Главная · Другие болезни · Ситуационные задачи по биологии. Биология клетки. Патологические клетки крови это

Ситуационные задачи по биологии. Биология клетки. Патологические клетки крови это

Патология клетки – типовой патологический процесс, характеризующийся нарушением внутриклеточного гомеостаза, что ограничивает функциональные возможности клетки и может приводить ее к гибели или снижению продолжительности жизни .

Гомеостаз клетки – способность клетки существовать при изменении условий обитания с сохранением устойчивого динамического равновесия со средой.

Понятие «гомеостаз клетки » включает в себя ряд показателей (констант): внутриклеточное постоянство ионов водорода, электронов, кислорода, субстратов для энергетического и пластического обеспечения жизнедеятельности клетки, ферментов, нуклеотидов и еще ряд веществ.

Константы (лат. constantus – постоянная величина) гомеостаза клетки зависят от:

    структурно-функционального состояния ее различных мембран (плазмолемы, митохондрий, лизосом и др.) и органелл, интенсивности течения внутриклеточных биохимических процессов. Это своеобразная «метаболическая составляющая гомеостаза » и определяется работой исполнительного аппарата клетки;

    информационных процессов . Нормальная жизнедеятельность клетки невозможна без информации, поступающей к ней из внешней среды. Очень часто она изменяет параметры внутриклеточного постоянства, что является следствием включения приспособительных (адаптивных) программ, позволяющих клетке оптимально приспосабливаться к конкретной ситуации согласно поступившей информации. «Правильность » изменения констант внутриклеточного гомеостаза и их поддержание в границах нормы в данном случае определяется в первую очередь количеством и качеством информационного обеспечения клетки (наличием сигнальных молекул, рецепторов, пострецепторных связей и др.). Исполнительный аппарат клетки выполняет лишь «полученные указание ».

Следовательно, патология клетки может возникнуть и без первичного «полома » ее исполнительного аппарата, а из-за нарушений в механизмах сигнализации, в так называемой «информационной составляющей » внутриклеточного гомеостаза.

В зависимости от природы этиологического фактора, нарушающего гомеостаз (метаболическое и/или информационное его составляющее) клетки, различают физические, химические и биологические повреждающие агенты.

Физические этиологические факторы – это механические и температурные воздействия (гипо- и гипертермия), энергия электрического тока, ионизирующей радиации и электромагнитных волн, влияние факторов космического полета (ускорение, гипокенезия) и др.

Химические этиологические факторы – воздействие многочисленных неорганических и органических веществ (кислоты, щелочи, соли тяжелых металлов, этиловый и метиловый спирт). Патология может быть обусловлена дефицитом или избытком белков, жиров, углеводов, витаминов, микроэлементов и др. веществ. Немаловажное значение в этой группе факторов имеют и лекарственные препараты.

Все, выше названные патогенные факторы, вызывают различные повреждения клеток.

Тип (вид) повреждения клетки зависит от :

    скорости развития основных проявлений нарушений функции клеток . Выделяют острое и хроническое повреждение клетки. Острое повреждение развивается быстро, и как правило, в результате однократного, но интенсивного повреждающего воздействия. Хроническое повреждение протекает медленно и является следствием многократного влияния, но менее интенсивного по силе повреждения агента;

    жизненного цикла клетки, на период которого приходится воздействие повреждающего фактора. Различают митотические и интерфазные повреждения;

    от степени (глубины) нарушения клеточного гомеостаза – обратимые и необратимые повреждения;

    от характера взаимодействия повреждающего фактора с клеткой . Если патогенный агент действует непосредственно на клетку, то говорят о прямом (первичном) ее повреждении. В условиях целостного организма влияние причины может осуществляться и через формирование цепи вторичных реакций. Например, при механической травме непосредственно в месте воздействия этого агента образуются биологически активные вещества (БАВ) – это продукты распада погибших клеток, гистамин, оксидазы, простогландины и др. соединения, синтезируемые поврежденными клетками. БАВ, в свою очередь, вызывают нарушения функции клеток, ранее не попавших под влияние данного фактора. Такое повреждение получило название опосредованное или вторичное . Воздействие этиологического фактора может проявляться опосредованно и через изменения нервных и эндокринных регуляций (шок, стресс), при отклонениях физико-химического состояния организма (ацидоз, алколоз), при нарушениях системного кровообращения (сердечная недостаточность), гипоксии, гипо- и гипертермия, гипо- и гипегликемия и др.

    от характера повреждений вызванных определенным патогенным фактором . Рассматривают специфические и неспецифические повреждения.

Литвицкий П.Ф. (2002) выделяет и специфические повреждения определенных клеток, возникающее при взаимодействии с самыми различными патогенными факторами. В качестве примера приводит развитие контрактур мышечных клеток при влиянии на них физических, химических и биологических факторов, или, возникновение гемолиза эритроцитов при аналогичных воздействиях.

Неспецифические повреждения – это стандартные, стереотипные изменения в клетках возникающие при их взаимодействии с широким спектром этиологических факторов. В качестве примера можно привести следующие нарушения:

    повышение проницаемости мембран клеток;

    активация свободно-радикальных и перекисных реакций;

    внутриклеточный ацидоз;

    денатурация молекул белков;

    дисбаланс ионов и воды;

    изменение интенсивности окислительного фосфорилирования.

Взаимосвязи между специфическими и неспецифическими повреждениями клеток разнообразны. Они могут возникать одновременно, либо одно из них предшествует другому. Выяснение конкретных видов нарушений, времени их возникновения и соотношении между собой, дает врачу необходимую информацию о характере и интенсивности действия причинного фактора, глубине и распространенности патологического процесса. Это в свою очередь обеспечивает проведение более этиотропной и патогенетической профилактики и терапии. Например, если при гепатитах различного происхождения регистрируется только увеличение в плазме крови концентрации ионов К и аланинаминотрансферазы (АЛТ) то это свидетельствуют о легком течении или начале заболевания. Калий и АЛТ находятся в цитоплазме, возрастание их содержание за пределами клеточной мембраны характерны при нарушении ее проницаемости (неспецифическое повреждение). Появление же в крови довольно специфического для печени фермента – сорбитдегидрогеназы и органеллоспецифичных – глютаматдегидрогеназы (локализация - митохондрии), кислой фосфотазы (локализация лизосомы) говорит об усугублении патологического процесса . Он уже не ограничивается только мембраной клетки, а затрагивает и внутриклеточные структуры.

Как было отмечено выше, патология клетки возникает вследствие нарушения ее гемостаза. Он может изменяться не только при непосредственном воздействии патогенного агента на клетку (тем самым, нарушая в основном работу ее исполнительного аппарата), но и при недостаточности информационных механизмов, инициирующих включение тех или иных адаптогенных программ. В связи с этим, природу заболеваний человека можно рассматривать с двояких позиций – материально-энергетических и информационных (А.Ш. Зайчик, Л.П. Чурилов, 1999). Болезнь развивается, и при повреждении исполнительного аппарата клетки (материально-энергетическая позиция ), и при нарушении ее информационных механизмов (информационная позиция ). Основываясь на последнем положеним, существует даже специальная терминология – «болезни регуляции », «дизрегуляционная патология ».

Данные позиции легче выявляются на начальных этапах патологии клетки. По мере ее развития различия между ними более затруднительны, и тем не менее, этиотропная и патогенетическая терапия будет более адекватной и успешной при установлении истинного механизма (причины) развития того или иного проявления патологии.

Сейчас мы приступаем непосредственно к рассмотрению ответа клетки на патогенный агент. Согласно нашего плана (рис. 1), сюда входят вопросы адаптации и паранекроза. Они между собой тесно связаны, так как любой патологический процесс (болезнь) состоит из двух компонентов: повреждения (альтерации ) и защитно-приспособительных (адаптивных ) механизмов. Альтерация моментально вызывает активацию адаптивных механизмов, направленных на поддержание жизнедеятельности клетки в изменившихся условиях. Параллельное изучение вопросов альтерации и защитно-приспособи-тельных механизмов создает определенные трудности в усвоении учебного материала. Поэтому мы первоначально разберем механизмы повреждения гомеостаза клетки, а затем защитно-приспособительных реакций. При этом будем помнить, что начальный этап альтерации клетки – паранекроз – это не только повреждение, но и наличие защитно-приспособительных механизмов, пусть и не в полной мере выполняющих свое назначение.

Рассмотрение патологии клетки начинаем с нарушений, возникающих при непосредственном воздействии на нее патогенного агента. Взаимодействие этиологического фактора с различными структурными образованиями клетки, ведет к нарушению ее гомеостаза (его метаболической составляющей ), и, следовательно, развитию болезни. Патология может возникнуть при повреждении различных биомембран клетки (особенно часто повреждается плазмолемма) и внутриклеточных образований: ядра, митохондрий, лизосом и др. (рис. 2).

