Главная · Боль в деснах · Как решать формулы с суммой. Сумма ряда. Вывод рекуррентной формулы для вычисления члена ряда

Как решать формулы с суммой. Сумма ряда. Вывод рекуррентной формулы для вычисления члена ряда

С помощью данного онлайн калькулятора можно находить суммы рядов, определять их сходимость, абсолютную и условную. Ряд - это последовательность чисел (либо функций - для функциональных рядов), которые связаны между собой определенным законом. Сумма членов ряда это и есть сумма ряда. Для доказательства того, что такая сумма существует (то есть она не равна бесконечности) можно использовать принципы сходимости числовых рядов - принцип Коши, принцип Доламбера и т.д. После доказательства того, что ряд сходится вычислить сумму числового ряда уже необходимо индивидуально. Для геометрической прогрессии, например, сумма вычисляется по формуле:

Найти сумму ряда онлайн

На нашем сайте вы можете вычислить сумму ряда онлайн . Всегда быстро, надежно, бесплатно. Удобный интерфейс для ввода рядов, задание начального и конечного значения элементов. Возможность находить сумму функционального ряда, использование буквенных констант. На практике студенты имеют дело с числовыми рядами довольно часто. Они широко используются в приближенных вычислениях (вычисление интегралов не имеющих аналитического решения, выполнение математических действий, решение дифференциальных уравнений и т.д.). А про функциональные ряды наподобие ряда Тейлора или ряда Фурье и говорить не приходится. С помощью нашего калькулятора определить сумму ряда теперь не проблема.

Найдем сумму ряда чисел. Если не получается ее найти, то система вычисляет сумму ряда с определенной точностью.

Сходимость ряда

Данный калькулятор умеет определять - сходится ли ряд, также показывает - какие признаки сходимости срабатывают, а какие - нет.

Также умеет определять сходимость степенных рядов.

Также строится график ряда, где можно увидеть скорость сходимости ряда (или расходимости).

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция - Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание

Пусть задана последовательность чисел R 1 , R 2 , R 3 ,…,R n ,…. Выражение R 1 + R 2 + R 3 +…+ R n +… называют бесконечным рядом , или просто рядом , а числа R 1 , R 2 , R 3 ,… - членами ряда . При этом имеют в виду, что накопление суммы ряда начинается с первых его членов. Сумма S n = называется частичной суммой ряда : при n=1 – первой частичной суммой, при n=2 – второй частичной суммой и так далее.

Называется ряд сходящимся , если последовательность его частичных сумм имеет предел, и расходящимся – в противном случае. Понятие суммы ряда можно расширить , и тогда некоторые расходящиеся ряды также будут обладать суммами. Именно расширенное понимание суммы ряда будет использовано при разработке алгоритмов при следующей постановке задачи: накопление суммы следует выполнять до тех пор, пока очередной член ряда по абсолютной величине больше заданной величины ε.

В общем случае все или часть членов ряда могут быть заданы выражениями, зависящими от номера члена ряда и переменных. Например,

Тогда возникает вопрос, как минимизировать объём вычислений - вычислять значение очередного члена ряда по общей формуле члена ряда (в приведённом примере её представляет выражение под знаком суммы), по рекуррентной формуле (её вывод представлен ниже) или использовать рекуррентные формулы лишь для частей выражения члена ряда (см. ниже).

Вывод рекуррентной формулы для вычисления члена ряда

Пусть требуется найти ряд чисел R 1 , R 2 , R 3 ,…, последовательно вычисляя их по формулам

,
, …,

Для сокращения вычислений в данном случае удобно воспользоваться рекуррентной формулой вида
, позволяющей вычислить значение R N при N>1, зная значение предыдущего члена ряда R N-1 , где
- выражение, которое можно получить после упрощения отношения выражения в формуле (3.1) для N к выражению для N-1:

Таким образом, рекуррентная формула примет вид
.

Из сравнения общей формулы члена ряда (3.1) и рекуррентной (3.2) видно, что рекуррентная формула значительно упрощает вычисления. Применим ее для N=2, 3 и 4 зная, что
:

Способы вычисление значения члена ряда

Для вычисления значения члена ряда, в зависимости от его вида, может оказаться предпочтительнее использование либо общей формулы члена ряда, либо рекуррентной формулы, либо смешанного способа вычисления значения члена ряда , когда для одной или нескольких частей члена ряда используются рекуррентные формулы, и затем их значения подставляются в общую формулу члена ряда. Например, - для ряда проще вычислять значение члена ряда
по его общей формуле
(сравните с
- рекуррентной формулой); - для ряда
лучше воспользоваться рекуррентной формулой
; - для ряда следует применить смешанный способ, вычисляя A N =X 3N по рекуррентной формуле
, N=2, 3,… при A 1 =1 и B N =N! - также по рекуррентной формуле
, N=2, 3,… при B 1 =1, а затем – член ряда
- по общей формуле, которая примет вид
.

