве предельной также принимают среднюю квадратическую погрешность, равную

Δ пред = 2,5m ,

С вероятностью ошибки, равной порядка 1%.

Средняя квадратическая погрешность суммы измеренных величин

Квадрат средней квадратической погрешности алгебраической суммы аргумента равен сумме квадратов средних квадратических погрешностей слагаемых

m S 2 = m 1 2 + m 2 2 + m 3 2 + .....+ m n 2

В частном случае, когда m 1 = m 2 = m 3 = m n = m для определения средней квадратической погрешности арифметической средней пользуются формулой

m S =

Средняя квадратическая погрешность алгебраической суммы равноточных измерений в раз больше средней квадратической погрешности одного слагаемого.

Пример.
Если измерено 9 углов 30-секундным теодолитом, то средняя квадратическая погрешность угловых измерений составит

m угл = 30 " = ±1,5"

Средняя квадратическая погрешность арифметического среднего
(точность определения среднего арифметического)

Средняя квадратическая погрешность арифметического среднего (m µ ) в раз меньше среднего квадратического одного измерения.
Это свойство средней квадратической погрешности арифметического среднего позволяет повысить точность измерений путем увеличения числа измерений .

Например , требуется определить величину угла с точностью ± 15 секунд при наличии 30-секундного теодолита.

Если измерить угол 4 раза (n ) и определить арифметическое среднее, то средняя квадратическая погрешность арифметического среднего (m µ ) составит ± 15 секунд.

Средняя квадратическая погрешность арифметического среднего ( m µ ) показывает, в какой мере снижается влияние случайных погрешностей при многократных измерениях.

Пример
Произведено 5-кратное измерение длины одной линии.
По результатам измерений вычислить: вероятнейшее значение ее длины L (среднее арифметическое); вероятнейшие погрешности (отклонения от среднего арифметического); среднюю квадратическую погрешность одного измерения m ; точность определения среднего арифметического , и вероятнейшее значение длины линии с учетом среднеквадратической погрешности среднего арифметического (L ).

Обработка результатов измерения расстояния (пример)

Таблица 12.1.

Номер измерения

Результат измерения,
м

Вероятнейшие погрешности d i , см

Квадрат вероятнейшей погрешности, см 2

Характеристика
точности

m =±= ±19 см
m µ = 19 см/= ±8 см

Σd i = 0

d i ]2 = 1446

L = (980,65 ±0,08) м

12.4. ВЕСА РЕЗУЛЬТАТОВ НЕРАВНОТОЧНЫХ ИЗМЕРЕНИЙ

При неравноточных измерениях, когда результаты каждого измерения нельзя считать одинаково надежными, уже нельзя обойтись определением простого арифметического среднего. В таких случаях учитывают достоинство (или надежность) каждого результата измерений.
Достоинство результатов измерений выражают некоторым числом, называемым весом этого измерения . Очевидно, что арифметическое среднее будет иметь больший вес по сравнению с единичным измерением, а измерения, выполненные при использовании более совершенного и точного прибора, будут иметь большую степень доверия, чем те же измерения, выполненные прибором менее точным.
Поскольку условия измерений определяют различную величину средней квадратической погрешности, то последнюю и принято принимать в качестве основы оценки весовых значений, проводимых измерений. При этом веса результатов измерений принимают обратно пропорциональными квадратам соответствующих им средних квадратических погрешностей .
Так, если обозначить через р и Р веса измерений, имеющие средние квадратические погрешности соответственно m и µ , то можно записать соотношение пропорциональности:

Например, если µ средняя квадратическая погрешность арифметического среднего, а m - соответственно, одного измерения, то, как следует из

можно записать:

т. е. вес арифметического среднего в n раз больше веса единичного измерения .

Аналогичным образом можно установить, что вес углового измерения, выполненного 15-секундным теодолитом, в четыре раза выше веса углового измерения, выполненного 30-секундным прибором.