Железодефицитная анемия;

2. В12-дефицитная анемия;

3. Фолиеводефицитная анемия;

4. Анемия вследствие недостаточности белков;

5. Анемия вследствие цинги;

6. Неуточненная анемия, обусловленная неправильным питанием;

7. Анемия вследствие недостаточности ферментов;

8. Талассемия (альфа-талассемия, бета-талассемия, дельта-бета-талассемия);

9. Наследственное персистирование фетального гемоглобина;

11. Наследственный сфероцитоз (анемия Минковского-Шоффара);

14. Медикаментозная неаутоиммунная гемолитическая анемия;

15. Гемолитико-уремический синдром;

16. Пароксизмальная ночная гемоглобинурия (болезнь Маркиафавы-Микели);

17. Приобретенная чистая красноклеточная аплазия (эритробластопения);

18. Конституциональная или медикаментозная апластическая анемия;

19. Идиопатическая апластическая анемия;

20. Острая постгеморрагическая анемия (после острой кровопотери);

21. Анемия при новообразованиях;

22. Анемия при хронических соматических заболеваниях;

23. Сидеробластная анемия (наследственная или вторичная);

24. Врожденная дизэритропоэтическая анемия;

25. Острый миелобластный недифференцированный лейкоз;

26. Острый миелобластный лейкоз без созревания;

27. Острый миелобластный лейкоз с созреванием;

28. Острый промиелоцитарный лейкоз;

29. Острый миеломонобластный лейкоз;

30. Острый монобластный лейкоз;

31. Острый эритробластный лейкоз;

32. Острый мегакариобластный лейкоз;

33. Острый лимфобластный Т-клеточный лейкоз;

34. Острый лимфобластный В-клеточный лейкоз;

35. Острый панмиелолейкоз;

36. Болезнь Леттерера-Сиве;

37. Миелодиспластический синдром;

38. Хронический миелолейкоз;

39. Хронический эритромиелоз;

40. Хронический моноцитарный лейкоз;

41. Хронический мегакариоцитарный лейкоз;

43. Тучноклеточный лейкоз;

44. Макрофагальный лейкоз;

45. Хронический лимфолейкоз;

46. Волосатоклеточный лейкоз;

48. Болезнь Сезари (лимфоцитома кожи);

49. Грибовидный микоз;

50. Лимфосаркома Беркитта;

51. Лимфома Леннерта;

52. Гистиоцитоз злокачественный;

53. Злокачественная тучноклеточная опухоль;

54. Истинная гистиоцитарная лимфома;

56. Болезнь Ходжкина (лимфогранулематоз);

57. Неходжкинские лимфомы;

58. Миеломная болезнь (генерализованная плазмоцитома);

59. Макроглобулинемия Вальденстрема;

60. Болезнь тяжёлых альфа-цепей;

61. Болезнь гамма-тяжелых цепей;

62. Диссеминированное внутрисосудистое свертывание (ДВС-синдром);

63. Геморрагическая болезнь новорожденных;

64. Дефицит К-витаминзависимых факторов свертываемости крови;

65. Дефицит I фактора свертываемости и дисфибриногенемия;

66. Дефицит II фактора свертываемости;

67. Дефицит V фактора свертываемости;

68. Дефицит VII фактора свертывания крови (наследственная гипопроконвертинемия);

69. Наследственный дефицит VIII фактора свертываемости крови (болезнь Виллебранда);

70. Наследственный дефицит IX фактора свертываемости крови (болезнь Кристамаса, гемофилия В);

71. Наследственный дефицит X фактора свертываемости крови (болезнь Стюарта-Прауэра);

72. Наследственный дефицит XI фактора свертываемости крови (гемофилия С);

73. Дефицит XII фактора свертывания крови (дефект Хагемана);

74. Дефицит XIII фактора свертываемости;

75. Дефицит плазменных компонентов калликреин-кининовой системы;

76. Дефицит антитромбина III;

77. Наследственная геморрагическая телеангиэктазия (болезнь Рандю-Ослера);

78. Тромбастения Гланцманна;

79. Синдром Бернара-Сулье;

80. Синдром Вискотта-Олдрича;

81. Синдром Чедиака-Хигаси;

83. Синдром Хегглина;

84. Синдром Казабаха – Меррита;

85. Геморрагический васкулит (болезнь Шейнлейна-Геноха);

86. Синдром Элерса-Данло;

87. Синдром Гассера;

88. Аллергическая пурпура;

89. Идиопатическая тромбоцитопеническая пурпура (болезнь Верльгофа);

90. Имитационная кровоточивость (синдром Мюнхгаузена);

92. Функциональные нарушения полиморфно-ядерных нейтрофилов;

95. Семейный эритроцитоз;

96. Эссенциальный тромбоцитоз;

97. Гемофагоцитарный лимфогистиоцитоз;

98. Гемофагоцитарный синдром, обусловленный инфекцией;

99. Цитостатическая болезнь.

Заболевание крови – виды

1. Анемия (состояния, при которых уровень гемоглобина ниже нормы);

2. Геморрагические диатезы или патология системы гемостаза (нарушения свертываемости крови);

3. Гемобластозы (различные опухолевые заболевания их клеток крови, костного мозга или лимфатических узлов);

4. Другие заболевания крови (болезни, которые не относятся ни к геморрагическим диатезам, ни к анемиям, ни к гемобластозам).

Анемии

1. Анемии вследствие нарушения синтеза гемоглобина или эритроцитов;

2. Гемолитические анемии, связанные с усиленным распадом гемоглобина или эритроцитов;

3. Геморрагические анемии, связанные с кровопотерей.

Анемии вследствие кровопотери подразделяются на два вида:

  • Острая постгеморрагическая анемия – возникает после быстрой одномоментной потери более 400 мл крови;
  • Хроническая постгеморрагическая анемия – возникает в результате длительной, постоянной кровопотери из-за небольшого, но постоянного кровотечения (например, при обильных менструациях, при кровотечении из язвы желудка и т.д.).

Анемии, обусловленные нарушением синтеза гемоглобина или образования эритроцитов, подразделяются на следующие виды:

1. Апластические анемии:

  • Красноклеточные аплазии (конституциональная, медикаментозная и др.);
  • Парциальная красноклеточная аплазия;
  • Анемия Блекфана-Даймонда;
  • Анемия Фанкони.

2. Врожденная дизэритропоэтическая анемия.

3. Миелодиспластический синдром.

4. Дефицитарные анемии:

  • Железодефицитная анемия;
  • Фолиеводефицитная анемия;
  • В12-дефицитная анемия;
  • Анемия на фоне цинги;
  • Анемия при недостаточности белков в рационе питания (квашиоркор);
  • Анемия при недостатке аминокислот (оротацидурическая анемия);
  • Анемия при недостатке меди, цинка и молибдена.

5. Анемии при нарушении синтеза гемоглобина:

  • Порфирии – сидероахристические анемии (синдром Келли-Патерсона, синдром Пламмера-Винсона).

6. Анемии хронических заболеваний (при почечной недостаточности, раковых опухолях и др.).

7. Анемии при повышенном расходовании гемоглобина и других веществ:

Как видно, спектр анемий, обусловленных нарушением синтеза гемоглобина и образованием эритроцитов, весьма широк. Однако на практике большая часть данных анемий встречается редко или очень редко. А в повседневной жизни люди чаще всего сталкиваются с различными вариантами дефицитарных анемий, таких, как железодефицитная, В12-дефицитная, фолиеводефицитная и т.д. Данные анемии, как понятно из названия, формируются из-за недостаточного количества веществ, необходимых для образования гемоглобина и эритроцитов. Второй по частоте встречаемости анемией, связанной с нарушением синтеза гемоглобина и эритроцитов, является форма, развивающаяся при тяжелых хронических заболеваниях.

1. Анемии, обусловленные дефектом формы эритроцитов:

  • Наследственный сфероцитоз (болезнь Минковского-Шаффара);
  • Наследственный элиптоцитоз;
  • Наследственный стоматоцитоз;
  • Наследственный акантоцитоз.

2. Анемии, обусловленные недостаточностью ферментов эритроцитов:

  • Анемия вследствие недостаточности глюкозо-6-фосфатдегидрогеназы;
  • Анемия вследствие нарушений обмена глутатиона;
  • Анемия вследствие нарушений метаболизма нуклеотидов;
  • Анемия вследствие недостаточности гексокиназы;
  • Анемия вследствие недостаточности пируваткиназы;
  • Анемия вследствие недостаточности триозофосфатизомеразы.

3. Анемии, обусловленные дефектной структурой гемоглобина:

  • Серповидно-клеточная анемия.

4. Анемии, обусловленные дефектными альфа- и бета- цепями белка глобина, входящего в состав гемоглобина:

  • Талассемия (альфа-, бета-, дельта-талассемия);
  • Дельта-бета-талассемия;
  • Наследственное персистирование фетального гемоглобина.

Приобретенные гемолитические анемии подразделяют на следующие виды:

1. Гемолитические анемии, обусловленные разрушением эритроцитов антителами:

  • Анемия после переливания крови или ее заменителей;
  • Аутоиммунные гемолитические анемии (АИГА).

2. Гемолитические анемии, обусловленные механическим разрушением эритроцитов:

  • Маршевая гемоглобинурия (возникает после долгой маршевой ходьбы);
  • Анемия на фоне патологии мелких и средних сосудов;
  • Тромботическая тромбоцитопеническая пурпура;
  • Гемолитико-уремический синдром;
  • Пароксизмальная ночная гемоглобинурия (болезнь Маркиафавы-Микели).
  • Анемия при малярии;
  • Анемия при отравлении свинцом и т.д.

4. Анемии, обусловленные отравлением гемолитическими ядами.

5. Анемии, обусловленные большим количеством или усиленной активностью клеток из группы мононуклеарных фагоцитов:

  • Анемия при остром инфекционном заболевании;
  • Анемия при увеличенной селезенке.

Как видно, гемолитические анемии в повседневной жизни встречаются еще реже, чем связанные с нарушением синтеза гемоглобина или эритроцитов. Однако же данные виды анемий имеют более злокачественное течение, и зачастую хуже поддаются терапии.

Гемобластозы (онкологические заболевания крови, рак крови)

  • Лимфобластный Т- или В-клеточный;
  • Миелобластный;
  • Монобластный;
  • Миеломонобластный;
  • Промиелоцитарный;
  • Эритромиелобластный;
  • Мегакариобластный;
  • Плазмобластный;
  • Макрофагальный;
  • Недифференцированный;
  • Панмиелолейкоз;
  • Острый миелофиброз.

