Главная · Боль в деснах · Чему равна сумма всех углов выпуклого многоугольника. Чему равна сумма углов выпуклого многоугольника. Другие определения выпуклых многоугольников

Чему равна сумма всех углов выпуклого многоугольника. Чему равна сумма углов выпуклого многоугольника. Другие определения выпуклых многоугольников

Пусть - данный выпуклый многоугольник и n > 3. Тогда проведем из одной вершины к противоположным вершинам n-3 диагонали: . Так как многоугольник выпуклый, то эти диагонали разбивают его на n - 2 треугольника: . Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов в каждом треугольнике равна 180°, а число этих треугольников есть n-2. Следовательно, сумма углов n-угольника равна 180°(n-2). Теорема доказана.

Замечание

Для невыпуклого n-угольника сумма углов также равна 180°(n-2). Доказательство аналогично, но использует в дополнение лемму о том, что любой многоугольник может быть разрезан диагоналями на треугольники.

Примечания

Теорема о сумме углов многоугольника для многоугольников на сфере не выполняется (а также на любой другой искажённой плоскости, кроме некоторых случаев). Подробнее смотрите неевклидовы геометрии .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Теорема о сумме углов многоугольника" в других словарях:

    Треугольник Теорема о сумме углов треугольника классическая теорема евклидовой геометрии. Утверждает, что … Википедия

    - … Википедия

    Утверждает, что любые два равновеликих многоугольника равносоставлены. Более формально: Пусть P и Q суть два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и, так что для любого … Википедия

    Теорема Бойяи Гервина утверждает, что любые два равновеликих многоугольника равносоставлены. Более формально: Пусть и суть два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и, так что для… … Википедия

    - … Википедия

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Многоугольники. Виды многоугольников. Внутренние и внешние углы выпуклого многоугольника. Сумма внутренних углов выпуклого n-угоьника (теорема). Сумма внешних углов выпуклого n-угольника (теорема). Правильные многоугольники. Окружность, описанная около правильного многоугольника (теорема,следствие 1,2)






Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине. Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный с внутренним при этой вершине. внутренний уголвнешний угол



Теорема. Сумма внутренних углов выпуклого многоугольника равна (n – 2) ·180 о, где n – число сторон многоугольника. Дано: выпуклый n-угольник. Доказать: α = (n – 2) ·180 о Доказательство Внутри n-угольника возьмём произвольную точку О и соединим её со всеми вершинами. Многоугольник разобьётся на n треугольников с общей вершиной О. Сумма углов каждого треугольника равна 180 о, следовательно, сумма углов всех треугольников равна 180 о n. В эту сумму, кроме суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360 о. Таким образом, сумма всех внутренних углов многоугольника равна 180 о n – 360 о = (n – 2) ·180 о. Итак, n = (n – 2) ·180 о. Ч.т.д. о


Теорема. Сумма внешних углов выпуклого многоугольника, взятых по одному при каждой вершине, не зависит от n и равна 360, где n – число сторон n-угольника. Доказательство. Так как внешний угол многоугольника является смежным соответствующему внутреннему углу, а сумма смежных углов равна 180, то сумма внешнихуглов многоугольника равна: 180 о n – (n – 2) ·180 о = 180 о ·n – 180 о ·n о = 360 о. Внешние и внутренние внутренние Итак, сумма внешних углов выпуклого многоугольника, взятых по одному при каждой вершине, не зависит от n и равна 360 о, где n – число сторон n-угольника. Ч.т.д.




Теорема. В любой правильный многоугольник можно вписать окружность, и притом только одну. Доказательство. Пусть А1,А2,…,А n - правильный многоугольник, О –центр описанной окружности. ОА1А2 =ОА2А3= ОАnА1, поэтому высоты этих треугольников, проведённые из вершины О, так же равны ОН1=ОН2=…=ОНn. Поэтому окружность с поэтому окружность с центром О и радиусом ОН1 проходит через точки H1,H2, …, Hn и касается сторон многоугольника в этих точках, т.е. окружность вписана в данный многоугольник. Hn H1 H2 H3 A1 A2 A3 An


Докажем, что вписанная окружность только одна. Предположим, что существует другая вписанная окружность с центром О и радиусом ОА. Тогда её центр равноудалён от сторон многоугольника., т.е.Точка О1 лежит на каждой из биссектрис углов многоугольника, и поэтому совпадает с точкой О пересечения этих биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон многоугольника, т.е. равен ОН1.Теорема доказана. Следствие1 Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах. Следствие 2 Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.

В основном курсе геометрии доказывается, что сумма углов выпуклого n-угольника равна 180° (n-2). Оказывается, что это утверждение справедливо и для невыпуклых многоугольников.

Теорема 3. Сумма углов произвольного n-угольника равна 180° (n - 2).

Доказательство. Разобьем многоугольник на треугольники, проведением диагоналей (рис. 11). Число таких треугольников равно n-2, и в каждом треугольнике сумма углов равна 180°. Поскольку углы треугольников составляют углы многоугольника, то сумма углов многоугольника равна 180° (n - 2).

Рассмотрим теперь произвольные замкнутые ломаные, возможно с самопересечениями A1A2…AnA1 (рис. 12, а). Такие самопересекающиеся ломаные будем называть звездчатыми многоугольниками (рис. 12, б-г).

Зафиксируем направление подсчета углов против часовой стрелки. Заметим, что углы, образованные замкнутой ломаной, зависят от направления ее обхода. Если направление обхода ломаной меняется на противоположное, то углами многоугольника будут углы, дополняющие углы исходного многоугольника до 360°.