При практических вычислениях обычно вес одной какой-либо величины принимают за единицу и при этом условии вычисляют веса остальных измерений. Так, в последнем примере если принять вес результата углового измерения 30-секундным теодолитом за р = 1, то весовое значение результата измерения 15-секундным теодолитом составит Р = 4.

12.5. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РЕЗУЛЬТАТОВ ПОЛЕВЫХ ИЗМЕРЕНИЙ И ИХ ОБРАБОТКЕ

Все материалы геодезических измерений состоят из полевой документации, а также документации вычислительных и графических работ. Многолетний опыт производства геодезических измерений и их обработки позволил разработать правила ведения этой документации.

Оформление полевых документов

К полевым документам относят материалы поверок геодезических приборов, журналы измерений и бланки специальной формы, абрисы, пикетажные журналы. Вся полевая документация считается действительной только в подлиннике. Она составляется в единственном экземпляре и в случае утраты может быть восстановлена лишь повторными измерениями, что практически не всегда возможно.

Правила ведения полевых журналов сводятся к следующим.

1. Заполнять полевые журналы следует аккуратно, все цифры и буквы должны быть записаны четко и разборчиво.
2. Исправление цифр и их подчистка, а также написание цифры по цифре не допускаются.
3. Ошибочные записи отсчетов зачеркиваются одной чертой и справа указывается «ошибочно» или «описка», а правильные результаты надписываются сверху.
4. Все записи в журналах ведутся простым карандашом средней твердости, чернилами или шариковой ручкой; использование для этого химических или цветных карандашей не рекомендуется.
5. При выполнении каждого вида геодезических съемок записи результатов измерений делают в соответствующих журналах установленной формы. До начала работ страницы журналов пронумеровывают и их число заверяет руководитель работ.
6. В процессе полевых работ страницы с забракованными результатами измерений зачеркивают по диагонали одной чертой, указывают причину брака и номер страницы, содержащей результаты повторных измерений.
7. В каждом журнале на заглавном листе заполняют сведения о геодезическом приборе (марка, номер, средняя квадратическая погрешность измерения), записывают дату и время наблюдений, метеоусловия (погода, видимость и т. п.), фамилии исполнителей, приводят необходимые схемы, формулы и примечания.
8. Журнал должен заполняться таким образом, чтобы другой исполнитель, не участвующий в полевых работах, мог безошибочно выполнить последующую обработку результатов измерений. При заполнении полевых журналов следует придерживаться следующих форм записи:
а) числа в столбцах записываются так, чтобы все цифры соответствующих разрядов располагались одна под другой без смещения.
б) все результаты измерений, выполненных с одинаковой точностью, записывают с одинаковым числом знаков после запятой.

Пример
356,24 и 205,60 м — правильно,
356,24 и 205,6 м — неправильно;
в) значения минут и секунд при угловых измерениях и вычислениях всегда записывают двузначным числом.

Пример
127°07"05" , а не 127º7"5" ;

г) в числовых значениях результатов измерений записывают такое количество цифр, которое позволяет получить отсчетное устройство соответствующего средства измерений. Например, если длина линии измеряется рулеткой с миллиметровыми делениями и отсчитывание проводится с точностью до 1 мм, то отсчет должен быть записан 27,400 м, а не 27,4 м. Или если угломерный прибор позволяет отсчитывать только целые минуты, то отсчет запишется как 47º00", а не 47º или 47º00"00».