Хронический лейкоз подразделяется на следующие виды:

1. Лимфопролиферативные хронические лейкозы:

  • Лимфолейкоз;
  • Волосатоклеточный лейкоз;
  • Т-клеточный лейкоз;
  • Болезнь Сезари;
  • Болезнь Леттерера-Сиве;
  • Парапротеинемии (миеломная болезнь, макроглобулинемия Вальденстрема, болезнь легких и тяжелых цепей).

2. Миелопролиферативные лейкозы:

  • Миелоцитарный лейкоз;
  • Нейтрофильный лейкоз;
  • Базофильный лейкоз;
  • Эозинофильный лейкоз;
  • Эритремия;
  • Мегакариоцитарный;
  • Тучноклеточный;
  • Сублейкемический миелоз;
  • Миелосклероз;
  • Эссенциальная тромбоцитемия.

3. Моноцитопролиферативные лейкозы:

  • Моноцитарный лейкоз;
  • Миеломоноцитарный лейкоз;
  • Гистиоцитоз Х.

4. Другие хронические лейкозы:

  • Злокачественная тучноклеточная опухоль;
  • Истинная гистиоцитарная лимфома;
  • Злокачественный гистиоцитоз.

Все разновидности острого и хронического лейкозов развиваются из клеток, имеющихся в костном мозгу и находящихся на разных стадиях созревания. Острые лейкозы обладают большей степенью злокачественности по сравнению с хроническими, а потому хуже поддаются лечению и имеют более негативный прогноз по жизни и по здоровью.

1. Фолликулярная лимфома:

  • Смешанная крупноклеточная и мелкоклеточная с расщепленными ядрами;
  • Крупноклеточная.

2. Диффузная лимфома:

  • Мелкоклеточная;
  • Мелкоклеточная с расщепленными ядрами;
  • Смешанная мелкоклеточная и крупноклеточная;
  • Ретикулосаркома;
  • Иммунобластная;
  • Лимфобластная;
  • Опухоль Беркитта.

3. Периферические и кожные Т-клеточные лимфомы:

  • Болезнь Сезари;
  • Грибовидный микоз;
  • Лимфома Леннерта;
  • Периферическая Т-клеточная лимфома.

4. Другие лимфомы:

Геморрагические диатезы (заболевания свертываемости крови)

1. Синдром диссеминированного внутрисосудистого свертывания (ДВС-синдром).

2. Тромбоцитопении (количество тромбоцитов в крови ниже нормы):

  • Идиопатическая тромбоцитопеническая пурпура (болезнь Верльгофа);
  • Аллоиммунная пурпура новорожденных;
  • Трансиммунная пурпура новорожденных;
  • Гетероиммунные тромбоцитопении;
  • Аллергический васкулит;
  • Синдром Эванса;
  • Сосудистая псевдогемофилия.

3. Тромбоцитопатии (тромбоциты имеют дефектную структуру и неполноценную функциональную активность):

  • Болезнь Херманского-Пудлака;
  • Синдром TAR;
  • Синдром Мая-Хегглина;
  • Болезнь Вискотта-Олдрича;
  • Тромбастения Гланцманна;
  • Синдром Бернара-Сулье;
  • Синдром Чедиака-Хигаси;
  • Болезнь Виллебранда.

4. Нарушения свертываемости крови на фоне патологии сосудов и недостаточности коагуляционного звена процесса свертывания:

  • Болезнь Рандю-Ослера-Вебера;
  • Синдром Луи-Бар (атаксия-телеангиэктазия);
  • Гемангиомы;
  • Синдром Казабаха-Мерритта;
  • Синдром Элерса-Данло;
  • Синдром Гассера;
  • Геморрагический васкулит (болезнь Шейнлейна-Геноха);
  • Тромботическая тромбоцитопеническая пурпура.

5. Нарушения свертываемости крови, обусловленные нарушениями кинин-калликреиновой системы:

  • Дефект Флетчера;
  • Дефект Вильямса;
  • Дефект Фитцжеральда;
  • Дефект Фложак.

6. Приобретенные коагулопатии (патология свертываемости крови на фоне нарушений коагуляционного звена свертывания):

  • Афибриногенемия;
  • Коагулопатия потребления;
  • Фибринолитическая кровоточивость;
  • Фибринолитическая пурпура;
  • Молиниеносная пурпура;
  • Геморрагическая болезнь новорожденных;
  • Дефицит К-витаминзависимых факторов;
  • Нарушение свертываемости после приема антикоагулянтов и фибринолитиков.

7. Наследственные коагулопатии (нарушения свертываемости крови, обусловленные дефицитом факторов свертывания):

  • Дефицит фибриногена;
  • Дефицит II фактора свертываемости (протромбина);
  • Дефицит V фактора свертываемости (лабильного);
  • Дефицит VII фактора свертываемости;
  • Дефицит VIII фактора свертываемости (гемофилия А);
  • Дефицит IX фактора свертываемости (болезнь Кристмаса, гемофилия В);
  • Дефицит X фактора свертываемости (Стюарта-Прауэра);
  • Дефицит XI фактора (гемофилия С);
  • Дефицит XII фактора свертываемости (болезнь Хагемана);
  • Дефицит XIII фактора свертываемости (фибринстабилизирующего);
  • Дефицит предшественника тромбопластина;
  • Дефицит АС-глобулина;
  • Дефицит проакцелерина;
  • Сосудистая гемофилия;
  • Дисфибриногенемия (врожденная);
  • Гипопроконвертинемия;
  • Болезнь Оврена;
  • Повышение содержания антитромбина;
  • Повышенное содержание анти-VIIIa, анти-IXa, анти-Xa, анти-XIa (антифакторы свертываемости).

Другие болезни крови

1. Агранулоцитоз (отсутствие нейтрофилов, базофилов и эозинофилов в крови);

2. Функциональные нарушения активности палочкоядерных нейтрофилов;

3. Эозинофилия (увеличение количества эозинофилов в крови);

5. Семейный эритроцитоз (увеличение количества эритроцитов крови);

6. Эссенциальный тромбоцитоз (увеличение количества тромбоцитов крови);

7. Вторичная полицитемия (увеличение количества всех клеток крови);

8. Лейкопения (сниженное количество лейкоцитов в крови);

9. Цитостатическая болезнь (заболевание, связанное в приемом цитостатических препаратов).

Заболевания крови – симптомы

  • Слабость;
  • Утомляемость;
  • Головокружение;
  • Одышка;
  • Сердцебиение;
  • Снижение аппетита;
  • Повышенная температура тела, которая держится практически постоянно;
  • Частые и длительно текущие инфекционно-воспалительные процессы;
  • Зуд кожи;
  • Извращение вкуса и обоняния (человеку начинают нравиться специфические запахи и вкусы);
  • Боли в костях (при лейкозах);
  • Кровоточивость по типу петехий, кровоподтеков и т.д.;
  • Постоянные кровотечения из слизистых оболочек носа, рта и органов желудочно-кишечного тракта;
  • Боли в левом или правом подреберье;
  • Низкая работоспособность.

Данный список симптомов заболеваний крови является весьма кратким, однако он позволяет сориентироваться относительно наиболее типичных клинических проявлений патологии системы крови. Если у человека появились какие-либо вышеперечисленные симптомы, то следует обратиться к врачу для детального обследования.

Синдромы заболеваний крови

  • Анемический синдром;
  • Геморрагический синдром;
  • Язвенно-некротический синдром;
  • Интоксикационный синдром;
  • Оссалгический синдром;
  • Синдром белковой патологии;
  • Сидеропенический синдром;
  • Плеторический синдром;
  • Желтушный синдром;
  • Синдром лимфаденопатии;
  • Синдром гепато-спленомегалии;
  • Синдром кровопотери;
  • Лихорадочный синдром;
  • Гематологический синдром;
  • Костномозговой синдром;
  • Синдром энтеропатии;
  • Синдром артропатии.

Перечисленные синдромы развиваются на фоне различных заболеваний крови, причем некоторые из них характерны только для узкого спектра патологий со сходным механизмом развития, а другие, напротив, встречаются практически при любой болезни крови.

Анемический синдром

  • Бледность кожного покрова и слизистых оболочек;
  • Сухая и шелушащаяся или влажная кожа;
  • Сухие, ломкие волосы и ногти;
  • Кровотечения из слизистых оболочек – десен, желудка, кишечника и др.;
  • Головокружение;
  • Шаткая походка;
  • Потемнение в глазах;
  • Шум в ушах;
  • Усталость;
  • Сонливость;
  • Одышка при ходьбе;
  • Сердцебиение.

При тяжелом течении анемии у человека могут появиться пастозность ног, извращение вкуса (нравятся несъедобные вещи, например, мел), жжение в языке или его ярко-малиновая окраска, а также поперхивание при проглатывании кусочков пищи.

Геморрагический синдром

  • Кровоточивость десен и длительное кровотечение при удалении зуба и травмировании слизистой полости рта;
  • Ощущение дискомфорта в области желудка;
  • Черный стул;
  • Эритроциты или кровь в моче;
  • Маточные кровотечения;
  • Кровотечения из проколов от инъекций;
  • Синяки и точечные кровоизлияния на коже;
  • Головные боли;
  • Болезненность и припухлость суставов;
  • Невозможность активных движений из-за болей, вызываемых кровоизлияниями в мышцы и суставы.

Геморрагический синдром развивается при следующих заболеваниях крови:

1. Тромбоцитопеническая пурпура;

2. Болезнь Виллебранда;

3. Болезнь Рандю-Ослера;

4. Болезнь Гланцманна;

5. Гемофилии А, В и С;

6. Геморрагический васкулит;

9. Апластическая анемия;

10. Прием больших доз антикоагулянтов.

