Главная · Боль в деснах · Во что наливать спиртные напитки? Дополнительные составляющие жидкости электронных сигарет. Использование никотина и его свойства

Во что наливать спиртные напитки? Дополнительные составляющие жидкости электронных сигарет. Использование никотина и его свойства

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)].

Рис. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато).

Рис. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо.

Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.
Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо. Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.

Рис. Упрощение опыта Плато.

Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58).
За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин].

В чем подавать шампанское и в какие бокалы наливать вино или коктейль?

Классические напитки: шампанское, красное и , ликер, виски или коньяк требуют определенной подачи. И это вовсе не прихоть ревнителей этикета. В правильно выбранном бокале напиток лучше раскрывает свой вкус. Не веришь?

Проведем простой эксперимент: сухое красное вино, мерло или каберне, налей в стеклянный бокал и в фарфоровую чашку. Дай постоять 5 минут, закрой глаза и поочередно пригуби вино. Удивительно, но его вкус будет сильно различаться. Дело в том, что вкусовые рецепторы в разных местах языка по-разному воспринимают вкус.

За кислый вкус отвечают рецепторы на задней части языка. Именно туда попадет шампанское, выпитое из высокого бокала. Вино из широкого сосуда в первую очередь попадает на кончик языка, рецепторы которого настроены на восприятие сладкого.

Стекло - лучший материал для винной посуды. Но если бокалы для вина должны быть тонки- ми, крепким напиткам требуется посуда с толстыми стенками.

Какой набор винной посуды должен быть в доме?

Бокал для красного вина по форме напоминает широкую головку тюльпана. Такая форма позволяет вину дышать. Красное вино подают, как правило, не охлаждая, комнатной температуры.

Бокал для белого вина имеет меньший объем и более удлиненную форму, чтобы предварительно охлажденный напиток не успел нагреться, пока его пьют.

Бокал Hurricanes предназначен для тропических коктейлей со льдом, украшенных экзотическими фруктами.

Стакан для виски из толстого стекла называют old fashioned, что в переводе означает “старомодный”. Напиток охлаждается, а пальцы не мерзнут.

Бокал для коньяка имеет низкую ножку и широкую чашу. Напиток постепенно нагревается от руки и полнее отдает свой аромат.

Рюмка для водки или текилы объемом § 50 мл. Наливают в нее ровно на один глоток. Наливать напиток до краев считается дурным тоном.

Бокал для мартини традиционно делают на высокой ножке, так как изначально о мартини подавали без льда и таким образом защищали от тепла руки.

Фужер для шампанского высокий и узкий. Пена в нем будет высокой, а игра пузырьков продолжительной.

Итак, вы недавно начали парить электронные сигареты или еще только собираетесь попробовать, и уже знаете, сколько разнообразных вкусов и ароматов для парения предлагается на этом рынке в настоящее время. На данном этапе вас наверняка интересует, что собственно представляет из себя жидкость для электронных сигарет, и каким образом парение может помочь вам освободиться от пристрастия к табаку и табачному дыму. В этой статье мы рассмотрим основные понятия, и постараемся привлечь Ваше внимание к парению, как способу отказа от курения обычных сигарет.

С самого начала целью применения электронных сигарет было получение порции никотина. Для этого никотин смешивают с гелеобразной субстанцией под названием жидкость (а также e-liquid или e-juice). Эта смесь по фитилю подается к спирали, а при нагревании спирали испаряется с неё, образуя густой ароматный пар.

Что такое жидкость для электронных сигарет?

VG и PG широко распространены и могут быть найдены в составе многих лекарств и продуктов питания.

Четыре основных компонента любой жидкости: пропиленгликоль (PG), натуральный глицерин (VG), никотин, и ароматические вещества. Пропиленгликоль и глицерин - широко используемые в разных продуктах вещества. Пропиленгликоль и глицерин - естественные органические соединения, встречающиеся в природе, присутствуют в составе самых разнообразных продуктов (в лекарствах от кашля, зубной пасте), используются в ингаляторах, а также в продуктах питания - мороженом, взбитых сливках и напитках на основе кофе.

Что такое пропиленгликоль и глицерин?

Пропиленгликоль и глицерин имеют разные свойства, создавая вместе оптимальную основу для испарения никотина.

Пропиленгликоль - пищевая добавка, в большинстве стран (в том числе в России) официально признанная безопасной для человеческого организма и пригодной для использования в составе лекарственных препаратов и продуктов питания.