12.5.1. Понятие о правилах геодезических вычислений

К обработке результатов измерений приступают после проверки всех полевых материалов. При этом следует придерживаться выработанных практикой правил и приемов, соблюдение которых облегчает труд вычислителя и позволяет ему рационально использовать вычислительную технику и вспомогательные средства.
1. Перед началом обработки результатов геодезических измерений следует разработать подробную вычислительную схему, в которой указывается последовательность действий, позволяющая получить искомый результат наиболее простым и быстрым путем.
2. С учетом объема вычислительных работ выбирать наиболее оптимальные средства и способы вычислений, требующие наименьших затрат при обеспечении необходимой точности.
3. Точность результатов вычислений не может быть выше точности измерений. Поэтому заранее следует задаваться достаточной, но не излишней точностью вычислительных действий.
4. При вычислениях нельзя пользоваться черновиками, так как переписывание цифрового материала отнимает много времени и часто сопровождается ошибками.
5. Для записей результатов вычислений рекомендуется использование специальных схем, бланков и ведомостей, определяющих порядок расчетов и обеспечивающих промежуточный и общий контроль.
6. Без контроля вычисление не может считаться законченным. Контроль можно выполнять, используя другой ход (способ) решения задачи либо выполняя повторные вычисления другим исполнителем (в «две руки»).
7. Вычисления всегда заканчиваются определением погрешностей и обязательным их сравнением с допусками, предусматриваемыми соответствующими инструкциями.
8. Особые требования при вычислительных работах предъявляются к аккуратности и четкости записи чисел в вычислительных бланках, поскольку небрежности в записях приводят к ошибкам.
Как и в полевых журналах, при записях столбцов чисел в вычислительных схемах цифры одинаковых разрядов следует располагать одна под другой. При этом дробную часть числа отделяют запятой; многоразрядные числа желательно записывать с интервалами, например: 2 560 129,13. Записи вычислений следует вести только чернилами прямым шрифтом; ошибочные результаты аккуратно перечеркивать и сверху писать исправленные значения.
При обработке материалов измерений следует знать, с какой точностью должны быть получены результаты вычислений, чтобы не оперировать с излишним числом знаков; если окончательный результат вычисления получается с большим числом знаков, чем это необходимо, то производят округление чисел.

12.5.2. Округление чисел

Округлить число до n знаков - значит сохранить в нем первые n значащих цифр.
Значащие цифры числа - это все его цифры от первой слева, отличной от нуля, до последней записанной цифры справа. При этом нули справа не считаются значащими цифрами, если они заменяют неизвестные цифры или поставлены вместо других цифр при округлении данного числа.
Например, число 0,027 имеет две значащие цифры, а число 139,030 - шесть значащих цифр.

При округлении чисел следует придерживаться следующих правил.
1. Если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя оставляемая цифра сохраняется без изменения.
Например, число 145,873 после округления до пяти значащих цифр будет 145,87.
2. Если первая из отбрасываемых цифр больше 5, то последняя оставляемая цифра увеличивается на единицу.
Например, число 73,5672 после округления его до четырех значащих цифр будет 73,57.
3. Если последней цифрой округляемого числа является цифра 5 и она должна быть отброшена, то предшествующую ей цифру в числе увеличивают на единицу только в том случае, если она нечетная (правило четной цифры).
Например, числа 45,175 и 81,325 после округления до 0,01 будут соответственно 45,18 и 81,32.

12.5.3. Графические работы

Ценность графических материалов (планов, карт и профилей), являющихся конечным результатом геодезических съемок, в значительной мере определяется не только точностью полевых измерений и правильностью вычислительной их обработки, но и качеством графического исполнения. Графические работы должны выполняться с помощью тщательно проверенных чертежных инструментов: линеек, треугольников, геодезических транспортиров, циркулей-измерителей, остро отточенных карандашей (Т и ТМ) и т. п. Большое влияние на качество и производительность чертежных работ оказывает организация рабочего места. Чертежные работы должны выполняться на листах качественной чертежной бумаги, закрепленных на ровном столе либо на специальной чертежной доске. Составленный карандашный оригинал графического документа после тщательной проверки и корректировки оформляют в туши в соответствии с установленными условными знаками.