Язвенно-некротический синдром

  • Боль на слизистой оболочке полости рта;
  • Кровотечения из десен;
  • Невозможность принимать пищу из-за боли в ротовой полости;
  • Повышение температуры тела;
  • Ознобы;
  • Неприятных запах изо рта;
  • Выделения и дискомфорт во влагалище;
  • Боль в анусе;
  • Трудность дефекации.

Язвенно-некротический синдром развивается при гемобластозах, апластических анемиях, а также лучевой и цитостатической болезнях.

Интоксикационный синдром

  • Общая слабость;
  • Лихорадка с ознобами;
  • Длительное стойкое повышение температуры тела;
  • Недомогание;
  • Сниженная трудоспособность;
  • Боли на слизистой ротовой полости;
  • Симптомы банального респираторного заболевания верхних дыхательных путей.

Интоксикационный синдром развивается при гемобластозах, гематосаркомах (болезнь Ходжкина, лимфосаркомы) и цитостатической болезни.

Оссалгический синдром

Синдром белковой патологии

  • Головные боли;
  • Ухудшение памяти и внимания;
  • Сонливость;
  • Боль и онемение в ногах и руках;
  • Кровоточивость слизистых оболочек носа, десен и языка;
  • Гипертония;
  • Ретинопатия (нарушение функционирования глаз);
  • Почечная недостаточность (на поздних стадиях заболеваний);
  • Нарушение функций сердца, языка, суставов, слюнных желез и кожи.

Синдром белковой патологии развивается при миеломе и болезни Вальденстрема.

Сидеропенический синдром

  • Извращение обоняния (человеку нравятся запахи выхлопных газов, мытого бетонного пола и др.);
  • Извращение вкуса (человеку нравится вкус мела, извести, древесного угля, сухих круп и т.д.);
  • Трудность проглатывания пищи;
  • Мышечная слабость;
  • Бледность и сухость кожи;
  • Заеды в углах рта;
  • Тонкие, ломкие, вогнутые ногти с поперечной исчерченностью;
  • Тонкие, ломкие и сухие волосы.

Сидеропенический синдром развивается при болезнях Верльгофа и Рандю-Ослера.

Плеторический синдром

Синдром развивается при эритремии и болезни Вакеза.

Желтушный синдром

Синдром лимфаденопатии

  • Увеличение и болезненность различных лимфатических узлов;
  • Явления интоксикации (лихорадка, головная боль, сонливость и др.);
  • Потливость;
  • Слабость;
  • Сильное похудение;
  • Боли в области увеличенного лимфоузла из-за сдавления расположенных рядом органов;
  • Свищи с выделением гнойного содержимого.

Синдром развивается при хроническом лимфолейкозе, лимфогранулематозе, лимфосаркомах, остром лимфобластном лейкозе и инфекционном мононуклеозе.

Синдром гепато-спленомегалии

  • Ощущение тяжести в верхней части живота;
  • Боли в верхней части живота;
  • Увеличение объема живота;
  • Слабость;
  • Сниженная работоспособность;
  • Желтуха (на поздней стадии заболеваний).

Синдром развивается при инфекционном мононуклеозе, наследственном микросфероцитозе, аутоиммунной гемолитической анемии, серповидно-клеточной и В12-дефицитной анемии, талассемии, тромбоцитопениях, острых лейкозах, хронических лимфо- и миелолейкозах, сублейкемическом миелозе, а также при эритремии и болезни Вальденстрема.

Синдром кровопотери

Синдром развивается при гемобластозах, геморрагических диатезах и апластических анемиях.

Лихорадочный синдром

Гематологический и костномозговой синдромы

Синдром энтеропатии

Синдром артропатии

  • Припухлость и утолщение пораженного сустава;
  • Болезненность в пораженном суставе;
  • Остеопороз.

Анализы при заболевании крови (показатели крови)

1. Общий анализ крови с определением таких параметров, как:

  • Общее количество лейкоцитов, эритроцитов и тромбоцитов;
  • Подсчет лейкоформулы (процент базофилов, эозинофилов, палочкоядерных и сегментоядерных нейтрофилов, моноцитов и лимфоцитов в 100 подсчитанных клетках);
  • Концентрация гемоглобина крови;
  • Изучение формы, размеров, окрашенности и других качественных характеристик эритроцитов.

2. Подсчет количества ретикулоцитов.

3. Подсчет количества тромбоцитов.

5. Время кровотечения по Дьюку.

6. Коагулограмма с определением таких параметров, как:

  • Количество фибриногена;
  • Протромбиновый индекс (ПТИ);
  • Международное нормализованное отношение (МНО);
  • Активированное частичное тромбопластиновое время (АЧТВ);
  • Каолиновое время;
  • Тромбиновое время (ТВ).

7. Определение концентрации факторов свертывания.

8. Миелограмма – взятие костного мозга при помощи пункции с последующим приготовлением мазка и подсчетом количества различных клеточных элементов, а также их процентного соотношения на 300 клеток.

Определение некоторых часто встречающихся заболеваний крови

Инфекционные болезни крови

Вирусное заболевание крови

Хроническая патология крови

Наследственные (генетические) заболевания крови

Системные заболевания крови

Аутоиммунные заболевания крови

  • Аутоиммунная гемолитическая анемия;
  • Лекарственный гемолиз;
  • Гемолитическая болезнь новорожденных;
  • Гемолиз после переливания крови;
  • Идиопатическая аутоиммунная тромбоцитопеническая пурпура;
  • Аутоиммунная нейтропения.

Заболевание крови – причины

Лечение заболеваний крови

Профилактика болезней крови

  • Выявление и лечение заболеваний, сопровождающихся кровотечениями;
  • Своевременное лечение глистных инвазий;
  • Своевременное лечение инфекционных заболеваний;
  • Полноценное питание и прием витаминов;
  • Избегание ионизирующего излучения;
  • Избегание контакта со вредными химическими веществами (краски, тяжелые металлы, бензол и т.д.);
  • Избегание стрессов;
  • Профилактика переохлаждения и перегревания.

Часто встречающиеся заболевания крови, их лечение и профилактика - видео

Заболевания крови: описание, признаки и симптомы, течение и последствия, диагностика и лечение - видео

Болезни крови (анемия, геморрагический синдром, гемобластозы): причины, признаки и симптомы, диагностика и лечение - видео

Полицитемия (многокровие), повышенный уровень гемоглобина в крови: причины и симптомы заболевания, диагностика и лечение – видео

Что такое патологические клетки крови

Одной из главных причин патологических изменений эритроцитов, помимо кровопотерь, токсинов, гемолизинов и др., является нарушение нормальной деятельности костного мозга.

При одних заболеваниях, при повышенной реактивности организма, происходит усиленная деятельность костного мозга - гиперфункция; взамен погибших зрелых эритроцитов в ток крови попадают молодые клетки - происходит регенерация эритроцитов.

О регенеративной способности костного мозга судят по наличию в мазке полихроматофильных эритроцитов, ретикулоци-товг нормобластов. При ряде заболеваний кровотворной системы в периферической крови обнаруживают эритроциты с тельцами Жолли (Jolly), эритроциты с кольцами Кебота (Cabot).

К дегенеративным формам эритроцитов относятся анизоци-ты, пойкилоциты, эритроциты с базофильной зернистостью.

Эритроциты гиперхромные, т. н. мегалоциты и мегалобла-сты, относятся к т. н. эмбриональной форме кровотворения. В токе крови можно часто обнаружить4 клетки, указывающие на регенерацию и дегенерацию одновременно.

При различных заболеваниях крови эритроциты изменяют свою форму, величину, окраску. Появление в крови эритроцитов различной величины называется анизоцитозом.

Эритроциты размером меньше нормальных называются микроцитами, больше нормальных - макроцитами. Эритроциты способны принять самую разнообразную форму: колбы, груши, гимнастических гирь, полулуния; такие элементы называются пойкилоцитами Анизоцитоз и пойкилоцитоз бывают при пернициозной анемии, гемолитической желтухе.

В окрашенном препарате крови встречаются эритроциты анемичные окрашенные слабее, чем нормальные, при гипохромных анемиях. При гиперхромных анемиях обнаруживаются эритроциты, окрашенные ярче, чем нормальные. При анемиях, кровопотерях, когда происходит большой расход эритроцитов, ток крови, вследствие усиленной деятельности костного мозга, пополняется не совсем зрелыми формами эритроцитов, обладающими способностью окрашиваться одновременно и кислой и щелочной красками, вследствие чего они имеют серовато-фиолетовый цвет.

Такие эритроциты носят название полихроматофилов, а способность так окрашиваться называется полихромазией.

При анемии Аддисон-Бирмера могут встречаться эритроциты, в протоплазме которых еще сохранились остатки ядра а виде петель, колец, окрашиваемых по Романовскому в"фиолетовый цвет, так называемые кольца Кебота, либо единичных мелких обломков ядра в виде точек - тельца Жолли, окрашивающиеся в вишнево-красный цвет.

К дегенеративным формам относятся эритроциты с базофильною зернистостью. Это мелкие зерна в эритроците, окрашивающиеся в синеватый цвет. Хорошо заметна базофильная зернистость в эритроците при окраске по Е. Фрейфельд.

Ретикулоциты. В окрашенном бриллиант-крезиловой синькой препарате крови можно видеть эритроциты с тонкой синей сеточкой или зернистостью по всей клетке либо только в центре. Эта сеточка называется ретикулярной, или сетчатой, гранулофиламентозной субстанцией (substantia granulofilamentosa). Эритроциты с такой субстанцией называются ретикулоцитами.