Если M - многоугольник, образован простой замкнутой ломаной, проходимой в направлении по часовой стрелке (рис. 13, а), то сумма углов этого многоугольника будет равна 180° (n - 2). Если же ломаная проходится в направлении против часовой стрелки (рис. 13, б), то сумма углов будет равна 180° (n + 2).

Таким образом, общая формула суммы углов многоугольника, образованного простой замкнутой ломаной, имеет вид = 180° (n 2), где - сумма углов, n - число углов многоугольника, «+» или «-» берется в зависимости от направления обхода ломаной.

Наша задача состоит в том, чтобы вывести формулу суммы углов произвольного многоугольника, образованного замкнутой (возможно самопересекающейся) ломаной. Для этого введем понятие степени многоугольника.

Степенью многоугольника называется число оборотов, совершаемой точкой при полном последовательном обходе его сторон. Причем обороты, совершаемые в направлении против часовой стрелки, считаются со знаком «+», а обороты по часовой стрелке - со знаком «-».

Ясно, что у многоугольника, образованного простой замкнутой ломаной, степень равна +1 или -1 в зависимости от направления обхода. Степень ломаной на рисунке 12, а равна двум. Степень звездчатых семиугольников (рис. 12, в, г) равна соответственно двум и трем.

Аналогичным образом понятие степени определяется и для замкнутых кривых на плоскости. Например, степень кривой, изображенной на рисунке 14 равна двум.


Для нахождения степени многоугольника или кривой можно поступать следующим образом. Предположим, что, двигаясь по кривой (рис. 15, а), мы, начиная с какого-то места A1, совершили полный оборот, и попали в ту же точку A1. Удалим из кривой соответствующий участок и продолжим движение по оставшейся кривой (рис. 15,б). Если, начиная с какого-то места A2, мы снова совершили полный оборот и попали в ту же точку, то удаляем соответствующий участок кривой и продолжаем движение (рис. 15, в). Считая количество удаленных участков со знаками «+» или «-», в зависимости от их направления обхода, получим искомую степень кривой.

Теорема 4. Для произвольного многоугольника имеет место формула

180° (n +2m),

где - сумма углов, n - число углов, m - степень многоугольника.

Доказательство. Пусть многоугольник M имеет степень m и условно изображен на рисунке 16. M1, …, Mk - простые замкнутые ломаные, проходя по которым, точка совершает полные обороты. A1, …, Ak - соответствующие точки самопересечения ломаной, не являющиеся ее вершинами. Обозначим число вершин многоугольника M, входящих в многоугольники M1, …, Mk через n1, …, nk соответственно. Поскольку, помимо вершин многоугольника M, к этим многоугольникам добавляются еще вершины A1, …, Ak, то число вершин многоугольников M1, …, Mk будет равно соответственно n1+1, …, nk+1. Тогда суммы их углов будут равны 180° (n1+12), …, 180° (nk+12). Плюс или минус берется в зависимости от направления обхода ломаных. Сумма углов многоугольника M0, оставшегося от многоугольника M после удаления многоугольников M1, …, Mk, равна 180° (n-n1- …-nk+k2). Суммы углов многоугольников M0, M1, …, Mk дают сумму углов многоугольника M и в каждой вершине A1, …, Ak дополнительно получим 360°. Следовательно, имеем равенство

180° (n1+12)+…+180° (nk+12)+180° (n-n1- …-nk+k2)=+360°k.

180° (n2…2) = 180° (n+2m),

где m - степень многоугольника M.


В качестве примера рассмотрим вычисление суммы углов пятиконечной звездочки (рис. 17, а). Степень соответствующей замкнутой ломаной равна -2. Поэтому искомая сумма углов равна 180.

Геометрическая фигура, составленная из отрезков AB,BC,CD, .., EF, FA таким образом, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек, называется многоугольником. Концы данных отрезков, точки A,B,С, D, …, E,F называются вершинами многоугольника, а сами отрезки AB,BC,CD, .., EF, FA - сторонами многоугольника.

Многоугольник называется выпуклым, если он по одну сторону от каждой прямой, которая проходит через две его смежные вершины. На рисунке ниже представлен выпуклый многоугольник:

А следующий рисунок иллюстрирует невыпуклый многоугольник:

Углом выпуклого многоугольника при данной вершине будет называться угол, образованный сторонами этого многоугольника, сходящимися в данной вершине. Внешним углом выпуклого многоугольника в некоторой вершине называется угол смежный с внутренним углом многоугольника при данной вершине.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

Доказательство: рассмотрим выпуклый n-угольник. Чтобы найти сумму всех внутренних углов, соединим одну из вершин многоугольника с другими вершинами.

В результате получим (n-2) треугольника. Известно, что сумма углов треугольника равна 180 градусам. А так как их количество в многоугольнике (n-2), то сумма углов многоугольника равна 180˚ *(n-2). Это и требовалось доказать.

Задача:

Найти сумму углов выпуклого a) пятиугольник б) шестиугольника в)десятиугольника.

Воспользуемся формулой для вычисления суммы углов выпуклого n-угольника.

а) S5 = 180˚*(5-2) = 180˚ *3 = 540˚.

б) S6 180˚*(6-2) = 180˚*4=720˚.

в) S10 = 180˚*(10-2) = 180˚*8 = 1440˚.

Ответ: а) 540˚. б) 720˚. в) 1440˚.