Вопросы и задания для самоконтроля

  1. Что значит выражение: «измерить какую-либо величину»?
  2. Как классифицируют измерения?
  3. Как классифицируют измерительные приборы?
  4. Как классифицируют результаты измерений по точности?
  5. Какие измерения называют равноточными?
  6. Что означают понятия: «необходимое и избыточное число измерений»?
  7. Как классифицируют ошибки измерения?
  8. Чем обусловлены систематические погрешности?
  9. Какими свойствами обладают случайные погрешности?
  10. Что называют абсолютной (истинной) погрешностью?
  11. Что называют относительной погрешностью?
  12. Что называют в теории погрешностей средним арифметическим?
  13. Что называют в теории погрешностей средней квадратической погрешностью?
  14. Чему равна предельная средняя квадратическая погрешность?
  15. Как соотносятся средняя квадратическая погрешность алгебраической суммы равноточных измерений и средняя квадратическая погрешность одного слагаемого?
  16. Как соотносятся средняя квадратическая погрешность арифметического среднего и средняя квадратическая погрешность одного измерения?
  17. Что показывает средняя квадратическая погрешность арифметического среднего?
  18. Какай параметр принимают в качестве основы оценки весовых значений?
  19. Как соотносятся вес арифметического среднего и вес единичного измерения?
  20. Какие правила приняты в геодезии для ведения полевых журналов?
  21. Перечислите основные правила геодезических вычислений.
  22. Округлите до 0,01 числа 31,185 и 46,575.
  23. Перечислите основные правила выполнения графических работ.

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

. .

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

Составляющие погрешности результата измерения представлены на рисунке 1.1.

По форме количественного выражения погрешности измерения делятся на абсолютные и относительные.

Абсолютной погрешностью (а), выражаемой в единицах измеряемой величины, называется отклонение результата измерения (х) от истинного значения (Х и или действительного значения (х 4). Таким образом, формула Дхизм = Х иям ~ Х и (Хо) может быть применима для количественной оценки абсолютной погрешности.

Абсолютная погрешность характеризует величину и знак, полученный погрешности, но нс определяет качество самого проведенного измерения.

Понятие погрешности характеризует как бы несовершенство измерения. Характеристикой качества измерения является используемое в метрологии понятие точности измерений, отражающее, как было показано выше, меру близости результатов измерений к истинному значению измеряемой физической величины. Точность и погрешность связаны между собой обратной зависимостью. Иначе говоря, высокой точности измерений соответствует малая погрешность. Поэтому, чтобы иметь возможность сравнить качество измерений, введено понятие относительной погрешности.

Относительной погрешностью () называется отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Она вычисляется по формуле:

Мерой точности измеренийслужит величина, обратная модулю относительной погрешности, т.е. . Погрешность ($) часто выражают в

процентах:

Если измерение выполнено однократно и за абсолютную погрешность результата измерения д принята разность между показанием прибора и истинным значением принятой величины X и (Хд) то из соотношения (1.3) следует, что значение относительной погрешности б уменьшается с ростом величины Х и (Х д). Поэтому для измерений целесообразно выбирать такой прибор, показания которого были бы в последней части его шкалы (диапазона измерений), а для сравнения различных приборов использовать понятие приведенной погрешности. Выражение погрешности в приведенной форме используется для количественной оценки составляющей погрешности измерения, обусловленной инструментальной погрешностью (аппаратурной, приборной) - она будет рассмотрена ниже (см. п. 1.4.2 пособия).

По характеру (закономерности) изменения погрешности измерений подразделяются на систематические и случайные. К числу случайных относят и грубые погрешности.