Ретикулоциты - молодые, незрелые эритроциты, появляющиеся в крови при повышенной деятельности костного мозга. Для подсчета ретикулоцитов можно пользоваться окуляром, в который вложен кусочек бумаги с вырезанным квадратным отверстием. Сосчитывают в разных местах препарата 1000 эритроцитов и количество одновременно обнаруженных ретикулоцитов. В нормальной крови на 1000 эритроцитов бывает 2-4 ретикулоцита.

Отличия абсолютного и относительного лимфоцитоза в анализе крови

Несколько лет назад я написал, чем отличаются вирусные и бактериальные инфекции по общему анализу крови, каких именно клеток становится больше и меньше при различных инфекциях. Статья получила определенную популярность, но нуждается в некотором уточнении.

Еще в школе учат, что количество лейкоцитов должно составлять от 4 до 9 миллиардов (× 10 9) на литр крови. В зависимости от своих функций лейкоциты делятся на несколько разновидностей, поэтому лейкоцитарная формула (соотношение разных видов лейкоцитов) в норме у взрослого человека выглядит так:

  • нейтрофилы (суммарно 48-78%):
    • юные (метамиелоциты) - 0%,
    • палочкоядерные - 1-6%,
    • сегментоядерные - 47-72%,
  • эозинофилы - 1-5%,
  • базофилы - 0-1%,
  • лимфоциты - 18-40% (по другим нормам 19-37%),
  • моноциты - 3-11%.

Например, в общем анализе крови выявлено 45% лимфоцитов. Это опасно или нет? Нужно ли бить тревогу и искать перечень болезней, при которых в крови увеличивается количество лимфоцитов? Об этом и поговорим сегодня, потому что в одних случаях такие отклонения в анализе крови являются патологическими, а в других - не представляют опасности.

Этапы нормального кроветворения

Посмотрим результаты общего (клинического) анализа крови парня 19 лет, больного сахарным диабетом 1 типа. Анализ сделан в начале февраля 2015 года в лаборатории «Инвитро»:

Анализ, показатели которого рассматриваются в этой статье

Красным фоном в анализе выделены показатели, отличающиеся от нормальных. Сейчас в лабораторных исследованиях слово «норма » используется реже, оно заменено на «референсные значения » или «референтный интервал ». Так делается, чтобы не запутать людей, потому что в зависимости от используемого метода диагностики одно и то же значение может быть как нормальным, так и отклонением от нормы. Референсные значения подбираются таким образом, чтобы им соответствовали результаты анализов 97-99% здоровых людей.

Рассмотрим результаты анализа, выделенные красным.

Гематокрит

Гематокрит - доля объёма крови, приходящаяся на форменные элементы крови (эритроциты, тромбоциты и тромбоциты). Поскольку эритроцитов численно намного больше (например, число эритроцитов в единице крови превышает число лейкоцитов в тысячу раз), то фактически гематокрит показывает, какую часть объема крови (в %) занимают эритроциты. В данном случае гематокрит на нижней границе нормы, а остальные показатели эритроцитов в норме, поэтому слегка сниженный гематокрит можно считать вариантом нормы.

Лимфоциты

В вышеупомянутом анализе крови 45,6% лимфоцитов. Это слегка выше нормальных значений (18-40% или 19-37%) и называется относительным лимфоцитозом. Казалось бы, это патология? Но давайте посчитаем, сколько лимфоцитов содержится в единице крови и сравним с нормальными абсолютными значениями их количества (клеток).

Число (абсолютное значение) лимфоцитов в крови равно: (4,69 × 10 9 × 45,6%) / 100 = 2,14 × 10 9 /л. Эту цифру мы видим в нижней части анализа, рядом указаны референтные значения: 1,00-4,80. Наш результат 2,14 можно считать хорошим, потому что находится практически по середине между минимальным (1,00) и максимальным (4,80) уровнем.

Итак, у нас имеется относительный лимфоцитоз (45,6% больше 37% и 40%), но нет абсолютного лимфоцитоза (2,14 меньше 4,8). В данном случае относительный лимфоцитоз можно считать вариантом нормы.

Нейтрофилы

Общее количество нейтрофилов считается как сумма юных (в норме 0%), палочкоядерных (1-6%) и сегментоядерных нейтрофилов (47-72%), суммарно их 48-78%.

Этапы развития гранулоцитов

В рассматриваемом анализе крови общее количество нейтрофилов равно 42,5%. Мы видим, что относительное (в %) содержание нейтрофилов ниже нормы.

Посчитаем абсолютное количество нейтрофилов в единице крови:

Относительно должного абсолютного количества клеток лимфоцитов имеется некоторая путаница.

1) Данные из литературы.

2) Референтные значения количества клеток из анализа лаборатории «Инвитро» (см. анализ крови):

3) Поскольку вышеуказанные цифры не совпадают (1.8 и 2.04), попробуем сами рассчитать пределы нормальных показателей числа клеток.

  • Минимально допустимое количества нейтрофилов - это минимум нейтрофилов (48%) от нормального минимума лейкоцитов (4 × 10 9 /л), то есть 1.92 × 10 9 /л.
  • Максимальное допустимое количество нейтрофилов - это 78% от нормального максимума лейкоцитов (9 × 10 9 /л), то есть 7.02 × 10 9 /л.

В анализе пациента 1.99 × 10 9 нейтрофилов, что в принципе соответствует нормальным показателям числа клеток. Однозначно патологическим считается уровень нейтрофилов ниже 1.5 × 10 9 /л (называется нейтропения ). Уровень между 1.5 × 10 9 /л и 1.9 × 10 9 /л считается промежуточным между нормой и патологией.

Нужно ли паниковать, что абсолютное число нейтрофилов находится около нижней границы абсолютной нормы? Нет. При сахарном диабете (и еще при алкоголизме) слегка сниженный уровень нейтрофилов вполне возможен. Чтобы убедиться, что опасения необоснованны, нужно проверить уровень молодых форм: в норме юных нейтрофилов (метамиелоцитов) - 0% и палочкоядерных нейтрофилов - от 1 до 6%. В комментарии к анализу (на рисунке не поместилось и обрезано справа) указано:

При исследовании крови на гематологическом анализаторе патологических клеток не обнаружено. Количество палочкоядерных нейтрофилов не превышает 6%.

У одного и того же человека показатели общего анализа крови довольно стабильны: если нет серьезных проблем со здоровьем, то результаты анализов, сделанные с интервалом в полгода-год, будут весьма похожи. Аналогичные результаты анализа крови у обследуемого были и несколько месяцев назад.

Таким образом, рассмотренный анализ крови с учетом сахарного диабета, стабильности результатов, отсутствия патологических форм клеток и отсутствия повышенного уровня молодых форм нейтрофилов можно считать практически нормальным. Но если возникают сомнения, нужно наблюдать пациента дальше и назначить повторный общий анализ крови (если автоматический гематологический анализатор не способен выявить все типы патологических клеток, то анализ должен быть на всякий случай дополнительно исследован под микроскопом вручную). В самых сложных случаях, когда ситуация ухудшается, для изучения кроветворения берут пункцию костного мозга (обычно из грудины).

Справочные данные при нейтрофилы и лимфоциты

Главная функция нейтрофилов - борьба с бактериями путем фагоцитоза (поглощения) и последующего переваривания. Погибшие нейтрофилы составляют существенную часть гноя при воспалении. Нейтрофилы являются «простыми солдатами » в борьбе с инфекцией:

  • их много (ежедневно в организме образуется и поступает в кровоток около 100 г нейтрофилов, это количество увеличивается в несколько раз при гнойных инфекциях);
  • живут недолго - в крови циркулируют недолго (12-14 часов), после чего выходят в ткани и живут еще несколько дней (до 8 суток);
  • много нейтрофилов выделяется с биологическими секретами - мокротой, слизью;
  • полный цикл развития нейтрофила до зрелой клетки занимает 2 недели.

Нормальное содержание нейтрофилов в крови у взрослого человека:

  • юные (метамиелоциты) нейтрофилы - 0%,
  • палочкоядерные нейтрофилы - 1-6%,
  • сегментоядерные нейтрофилы - 47-72%,
  • всего нейтрофилов - 48-78%.

Лейкоциты, содержащие специфические гранулы в цитоплазме, относятся к гранулоцитам. Гранулоцитами являются нейтрофилы, эозинофилы, базофилы .

Агранулоцитоз - резкое уменьшение числа гранулоцитов в крови вплоть до их исчезновения (меньше 1 × 10 9 /л лейкоцитов и меньше 0.75 × 10 9 /л гранулоцитов).

К понятию агранулоцитоза близко понятие нейтропении (сниженное количество нейтрофилов - ниже 1.5 × 10 9 /л). Сравнивая критерии агранулоцитоза и нейтропении, можно догадаться, что только выраженная нейтропения приведет к агранулоцитозу . Чтобы дать заключение «агранулоцитоз », недостаточно умеренно сниженного уровня нейтрофилов.

Причины сниженного количества нейтрофилов (нейтропении):

  1. тяжелые бактериальные инфекции,
  2. вирусные инфекции (нейтрофилы не борются с вирусами. Пораженные вирусом клетки уничтожаются некоторыми разновидностями лимфоцитов),
  3. угнетение кроветворения в костном мозге (апластическая анемия - резкое угнетение или прекращение роста и созревания всех клеток крови в костном мозге ),
  4. аутоиммунные заболевания (системная красная волчанка, ревматоидный артрит и др.),
  5. перераспределение нейтрофилов в органах (спленомегалия - увеличение селезенки),
  6. опухоли кроветворной системы:
    • хронический лимфолейкоз (злокачественная опухоль, при которой происходит образование атипичных зрелых лимфоцитов и их накопление в крови, костном мозге, лимфоузлах, печени и селезёнке. Одновременно угнетается образование всех остальных клеток крови, особенно с коротким жизненным циклом - нейтрофилов);
    • острый лейкоз (опухоль костного мозга, при которой происходит мутация стволовой кроветворной клетки и ее неконтролируемое размножение без дозревания в зрелые формы клеток. Может поражаться как общая стволовая клетка-предшественница всех клеток крови, так и более поздние разновидности клеток-предшественниц по отдельным кровеносным росткам. Костный мозг заполнен незрелыми бластными клетками, которые вытесняют и подавляют нормальное кроветворение);
  7. недостатков железа и некоторых витаминов (цианокобаламин, фолиевая кислота ),
  8. действие лекарственных препаратов (цитостатики, иммунодепрессанты, сульфаниламиды и др.)
  9. генетические факторы.