Глицерин - многоатомный спирт, входящий в состав некоторых пищевых продуктов. Вещество безвредно, если употреблять его в небольших дозах и не нагревать более 280 °С;

Пропиленгликоль представляет собой водянистую и текучую жидкость, которая является транспортером ароматической составляющей, и дает при вдыхании пара ощущения крепости (так называемый “удар по горлу”). В силу способности пропиленгликоля эффективно адсорбировать и переносить вкус и аромат, ароматические компоненты жидкости обычно смешиваются в первую очередь с пропиленгликолем, а уже потом добавляются остальные ингредиенты. Пропиленгликоль крайне редко может вызывать аллергические реакции у некоторых вэйперов.

Глицерин, напротив, имеет достаточно вязкую консистенцию, больше напоминающую гель. У глицерина естественный сладкий вкус, и при испарении он дает густое плотное облако пара. Пар от глицерина при вдыхании гораздо более мягкий по вкусу, и не дает ощутимого “удара по горлу” при парении без пропиленгликоля.

Итак, краткое сравнение основных характеристик глицерина и пропиленгликоля: Пропиленгликоль(PG): Более текучий, чем глицерин Легко впитывается Пар от пропиленгликоля рассеивается быстрее Дает ощущение крепости пара (“удар по горлу”) Может вызывать аллергические реакции у некоторых вэйперов Глицерин:(VG): Имеет натуральный сладкий вкус Более густая консистенция Производит больше пара В виде пара более продолжительное время висит в воздухе Практически не дает ощущения жесткости в горле

Каково соотношение компонентов в жидкости?

Соотношение компонентов в составе жидкости определяет её консистенцию: жидкости с преобладанием глицерина более густые, с преобладанием пропиленгликоля - более жидкие и текучие.

Поскольку пропиленгликоль и глицерин обладают такими разными свойствами, они хорошо дополняют друг друга, и в основе практически любой жидкости для электронных сигарет лежит смесь этих двух компонентов в той или иной пропорции. Наиболее распространенные соотношения 50VG и 70VG (что означает соотношение глицерина и пропиленгликоля 50% на 50%, или 70% на 30% соответственно).

Соотношение этих компонентов определяет плотность смеси - чем больше глицерина, тем гуще и плотнее будет жидкость, и, напротив, чем больше пропиленгликоля, тем она будет более текучей, и тем сильнее будет проявляться удар по горлу. Жидкость для электронных сигарет на основе глицерина называется мягкой. Другое ее наименование – «бархатное облако». В составе такой жидкости находится около 80% глицерина. Остальные компоненты – никотин, ароматизатор, вода – содержатся в тех же объемах, что и в традиционной. Крепкая жидкость имеет в основе только пропиленгликоль. Ее также именуют «ледяной клинок». Концентрация пропиленгликоля в ней может быть очень большой (от 65% до 95%). Остальные доли в составе отводятся никотину (0-3,6%), ароматизаторам (2-4%) и воде. «Бархатное облако» и «ледяной клинок» – это жидкости, предназначенные, в основном для тех, у кого наблюдается аллергия на пропиленгликоль или глицерин. Однако, использовать их могут и все остальные вэйперы. Как правило, более мягкие жидкости (с высоким содержанием глицерина) лучше подходят для саб-ом клиромайзеров, таких как Kanger TopTank или Aspire Atlantis, и меньше пригодны для маленьких моделей, предназначенных для парения в стиле, традиционном для обычных сигарет, такие как Nautilus или стандартный CE5.

Как насчёт никотина?

Никотин является для многих вэйперов наиболее важным компонентом электронной жидкости. И несмотря на это, его присутствие в жидкости опционально - множество вэйперов, избавившись от потребности в никотине, получают удовольствие от самого процесса парения - без никотина. Те, кто выбирает никотиновые жидкости, существуют разные по крепости варианты - от 1,5 мг до 18 мг. Эта цифра обозначает количество никотина на 1мл жидкости и может быть указана в процентах. Так, для жидкости с содержанием 18мг никотина в 1мл указывается крепость 1,8%; с 6 мг - 0,6%, и так далее.

Советы по правильному выбору содержания никотина читайте в следующей .

Кто хочет стать миллионером? 14.10.17. Вопросы и ответы

Программа «Кто хочет стать миллионером?»

Все вопросы и ответы:

Леонид Якубович и Александр Розенбаум

Несгораемая сумма: 200 000 рублей.

1. Как называют водителя, совершающего поездки на большие расстояния?

· стрелок · бомбардир · дальнобойщик · снайпер

2. Какой эффект, как говорят, производит покупка дорогой вещи?