Систематические погрешности (д с)- составляющие погрешности измерений, остающиеся постоянными или закономерно изменяющиеся при многократных (повторных) измерениях одной и той же величины в одних и тех же условиях. Из всех видов погрешностей, именно систематические, представляют собой наиболее опасные и трудно устранимые. Это объяснимо по ряду причин :

во-первых, систематическая погрешность постоянно искажает действительное значение полученного результата измерения в сторону его увеличения или уменьшения. Причем, заранее направление такого искажения трудно определить;

  • - во-вторых, величина систематической погрешности не может быть найдена методами математической обработки полученных результатов измерения. Она не может быть уменьшена при многократном измерении одними и теми же измерительными средствами;
  • - в-третьих, она может быть постоянная, может монотонно изменяться, она может изменяться периодически, но по полученным результатам измерения закон ее изменения трудно, а иногда и невозможно определить;
  • - в-четвертых, на результат измерений влияют несколько факторов, каждый из которых вызывает свою систематическую погрешность в зависимости от условий измерения.

Причем, каждый новый метод измерения может дать свои, заранее неизвестные систематические погрешности и надо искать приемы и способы исключения влияния этой систематической погрешности в процессе измерения.

Утверждение об отсутствии систематической погрешности или, что она пренебрежительно мала, требуется не только показать, но и доказать.

Такие погрешности могут быть выявлены только путём детального анализа возможных их источников и уменьшены (применением более точных приборов, калибровкой приборов с помощью рабочих мер и пр.). Однако полностью их устранить нельзя.

Не следует забывать, что необнаруженная систематическая погрешность «опаснее» случайной. Если случайные погрешности характеризуют разброс величины измеряемого параметра относительно его действительного значения, то систематическая погрешность устойчиво искажает непосредственно величину измеряемого параметра, и тем самым «удаляет» его от истинного (или условно-истинного) значения. Иногда для обнаружения систематической погрешности приходится проводить трудоемкие и долговременные (до нескольких месяцев) эксперименты и в результате обнаружится, что систематическая погрешность была пренебрежительно мала. Это очень ценный результат. Он показывает, что данная методика измерения даст точные результаты за счет исключения систематической погрешности.

Один из способов исключения систематических погрешностей рассмотрен в четвертом разделе данного учебного пособия. Однако в реальных условиях полностью исключить систематическую составляющую погрешности невозможно. Всегда остаются какие-то не исключенные остатки, которые и нужно учитывать, чтобы оценить их границы. Это и будет систематическая погрешность измерения. То есть, в принципе, систематическая погрешность тоже случайна, и указанное деление обусловлено лишь установившимися традициями обработки и представления результатов измерения.

По характеру изменения во времени систематические погрешности подразделяются на постоянные (сохраняющие величину и знак), прогрессирующие (возрастающие или убывающие во времени), периодические, а также изменяющиеся во времени по сложному непериодическому закону. Основные из этих погрешностей - прогрессирующие.

Прогрессирующая (дрейфовая) погрешность - это непредсказуемая погрешность, медленно меняющаяся во времени. Отличительные особенности прогрессирующих погрешностей следующие:

  • а) их можно скорректировать поправками только в данный момент времени, а далее они вновь непредсказуемо меняются;
  • б) изменения прогрессирующих погрешностей во времени нестационарных (характеристики которого изменяются во времени) представляют собой случайный процесс, и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с известными оговорками.

По источникам проявления различают следующие систематические погрешности:

  • - методические, вызванные используемым методом измерения;
  • - инструментальные, вызванные погрешностью используемого СИ (определяются классом точности СИ);
  • - погрешности, вызванные неправильной установкой СИ или влиянием неинформативных внешних факторов;
  • - погрешности, вызванные неправильными действиями оператора (укоренившийся неверный навык проведения измерительной процедуры).

В РМГ 29-2013 систематическая погрешность в зависимости от характера изменения во времени подразделена на постоянные, прогрессирующие, периодические и погрешности, изменяющиеся по сложному закону. В зависимости от характера изменения по диапазону измерений систематические погрешности подразделяются на постоянные и пропорциональные.

Постоянные погрешности - погрешности, которые в течение длительного времени, например, в течение времени выполнения всего ряда измерений, остаются постоянными (или - неизменными). Они встречаются наиболее часто.