Увеличение числа нейтрофилов в крови (выше 78% или больше 5.8 × 10 9 /л) называется нейтрофилией (нейтрофилезом, нейтрофильным лейкоцитозом ).

4 механизма нейтрофилии (нейтрофилеза):

  1. усиление образования нейтрофилов:
    • бактериальные инфекции,
    • воспаление и некроз тканей (ожоги, инфаркт миокарда ),
    • хронический миелолейкоз (злокачественная опухоль костного мозга, при которой происходит неконтролируемое образование незрелых и зрелых гранулоцитов - нейтрофилов, эозинофилов и базофилов, вытесняющих здоровые клетки ),
    • лечение злокачественных опухолей (например, при лучевой терапии),
    • отравления (экзогенного происхождения - свинец, змеиный яд , эндогенного происхождения - уремия, подагра, кетоацидоз),
  2. активная миграция (досрочный выход) нейтрофилов из костного мозга в кровь,
  3. перераспределение нейтрофилов из пристеночной популяции (возле кровеносных сосудов) в циркулирующую кровь: при стрессе, интенсивной мышечной работе.
  4. замедление выхода нейтрофилов из крови в ткани (так действуют гормоны глюкокортикоиды, которые угнетают подвижность нейтрофилов и ограничивают их способность проникать из крови в очаг воспаления).

Для гнойных бактериальных инфекций характерно:

  • развитие лейкоцитоза - увеличения общего количества лейкоцитов (выше 9 × 10 9 /л) преимущественно за счет нейтрофилии - роста числа нейтрофилов;
  • сдвиг лейкоцитарной формулы влево - увеличение количества молодых [юных + палочкоядерных ] форм нейтрофилов. Появление юных нейтрофилов (метамиелоцитов) в крови является признаком тяжелой инфекции и доказательством, что костный мозг работает с большим напряжением. Чем больше молодых форм (особенно юных), тем сильнее напряжение иммунной системы;
  • появление токсической зернистости и других дегенеративных изменений нейтрофилов (тельца Деле, цитоплазматические вакуоли, патологические изменения ядра ). Вопреки устоявшемуся названию, эти изменения вызваны не «токсическим эффектом » бактерий на нейтрофилы, а нарушением созревания клеток в костном мозге. Созревание нейтрофилов нарушается из-за резкого ускорения по причине чрезмерной стимуляции иммунной системы цитокинами, поэтому, например, в большом количестве токсическая зернистость нейтрофилов появляется при распаде опухолевой ткани под влиянием лучевой терапии. Другими словами, костный мозг готовит молодых «солдат» на пределе своих возможностей и отправляет их «в бой» раньше срока.

Рисунок с сайта bono-esse.ru

Лимфоциты являются вторыми по численности лейкоцитами крови и бывают разных подвидов.

Краткая классификация лимфоцитов

В отличие от нейтрофилов-«солдат», лимфоциты можно отнести к «офицерам». Лимфоциты «обучаются» дольше (в зависимости от выполняемых функций они образуются и размножаются в костном мозге, лимфоузлах, селезенке) и являются высокоспециализированными клетками (распознавание антигена, запуск и осуществление клеточного и гуморального иммунитета, регуляция образования и деятельности клеток иммунной системы ). Лимфоциты способны выходить из крови в ткани, затем в лимфу и с ее током возвращаться обратно в кровь.

Для целей расшифровки общего анализа крови надо иметь представление о следующем:

  • 30% всех лимфоцитов периферической крови - короткоживущие формы (4 суток). Это большинство B-лимфоцитов и Т-супрессоры.
  • 70% лимфоцитов - длительно живущие (170 дней = почти 6 месяцев). Это остальные виды лимфоцитов.

Разумеется, при полном прекращении кроветворения сначала в крови падает уровень гранулоцитов, что становится заметным именно по количеству нейтрофилов , поскольку эозинофилов и базофилов в крови и в норме очень мало. Чуть позже начинает снижаться уровень эритроцитов (живут до 4 месяцев) и лимфоцитов (до 6 месяцев). По этой причине поражение костного мозга выявляется по тяжелым инфекционным осложнениям, которые очень трудно лечить.

Поскольку развитие нейтрофилов нарушается раньше остальных клеток (нейтропения - меньше 1.5 × 10 9 /л), то в анализах крови чаще всего выявляется именно относительный лимфоцитоз (больше 37%), а не абсолютный лимфоцитоз (больше 3.0 × 10 9 /л).

Причины повышенного уровня лимфоцитов (лимфоцитоза) - больше 3.0 × 10 9 /л:

  • вирусные инфекции,
  • некоторые бактериальные инфекции (туберкулез, сифилис, коклюш, лептоспироз, бруцеллез, иерсиниоз ),
  • аутоиммунные заболевания соединительной ткани (ревматизм, системная красная волчанка, ревматоидный артрит ),
  • злокачественные опухоли,
  • побочное действие лекарств,
  • отравления,
  • некоторые другие причины.

Причины сниженного уровня лимфоцитов (лимфоцитопении) - меньше 1.2 × 10 9 /л (по менее строгим нормам 1.0 × 10 9 /л):

  • апластическая анемия,
  • ВИЧ-инфекция (первично поражает разновидность Т-лимфоцитов, называемую T-хелперами),
  • злокачественные опухоли в терминальной (последней) фазе,
  • некоторые формы туберкулеза,
  • острые инфекции,
  • острая лучевая болезнь,
  • хроническая почечная недостаточность (ХПН) в последней стадии,
  • избыток глюкокортикоидов.

/ Патфизо / Белова Л. А / Патология красной крови

ПАТОЛОГИЯ КРАСНОЙ КРОВИ

Кровь представляет собой сложную постоянно меняющуюся внутрен­нюю среду организма. Кровь переносит кислород, углекислоту, пита­тельные вещества, гормоны, продукты метаболизма тканей. Она игра­ет важнейшее значение в поддержании онкотического и осмотического давления; кислотно-основного равновесия. Другими словами, кровь принимает важнейшее участие в дыхании, обмене веществ, обеспече­нии процессов секреции и экскреции, иммунологической защите орга­низма, а также наряду с ЦНС выступает в качестве интегративной системы, объединяющей организм в единое целое. Кровь состоит из жидкой части с растворенными в ней белка­ми,органическими и неорганическими соединениями; и клеточных эле­ментов.Жидкая часть крови постоянно обменивается за счет поступ­ления в нее лимфы и тканевой жидкости.Соотношение клеточных эле­ментов и жидкой части крови определяемое гематокритом составляет 44-48%. При патологических процессах происходит закономерное изменение количественного и качественного состава клеток и плазмы крови.Эти изменения является чрезвычайно важным патогенетическим моментом многих патологических процессов, а кроме того выступают в качест­ве выжных диагностических симптомов той или иной болезни. Сегодняшняя лекция посвещена патологическим изменениям красной крови полицетемия.

А Н Е М И Я В норме в периферической крови содержится у мужчин 4,5-5,0х10 12 у женщин 4,0-4,5х10 12 эритроцитов в 1 л, иг/л гемоглоби­на.Причем содержание гемоглобина у женщин так же несколько меньше чем у мужчин. Анемия, или малокровием,называют состояние,характеризующееся уменьшением колличества эритроцитов или снижением содержания гемоглобина в (единица объема) крови.(пояснить) Особенностью истинной анемии является абсолютное уменьшение колличество эритроцитов и гемоглобина в организме. От истиной анемии следует отличать гидремию- т.е. разжижение крови за счет обильного притока тканевой жидкости,наблюдаемое у больных в пери­од схождения отеков. При этом в следствие разведения крови коли­чество эритроцитов и гемоглобина в единице объема уменьшается, но общее их количество в организме при этом остается нормальным. Может быть и наоборот. При истинной анемии (снижение общего количества эритроцитов и гемоглобина в организме), за счет сгуще­ния крови, вызванного потерей жидкости - количество гемоглобина и эритроцитов в единице объёма крови может оставаться нормальным или даже повышенным. В зависимости от функционального состояния костного мозга, его способности к регенерации и компенсации анемического состояния различают следующие типы анемий: регенераторная, гипорегенератор­ную анемию. Большинство анемий являются регенераторными. Они соп­ровождаются компенсаторным увеличением эритропоэза в кроветворном аппарате. Кроветворение при этом идет за счет образования нор­мальных эритроцитов. При этом увеличивается пролиферация эрит­ро-нормобластических элементов, ускоренное превращение нормоблас­тов в эритроциты и увеличенное вымывание их в кровь. В результате кровь пополняется молодыми формами эритроцитов - ретикулоцитами. Гипорегенераторной анемией называется такая форма, при которой компенсаторные возможности костного мозга истощены и количество вновь возникающих эритроцитов уменьшается. В периферической крови уменьшается количество молодых форм эритроцитов.В том случае если ретикулоциты из крови практически исчезают,говорят о арегенера­торной форме анемии.Чаще всего эти формы анамии возникают за счет повреждения красного костного мозга - при интоксикациях,лучевых поражениях,замещении красного костного мозга желтым (при лейко­зах). Для того чтобы определить характер анемии по регинераторной способности костного мозга нужно расчитать количество ретикулоци­тов в куб.мм В норме количество ретикулоцитов колеблется в преде­лах 1,0х,0х10 11 в л.Если количество ретикулоцитов у боль­ного находится в этих пределах то говорят о регинераторном или о нормогинераторном типе анемии,если количество ретикулоцитов мень­ше 100 тыс. то это гипорегенераторный тип. По уровню цветного показателя анемии делятся на нормохромные, гипо- и гиперхромные. Напомню, что цветной показатель отражает на­сыщенность гемоглобином отдельного эритроцита.Цветной показатель является нормальным если он колеблется в пределах от 0,9 до 1,1.Если ЦП меньше 0,9 то анемия гипохромная и это означает, что эритроциты недонасыщены гемоглобином. Если ЦП больше 1,1 то гово­рят о геперхромной анемией, сопровождающейся увеличением гемогло­бинезации эритроцитов. Цветной показатель расчитывается врачем в момент прочтения об­щего анализа крови больного и поэтому нужно хорошо представлять как это делается.И так ЦП есть отношение концентрации гемоглобина количеством эритроцитов.Однако если использовать обсолютные цифры - миллион - эритроцитов и гемоглобин то это оказывается неудобным для устного пересчета. Поэтому пользуются относительным - % вели­чинами.Для расчета цветного показателя за 100 % эритроцитов и для мужчин и для женщин принимают 5000. За 100% гемоглобина принима­ется 166,7 г/л. Давайте подсчитаем для примера ЦП - эритроцитов 4,1х10 , гемоглобина 120,0 г/л.% стало быть 1-20%. Таким образом для того чтобы перевести количество эритроцитов из обсо­лютных чисел в относительные нужно количество эритроцитов в миллионах умножить на 20%. 4,1х20=82%. Давайте переведем гемоглобин из г/л в % в норме.