· щёлкает по барсетке

· бьёт по карману

· стреляет по кошельку

· шлёпает по кредитке

3. Как зовут поросёнка, героя популярного мультфильма?

· Франтик · Финтик · Фантик · Фунтик 4. Как заканчивался лозунг эпохи социализма: «Нынешнее поколение советских людей будет жить…»?

· не тужить

· долго и счастливо

· при коммунизме

· на Марсе

5. На что, согласно законам физики, действует подъёмная сила?

· крюк башенного крана

· крыло самолёта

· звонок будильника

· рост производства

6. Как называется склад имущества в воинской части?

· жаровня

· парилка

· каптёрка

· сушилка

7. Какую часть имбиря чаще всего используют в кулинарии?

· корень

· стебель

8. Сколько миллиметров в километре?

· десять тысяч

· сто тысяч

· миллион

· десять миллионов

9. Что «разгорелось» в куплетах из фильма «Весёлые ребята»?

· утюг

· папироса

10. Где покоится прах американского астронома Юджина Шумейкера?

· на Марсе

· на Юпитере

· на Луне

· на Земле

11. С какой болью сравнил любовь поэт Герих Гейне?

· с головной

· с поясничной

· с зубной

· с фантомной

12. Какую должность при дворе царицы Тамары занимал Шота Руставели?

· казначей

· придворный поэт

· главный визирь

Выигрыш игроков составил 200 000 рублей.

Александр Ревва и Вера Брежнева

Несгораемая сумма: 200 000 рублей.

1. Куда во время чаепития обычно кладут варенье?

· в розетку

· в штепсель

· в удлинитель

· в тройник

2. О чём говорят: «Ни свет ни заря»?

· о потухшем костре

· о раннем утре

· о закончившемся фейерверке

· о перегоревших пробках

3. Какую карточную масть часто называют «сердечками»?

· червы

4. Какими бывают хранилища данных в Интернете?

· облачными

· тучными

· дождевыми

· радужными

5, сообщает сайт. Что стало жилищем героев известной песни «Битлз»?

· синий троллейбус

· жёлтая подводная лодка

· зелёный поезд

· последняя электричка

6. Что в прошлом не использовалось для письма?

· папирус

· бумазея

· пергамент

· глиняные таблички

7. Чем паук-серебрянка наполняет своё подводное гнездо?

· крыльями мух

· водорослями

· пузырьками воздуха

· жемчужинками

8. Во что жидкость обычно не наливают?

· в реторту

· в бурдюк

· в анкерок

· в тубус

9. Что умел делать плащ доктора Стрэнджа — героя кино и комиксов?

· разговаривать

· стрелять

· делать хозяина невидимым

· летать

10. Какая из этих стихотворных форм наименьшая по количеству строк?

· катрен

· онегинская строфа

11. Кто не изображён на гербе Исландии?

· белый медведь

Выигрыш игроков составил 0 рублей.

Жидкость · Гидростатика · Гидродинамика · Вязкость · Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение См. также: Портал:Физика

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы .) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси . Некоторые смеси жидкостей имеют большое значение для жизни: кровь , морская вода и др. Жидкости могут выполнять функцию растворителей .

Физические свойства жидкостей

  • Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу , то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести : достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа , между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля , справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

  • Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью . Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой - то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением . Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую - энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение .)

  • Испарение и конденсация

Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

  • Диффузия

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи .

Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние . Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны , более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком .

Если плотность меняется достаточно сильно, то такая волна называется ударной волной . Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания - вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость - внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости .

Если возвращающая сила - это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила - это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества - газообразной или кристаллической - нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием - например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс - конденсация.

Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление . Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики - гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика - часть более общей отрасли механики, механики сплошной среды .

Гидромеханика - это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика .

Гидромеханика подразделяется на гидростатику , в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике . Для решения прикладных задач применяется гидравлика .

Основной закон гидростатики - закон Паскаля .

Движение вязкой жидкости описывается уравнением Навье-Стокса , в котором возможен и учёт сжимаемости.

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород , жидкий азот). Такие молекулы обладают квадрупольным моментом .

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода , глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы .

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы , которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские . Течение ньютоновской жидкости подчиняется закону вязкости Ньютона , то есть касательное напряжение и градиент скорости линейно зависимы . Коэффициент пропорциональности между этими величинами известен как вязкость . У неньютоновской жидкости вязкость зависит от градиента скорости.

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

Где - число частиц в единице объёма, - безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа : . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений . В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория» . В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру . Энергия частиц отвечает распределению Больцмана , средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье . Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).