Пример 3.2.1 выполнения задания

Вычислить с точностью ε для 0 o  X  45 o

используя рекуррентную формулу для вычисления члена ряда:

,

    точное значение функции cos X,

    абсолютную и относительную ошибки приближенного значения.

program Project1;

{$APPTYPE CONSOLE}

K=Pi/180; //Коэффициент для перевода из градусов в радианы

Eps: Extended =1E-8;

X: Extended =15;

R, S, Y, D: Extended;

{$IFNDEF DBG} //Операторы, не используемые при отладке

Write("Введите требуемую точность: ");

Write("Введите значение угла в градусах: ");

D:=Sqr(K*X); //Перевод X в радианы и возведение в квадрат

//Задание начальных значений переменным

//Цикл для вычисления членов ряда и накопления их суммы.

//Выполнять, пока модуль очередного члена ряда больше Eps.

while Abs(R)>Eps do

if N<10 then //Вывод, используемый при отладке

WriteLn("N=", N, " R=", R:14:11, " S=", S:14:11);

//Вывод результатов вычислений:

WriteLn(N:14," = Число шагов, за которое достигнута",

"заданная точность");

WriteLn(S:14:11," = Приближенное значение функции");

WriteLn(Cos(K*X):14:11," = Точное значение функции");

WriteLn(Abs(Cos(K*X)-S):14:11," = Абсолютная ошибка");

WriteLn(Abs((Cos(K*X)-S)/Cos(K*X)):14:11,

" = Относительная ошибка");

Задача суммирования множества слагаемых решается в теории рядов.

где u 1, u 2, u 3 …., u n …–члены бесконечной числовой последовательности, называется числовым рядом .

Числа u 1, u 2, u 3 …., u n … называют членами ряда , а u n – общий член ряда.

Сумма конечного числа n первых членов ряда называется n–й частичной суммой ряда.

S n = u 1 + u 2 +… + u n ,

т.е. S 1 = u 1 ; S 2 = u 1 + u 2

S n = u 1 + u 2 +…+ u n

Ряд называется сходящимся, если существует конечный предел частичной суммы S n при n , то есть

Число S называется суммой ряда.

В противном случае:

Тогда ряд называется расходящимся.

Эталонные ряды.

1. Геометрический ряд (геометрическая прогрессия)

Пример.

2. Гармонический ряд.

3. Обобщенный гармонический ряд.

Пример.

.

Признаки сходимости знакоположительных рядов

Теорема 1. Необходимый признак сходимости.

C помощью этого признака можно установить расходимость ряда.

Пример.

Достаточные признаки

Теорема 1.Признак сравнения рядов.

Пусть даны два знакоположительных ряда:

Причем тогда, если ряд (2) сходится, то сходится и ряд (1).

Если ряд (1) расходится, то расходится и ряд (2).

Пример. Исследовать ряд на сходимость:

Сравним этот ряд с геометрическим рядом:

Следовательно, по признаку сравнения искомый ряд сходится.

Теорема 2. Признак Даламбера.

Пример. Исследовать на сходимость ряд:

по признаку Даламберу ряд сходится.

Теорема 3.Радикальный признак Коши.

3) при вопрос о сходимости остается открытым.

Пример: исследовать на сходимость числовой ряд:

Решение:

Следовательно, ряд сходится по Коши.

Теорема 4. Интегральный признак Коши.

Пусть члены ряда

положительны и не возрастают, то есть и являются значениями непрерывной невозрастающей функцииf (x ) при x = 1, 2, …, n .

Тогда для сходимости ряда необходимо и достаточно, чтобы сходился несобственный интеграл:

Пример.

Решение:

Следовательно, ряд расходится, так как расходится несобственный интеграл.

Знакопеременные ряды. Понятие абсолютной и условной сходимости знакопеременого ряда.

Ряд называется знакопеременным , если любой его член может быть, как положительным, так и отрицательным.

Рассмотрим знакочередующиеся ряды:

Теорема 1. Признак Лейбница (достаточный признак).

Если у знакочередующегося ряда

члены убывают по абсолютной величине, то есть и

то ряд сходится, и его сумма не превосходит первого члена, то есть S .

Пример.

Решение:

Применим признак Лейбница:

.

Следовательно, ряд сходится по Лейбницу.

Теорема 2. Достаточный признак сходимости знакопеременного ряда.

Если для знакопеременного ряда сходится ряд, составленный из абсолютных величин его членов , то данный знакопеременный ряд сходится.

Пример: исследовать ряд на сходимость:

Решение:

из абсолютных величин членов исходного ряда сходится, как обобщенный гармонический ряд при .

Следовательно, исходный ряд сходится.

Этот признак является достаточным, но не необходимым, то есть существуют знакопеременные ряды, которые сходятся, хотя ряды, составленные из абсолютных величин, расходятся.

Определение 1. абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов.

Определение 2. Знакопеременный ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Отличие между ними в том, что абсолютно сходящийся ряд сходится из-за того, что его члены быстро убывают, а условно сходящийся ряд сходится из-за того, что положительные и отрицательные члены уничтожают друг друга.

Пример.

Решение:

Применим признак Лейбница:

Следовательно, ряд сходится по Лейбницу. Но ряд составленный из абсолютных величин его членов расходится, как гармонический.

Значит, исходный ряд сходится условно.