120,0 - Х Х= 100 х 120,0 = 0,6х120,0 = 72% 166,7 Составим общее уравнение ЦП=гем .=120х0,6 = 72 =0,87 эр. 4,1х20 82 таким образом в данном случае можно говорить о гипохромной анемии.

ПАТОГЕНЕЗ И ЭТИОЛОГИЯ АНЕМИЙ. По этиопатогенезу все анемии делятся на 3 большие группы.

I.Анемии обусловленные кровопотерями - ПОСТГЕМОРАГИЧЕСКИЕ. II.Анемии связанные с нарушением процесса образования эритроцитов. III.Анемии связанные с повышением разрушения эритроцитов. Каждая из этих больших патогенетических групп делится на подг­руппы. I.Постгеморрагическая анемия делится на 2 подгруппы: I.Острая.2.Хроническая. Причинами острой кровопотери являются различные травмы, сопро­вождающиеся повреждением кровеносных сосудов или кровотечения из внутренних органов. Чаще всего из ХКТ, легких,почек и т.д.Патоге­нез острой кровопотери складывается из двух групп обстоятельств: 1.При кровопотере происходит быстрое снижение объема циркули­рующей крови, что ведет к падению артериального давления и прочим растройствам кровообращения, которые приводят к гипоксии циркуля­торного типа. 2. На определенном этапе постгеморрагической анемии происходит уменьшение кислородной ёмкости крови связанное с снижением коли­чества в ней эритроцитов и гемоглобина и развитие гипоксии анеми­ческого типа.Нарушения тем выраженнее, чем больше скорость крово­потери.Картина крови после острой постгеморрагической кровопотери зависит от времени прошедшей после кровопотери и стадии компенса­ции объема циркулирующей жидкости.Напомню стадии компенсации ОЦК - 1. Выброс депонированных эритроциторных масс,в сосудистое русло происходит непосредственно вслед за кровопотерей.2.Стадия гидре­мии- поступления в сосудистое русло интерстичиальной жидкости развивается примерно через 1 сутки продолжается 3-4 суток.3.Стадия стимуляции костномозгового кровотварения.Как изменяются ос­новные показатели характеризующие состояние красной крови на раз­личных стадиях.(подумаете сами).Это домашнее задание.Напомню осно­вные показатели: гематактичное число,количество эритроцитов,кон­центрация гемоглобина,ЦП, и количество ретикулоцитов. Хроническая, постгеморрагическая анемия.Развивается после небольших,но длительных или повторных кровопотерь.Чаще всего наблюдается при хронических кровотечениях из органов ЖКТ при язвен­ной болезни,раке,геморое и неспецифическом язвенном колите,а так же при почечных и маточных кровотечениях.Зачастую источник крово­потери настолько незначителен,что остается невыясненным.Что бы представить себе каким образом малые кровопотери могут способс­твовать значительной анемизации,достаточно привести такие данные: суточное количество железа необходимого для репаративных процес­сов в костном мозге и поддержания баланса гемоглобина составляет

5 мг.И нужно сказать, что организму не всегода бывает просто изв­лечь эти 5 мг из окружающей среды.Так вот это колличество железа содержится в 10 мл крови. Следовательно ежедневная потеря 2-3 чайных ложек крови не только лишает организм его суточной потреб­ности в железе,но и с течением времени приводит к значительному истощению "железного фонда" организма, в результате чего развивае­тся тяжелая железодифицитная анемия. По скольку хроническая анемия характеризуется медленно потерей крови то при ней практически не происходит изменения ОЦП и следовательно растройств гемодинамики. Картина крови при ХПГ анемии измениется двухфазно.В первую фазу нарушается главным образом образование гемоглобина и наруше­ние им эритроцитов.Поэтому картина крови здесь следующая:гипох­ромная анемия с резким снижением ЦП до 0,6-0,4.Количество ретику­лоцитов находится около нижней границе нормы,т.е. анемия регенераторная,при этом в крови встречаются и дегинеративные формы эрит­роцитов макро и микроциты,анизоцитоз и пойкилоцитоз.Количество тромбоцитов нормально или несколько снижено.Количество лейкоцитов несколько сниженно(если нет дополнительных обстоятельств вызываю­щих лейкоцитоз). Следующая фаза характеризуется нарушением обра­зования самих эритроцитов. При этом их колличество крови снижае­тся,а вот ЦП возрастает и приближается к нормальному.Следствием угнетения кроветворения является уменьшение количество ретикуло­цитов т.е. анемия становится гипорегинераторной, в крови отмеча­ются все дегенераторные формы эритроцитов.

АНЕМИИ СВЯЗАННЫЕ С НАРУШЕНИЕМ ОБРАЗОВАНИЯ ЭРИРОЦИТОВ Анемии развивающиеся в следствие нарушения процесса кровооб­разования по патогенезу можно разделить на:1.Анемии развивающиеся в следствие дефицита веществ необходимых для образования эритро­цитов. 2. Анемии развивающиеся в следствии повреждения красного костного мозга, (ионизирующее излучение,интоксикация). 3. Анемии обусловленные наличием генетического дефекта сис­темы гемопоэза.

4. Метапластические анемии развивающиеся вследствии вытесне­ния кровного кровеного ростка - желтым при его злокачественном пе­рерождении (лейкозы).

1.гр.а)ЖЕЛЕЗОДИФИЦИТНЫЕ АНЕМИИ.Группа железодифицитных анемий объединяет многочисленные анемические синдромы,основным патогене­тическим фактором которых является недостаток железа в организме (сидеропения, гипосидероз) .Причины ведущие к недостатку железа в организме могут быть обусловлены: 1.Недостатком железа в пище.2.Нарушением усвоения железа в желудочно кишечном тракте.3.Избыточными потерями железа. 4.Повышением потребности организма в железе. 5.Нарушением утилицация Fе костного мозга. Нарушение поступления железа развивается например при снижении кислотностижелудочного сока (соляная кислота необходима для железа в легкоусвояемую форму), а так же в следствие нарушения всасывания железа в кишечнике при энтеритах, резекциях кишечника и гиповитаминоз - С и т.д.Избыточные потери железа из организма связаны чаще всего с хроническими кровотечениями в том числе менструальными.Же­лезо может терятся потом при повышенном потоотделении у работников горячих производств,в тропиках. Повышенная потребность в железе в физиологических условиях возникает в период бурного роста детский и юношеский возраст,у женщин в период беременности и лактации. К патологическим состояниям сопровождающихся увелечением потребности железа можно отнести хронические инфекции (туберку­лез),интексикации (азотемия), гиповитаминозы,эндокринные наруше­ния (гипотиреоз), злокачественные новообразования.

Железодифицитные анемии делятся на первичны - сенциальные, и вторичные - симптоматические. К первичным анемиям относится ранний (юношеский) хлороз возникающий у девушек в период полового созревания (бледная немочь), и поздний хлороз возникающий так же у женщин в период климокса.Симптоматические железодифицитные ане­мии развеваются на фоне какого либо зоболевания:хр.энтерита,неф­рита, в связи с резекцией желудка, при хр.кровопотере,инфекциях. Картина крови. Наиболее характерной особенностью картины крови при хлорозах и симптоматических анемиях является гипохромия

Резкое снижение гемоглобина в эритроцитах при незначительном снижении количества самих эритроцитов. В тяжелых случаях гемогло­бин снижается дог/л количество же эритроцитов редко снижа­ется ниже.Таким образом ЦП снижается до 0,5-0,6 и даже ниже. Встречается множество дегенеративных форм эритроцитов глав­ным образом микроцитов.Количество ретикулоцитов обычно снижено.