Прогрессирующие погрешности - непрерывно возрастающие или убывающие погрешности. К ним относятся, например, погрешности вследствие износа измерительных наконечников, контактирующих с деталью при контроле ее прибором активного контроля.

Периодические погрешности - погрешности, значение которых является периодической функцией времени или перемещения указателя измерительного прибора.

Погрешности, изменяющиеся по сложному закону, происходят вследствие совместного действия нескольких систематических погрешностей.

Пропорциональные погрешности погрешности, значение которых пропорционально значению измеряемой величины.

Оставшуюся систематическую погрешность измерения после ведения поправки называют неисключенной систематической погрешностью (ПСП).

Случайные погрешности (А)- составляющие погрешности измерений, изменяющиеся случайным образом при повторных (многократных) измерениях одной и той же величины в одних и тех же условиях. В появлении таких погрешностей нет какой-либо закономерности, они проявляются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов.

Случайные погрешности неизбежны, неустранимы и всегда имеют место в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

В отличие от систематических, случайные погрешности нельзя исключить из результатов измерений путём введения поправки, однако их можно существенно уменьшить путем многократных измерений этой величины и последующей статической обработкой полученных результатов.

Грубые погрешности (промахи) - погрешности, существенно превышающие ожидаемые при данных условиях измерения. Такие погрешности возникают из-за ошибок оператора или неучтенных внешних воздействий. Их выявляют при обработке результатов измерений и исключают из рассмотрения, пользуясь определенными правилами. Следует заметить, что отнесение результатов наблюдения к числу промахов нс всегда может быть выполнено однозначно.

Следует учитывать два момента: с одной стороны, ограниченность числа выполненных наблюдений, нс позволяющих с высокой степенью

достоверности оценить форму и вид (провести идентификацию) закона распределения, а значит выбрать подходящие критерии оценки результата на наличие «промаха». Второй момент связан с особенностями объекта (или процесса), показатели (параметры) которого образуют случайную совокупность (выборку). Так при медицинских исследованиях, и даже в повседневной медицинской практике отдельные выпадающие результаты могут представлять собой вариант «биологической нормы», и поэтому они требуют учета, с одной стороны, и анализа причин, которые приводят к их появлениям - с другой.

Как было показано (п. 1.2) обязательными компонентами любого

измерения являются СИ (прибор, измерительная установка, измерительная система), метод измерения и человек, проводящий измерение.

Несовершенство каждого из этих компонентов приводит к появлению своей составляющей погрешности результата измерения. В соответствии с этим, по источнику (причинам) возникновения различают инструментальные, методические и личные (субъективные) погрешности._

Инструментальные (аппаратурные, приборные) погрешности измерений обусловлены погрешностью применяемого СИ и возникают из-за его несовершенства. Источниками инструментальных погрешностей могут быть, например, неточная градуировка прибора и смещение нуля, вариация показаний прибора в процессе эксплуатации и т. д.

Точность СИ является характеристикой качества СИ и отражает близость его погрешности к нулю. Считается, что чем меньше погрешность, тем точнее СИ. Интегральной характеристикой СИ является класс точности.

Термин «класс точности средств измерений» изменений в НД не претерпел. Класс точности - это обобщенная характеристика данного типа СИ. Класс точггости СИ, как правило, отражающий уровеггь их точности, выражается точностными характеристиками - пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность. Говоря о классе точности, в РМГ 29-99 были отмечены два момента:

  • 1) класс точности дает возможность судить о том, в каких пределах находится погрешность СИ одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Это важгго учитывать при выборе СИ в зависимости от задаггггой точности измерений;
  • 2) класс точности СИ конкретного типа устанавливают в стандартах технических требований (условий) или в других НД.

В примечании к этому термину в РМГ 29-2013 сказано:

  • - класс точности дает возможность судить о значениях инструментальных погрешностей или инструментальных неопределенностей средств измерений данного типа при выполнении измерений;
  • - класс точггости применяется и к материальным мерам.

В РМГ 29-2013 введен новый для отечественной метрологии термин «инструментальная неопределенность» - это составляющая неопределенности измерений, обусловлсггггая примеггяемьгм средством измерений или измерительной системы.

Инструментальную неопределенность принято определять при калибровке СИ или измерительной системы, за исключением первичного эталона. Инструментальную неопределенность используют при оценивании неопределенности измерений по типу В. Информация, касающаяся инструментальной неопределенности, может быть приведена в спецификации СИ (паспорт, сертификат калибровки, удостоверение поверки).

Возможные составляющие инструментальной погрешности представлены на рисунке 1.8. Уменьшают инструментальные погрешности применением более точного прибора.


Рисунок 1.8- Инструментальная погрешность и ее составляющие

Погрешность метода измерений представляет собой составляющую систематической погрешности измерений, обусловленную несовершенством принятого метода измерений .

Погрешность метода измерения обусловлена:

  • - отличием принятой модели объекта измерения от модели, адекватно описывающей его свойство, которое определяется путём измерения (в этом выражается несовершенство метода измерения);
  • - влиянием способов применения СИ. Это имеет место, например, при измерении напряжения вольтметром с конечным значением внутреннего сопротивления. В таком случае вольтметр шунтирует участок цепи, на котором измеряется напряжение, и оно оказывается меньше, чем было до присоединения вольтметра;
  • - влиянием алгоритмов (формул), по которым производят вычисления результатов измерений (например, некорректностью расчетных формул);
  • - влиянием выбранного СИ на параметры сигналов;
  • - влиянием других факторов, не связанных со свойствами используемых

Методические погрешности часто называют теоретическими, потому что они связаны с разного рода отклонениями от идеальной модели измерительного процесса и использования неверных теоретических предпосылок (допущений) при измерениях. Вследствие упрощений, принятых в уравнениях для измерений, нередко возникают существенные погрешности, для компенсации действия которых следует вводить поправки. Поправки по величине равны погрешности и противоположны ей по знаку.

Отдельно среди методических погрешностей выделяют погрешности при статистической обработке результатов наблюдений. Кроме погрешностей, связанных с округлением промежуточных и конечных результатов, они содержат погрешности, связанные с заменой точечных (числовых) и вероятностных характеристик измеряемых величин их приближенными (экспериментальными) значениями. Такие погрешности возникают при замене теоретического распределения опытным, что всегда имеет место при ограниченном числе наблюдаемых значений (результатов наблюдения).

Отличительной особенностью методических погрешностей является то, что они не могут быть указаны в документации на используемое СИ, поскольку от него нс зависят; их должен определять оператор в каждом конкретном случае. В связи с этим оператор должен чётко различать фактически измеряемую им величину и величину, подлежащую измерению.

Иногда погрешность метода может проявляться как случайная. Если, например, электронный вольтметр обладает недостаточно высоким входным сопротивлением, то его подключение к исследуемой схеме способно изменить в ней распределение токов и напряжений. При этом результат измерения может существенно отличаться от действительного. Методическую погрешность можно уменьшить путём применения более точного метода измерения.

Субъективная погрешность - составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора (наблюдателя).

Субъективные (личные) погрешности вызываются ошибками оператора при отсчете показаний СИ. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

Согласно отмененного РМГ 29-99 погрешность оператора

(субъективная погрешность) - погрешность, обусловленная погрешностью отсчета оператором показаний по шкале СИ, диаграммам регистрирующих приборов. В настоящее время этот термин не регламентирован в НД.

Субъективные погрешности, как следует из определения, вызываются состоянием оператора, его положением во времени работы, несовершенством органов чувств, эргономическими свойствами СИ. Так имеют место погрешности от небрежности и невнимания оператора, от параллакса, т. е. от неправильного направления взгляда при отсчете показаний стрелочного прибора и пр.

Подобные погрешности устраняются применением современных цифровых приборов или автоматических методов измерения.

По характеру поведения измеряемой физической величины в процессе измерений различают статические и динамические погрешности.

Статические погрешности возникают при измерении установившегося значения измеряемой величины, т.е. когда эта величина перестает изменяться во времени.

Динамическая погрешность (средства измерений): разность между погрешностью СИ в динамическом режиме и его статической погрешностью, соответствующей значению величины в данный момент времени. Динамические погрешности имеют место при динамических измерениях, когда измеряемая величина изменяется во времени и требуется установить закон ее изменения, т. е. погрешности, свойственные условиям динамического измерения. Причина появления динамических погрешностей состоит в несоответствии скоростных (временных) характеристик прибора и скорости изменения измеряемой величины.

В зависимости от влияния измеряемой величины на характер накопления в процессе измерения погрешности, она может быть аддитивная или мультипликативная.

Во всех перечисленных случаях на результат измерения оказывают влияние условия измерений, они формируют погрешность от влияющих факторов - внешнюю погрешность.

Внешняя погрешность - важная составляющая погрешности результата измерения, связанная с отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (например, влияние влажности, температуры, внешних электрических и магнитных полей, нестабильности источников питания, механических воздействий и т. д.). В большинстве случаев внешние погрешности являются систематическими и определяются дополнительными погрешностями применяемых СИ, в отличие от основной погрешности, полученной в нормальных условиях измерения.

В РМГ 29-2013 стандартизован термин «погрешность (средства измерений) дополнительная»: составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величии от нормального се значения или вследствие се выхода за пределы нормальной области значений.

Различают нормальные и нормированные условия (рабочие условия) измерений. Значение влияющей величины, установленное в качестве номинального, принимают в качестве нормального значения влияющей величины. Так при измерении многих величин нормируется нормальное значение температуры 20 °С или 293 К, а в других случаях нормируется 296 К (23 °С). На нормальное значение, к которому приводятся результаты многих измерений, выполненные в разных условиях, обычно рассчитана основная погрешность СИ. Область значений влияющей величины, в пределах которой изменением результата измерений под се воздействием можно пренебречь в соответствии с установленными нормами точности, принимается как нормальная область значений влияющей величины.

Например, нормальная область значений температуры при поверке нормальных элементов класса точности - 0,005 в термостате не должна изменяться более чем на ±0,05 °С от установленной температуры 20 °С, т.е. быть в диапазоне от 19,95 °С до 20,05 °С.

Нормированные (рабочие) условия измерений - это условия измерений, которые должны выполняться во время измерений для того, чтобы средство измерений или измерительная система функционировали в соответствии со своим назначением (РМГ 29-2013).

Изменение показаний СИ во времени, обусловленное изменением влияющих величин или других факторов называется дрейфом показаний СИ. Например, ход хронометра, определяемый как разность поправок к его показаниям, вычисленных в разное время. Обычно ход хронометра определяют за сутки (суточный ход). Если происходит дрейф показаний нуля, то применяют термин «дрейф нуля».

В РМГ 29-2013 стандартизовано определение «инструментальный дрейф», под которым понимают «непрерывное или ступенчатое изменение показаний во времени, вызванное изменениями метрологических характеристик (МХ) СИ». Инструментальный дрейф СИ не связан ни с изменением измеряемой величины, ни с изменением любой выявленной влияющей величины.

Таким образом, погрешность от влияющих условий измерения следует рассматривать как составляющую систематической погрешности измерения, являющуюся следствием неучтенного влияния отклонений в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.

Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины. Однако следует отметить что, погрешность от влияющих условий может проявляться и как случайная, если действующий фактор имеет случайную природу (подобным образом проявляет себя температура помещения, в котором выполняются измерения).