В 12 (ФОЛИЕВО) - ДЕФИЦИТНЫЕ АНЕМИИ. Класической формой В12 дефецитной анемией является так назы­ваемое злокачественное или пернициозное малокровие Адисона-Бирме­ра.Болезнь характеризуется триадой синдромов - нарушением функций пищеварительного тракта, поражением нервной и кроветворной систе­мы.В 1929 г. Касл показал значение в кроветворении особого гемо­поэтического вещества. Это вещество попадает в организм в резуль­тате взаимодействия "внешнего фактора", поступающего в организм с пищей и "внутреннего фактора", вырабатываемого слизистой оболоч­кой желудка. Образующееся вещество всасывается и откладывается в печени.В дальнейшем было установленно, что "внешним фактором Касла" является витамин В12 - цианкобиламин.Внутренний фактор, необ­ходимый для всасывания витамина В12, представляет собой гастрому­копротеид, содержащийся в нормальном желудочном соке и слизистой оболочке фундальной части желудка.У больных анемией Адисона Бир­мера гастромукопротеид в желудочном соке отсутствует. В норме ви­тамин В12 после проникновения в кровеносное русло соединяется с глобулином плазма и в виде В12-протеинового комплекса откладыва­ется в печени. Витамин В12 и фолиевая кислота участвуют в метабо­лизме клеточных ядер, они необходимы для синтеза так называемых тимонуклеиновых кислот в частности фолиновой кислоты.При недоста­тке фолиновой кислоты в костном мозге нарушается синтез ДНК и РНК в ядрах клеток эритроцитарного ряда. И происходит нарушение мито­тических процессов в них.В костном мозге возникает мегалобласти­ческий тип кроветворения.Конечная клетка мегалобластического ряда это крупная клетка напоминающая ранее эмбриональные кровенные клетки.Клетки мегалобластического ряда содержат большое количест­во гемоглобина т.е.объем их много больше эритроцита.Но в целом эти клетки выполняют свою функцию по доставке кислорода к тканям значительно хуже обычных эритроцитов.Это связано с несколькими обстоятельствами. Во первых в связи с большим диаметром мегалоци­ты не попадают в мелкие капиляры. Во вторых большой диаметр и ша­рообразная форма затрудняет процесс оксигенации кислородом в лег­ких и отдачи кислорода в тканях.Наконец, так как эти клетки со­держат ядра то они сами потребляют гораздобольшое количество энергии чем эритроциты.Мегалобластический тип кровотворения ха­рактеризуется гораздо меньшей интенсивностью процессов клеточного деления.Если пронормобласт в процессе созревания совершает 3 деления в результате чего из него образуются 8 эритроцитов, то про­мегалобласт совершает всего одно деления и образует 2 мегалоцита. Кроеме того вовремя созревания происходит распад множества клеток мегалобластического ряда, за счет этого происходит накопление свободного гемоглобина и продуктов его распада в плазме крови (а пропродукты эти напомню токсичны для организма).Таким образом не­смотря на вынужденныю перестройку кроветворения на мегалобластический тип кроветворения процессы гемопоэза не успевают в услови­ях недостатка витамина В12 компенсировать процессы разрушения клеток крови в результате чего развивается анемия. Вопрос о этиологии и ранних звеньях патогенеза болезни Ади­сона Бирмера до настоящего времени не решон. Предполагается, что он связан либо и врожденной недостаточностью железистого аппарата

фундальной части желудка, что проявляется с возрастном в виде преждевременной инволюции этих желез продуцирующих гастромукопро­теин. Либо с аутоиммунными процессами обусловленными образованию аутоанител к гастромукопротеину, или комплексу гастромукопротеина и витамина В12.В12 дефицитная анемия может развиваться и при дру­гих видах патологии кроме Болезни Адисона-Бирмера сопровождающих­ся авитаминозом В12. К авитаминозу может вести элементарная недостаточность, заболевания желудка и кишечника сопровоэждающиеся нарушением процессов всасывания, в том числе гельминтазы в частности поражение лентецом широким (при котором в силу каких то обстоятельств возникает выражение гиповитаминоз) Относительный недостаток витамина может возникать и при физиологических состоя­ниях сопровождающихся повышеннной потребности в вит. В12 - детс­ком возрасте, беременности, а так же и при некоторых заболеваниях в частности хр. инфекциях.

Процессы костномозгового кроветворения и картина крови при всех формах недостаточности витамина В12 изменяется приблизительно однотипно.Происходит переход на мегалобластический тип кровотво­рения в результате чего в переферической крови обнаруживаются ме­галоциты и мегалобласты (незрелые клетки мегалоцитарного ря­да).Обнаружение мегалоцитов и мегалобластов является патогномоничным признаком В12 дефицитной анемии. В следствии того что мегало­циты велики по объему и стало быть содержат гемоглобина много больше чем обычные эритроциты цветной показатель при анемии этого типа больше единици, то есть анемия геперхромная.Регинераторные процессы в костном мозге резко снижены. Ретикулоцитов в крови ма­ло, значит анемия носит гипорегинераторный или в тяжелых случаях арегинераторный характер. В заключение скажу что болезнь Адисона Бирмера еще полвека назад считалась очень тяжолой и обсолютно неподдающемся лечению заболеванием в 100% случаев заканчивавшейся смертью больного. Лишь в конце 20 годов ХХ века её начали кое как лечить сырой пе­ченью различных животных - содержащей в большом количестве вит. В12. В настоящее время после получения медикаментозных препаратов вит. В12 лечение этой болезни не составляет больших проблем.Иск­лючением из этого является так называемая В12 ахрестическая ане­мия, в отличие от болезни Адисона Бирмера при этом заболевании отсутствуют симптомы поражения ЖНТи нервной системы.При ахрести­ческой анемии поступление вит. В12 в организм не нарушается со­держание его в плазме крови остается нормальным или повышен­ным.Патогенез анемии в данном случае связан с нарушением способ­ности костного мозга утилизировать В12 и использовать его в про­цессах кроветворения. По типу ахрестических могут протекать и железодифицитные анемии особенностью которых является высокое со­держание железа в плазме крови.Однако это железо в связи с теми или иными наследственно-обусловленными дефектами ферментативных систем не может быть утиливизоровано и использованно для синтеза гемоглобина.

ГЕМОЛИТИЧЕСКИЕ АНЕМИИ. Гемолитические анемии включают в себя целый ряд анемических состояний, которые возникают при увеличении распада эритроци­тов.По патогенезу гемолитические анемии можно разделить на три группы:1. Анемии при которых гемолиз эритроцитов обусловлен син­тезом патологических эритроцитов в костном мозге. К этой группе болезней можно отнести серповидноклеточную анемию,таласэмию или средиземноморскую анемию,наследственный сфероцитоз, гемоглобинозы и множество других наследственно-обусловленных заболеваний. 2.Вторая группа гемолитических анемий обусловлена увеличени­ем активности органов ответственных за разрушение эритроци­тов.Эритроциты при этом могут быть совершенно нормальными.В норме старые эритроциты уничтожаются в ретикулоэндотелиоцитарных орга­нах, главным образом в меньшей степени в лимфоузлах и печени. Селезенку образно называют кладбищем эритроцитов.Так вот елси это кладбище(активное кладбище) работает более активно, уничтожается больше чем нужно колличество эритроцитов и возникает анемия.Гемо­литическая активность селезенки например при спленомегалии,неко­торых хр. инфекционных заболеваниях и т.д.

3.Третья патогенетическая группа гемолитических анемий раз­вивается вследствие воздействия на эритроциты таких патогенных факторов, которые в норме на них не действуют.Например, гемолити­ческих ядов:фосфора,мышьяковистного водорода,сапонинов,яда гадюки и др;антиэритроциторных антител - чужеродных при переливании не­совместимой крови,материнских при резус-несовместимости, или ау­тоантител при патологии иммунокомпетентной системе.Кроме того ге­молиз может быть следствием инекционного процесса - классическим примером которого является малярия.Любой тип гемолитической ане­мии сопровождается выделением в кровь из разрушенных эритроцитов большое количества гемоглобина и накопление в крови продуктов его распада, в частности билирубина. Поэтому гемолитической анемии в большинстве случаев сопутствует и гемолитическая желтуха со всеми неблагоприятными проявлениями. Картина крови при гемолитических анемиях может быть самой разнообразной в зависимости от вида заболевания и его стадии. В большинстве случаев анемия бывает регинераторного типа,нормоблос­тическим типом кроветворения.

ЭРИТРОЦИТОЗЫ Эритроцитозами называется увеличением количества эритроцитов в крови выше 5,0*10 12 в л.Эритроцитозы различают абсолютные и относительные.При обсолютных эритроцитах увеличивается общее ко­личество эритроцитов в организме.При относительнх эритроцитах су­марного количества эритроцитов не увеличивается, но за счет сгу­щения крови происходит увеличение колличества эритроцитов в еди­нице объема крови.Причиной абсолютных эритроцитозов является ком­пенсаторное увеличение образования эритроцитов в костном мозге в условиях хр.гипоксии.Это наблюдается у людей живущих в горах и при заболевниях ведущих к гипоксии.Особенно при хр. заболеваниях легких.Патогенетическое значение эритроцитозов. Увеличение коли­чества эритроцитов повышает кислородную емкость крови и имеет не­которое приспособительное значение.Но одновременно при этом уве­личивается вязкость крови,а значит увеличивается нагрузка на сердце и ухудшаются процессы микроциркуляции - это негативные яв­ления. И при высокой степени эритроцитозов эти отрицательные ма­менты явно валируют над положительными.

ЭРИТРЕМИЯ(болезнь Вакеза) Эритремия в отличие от эритроцитозе является злокачественным заболеванием опухолевого характера.С опухолеподобным разрастанием красного кровенного ростка.Эритремиямия в этом случае носит гиперрегинераторный характер. Увеличение количества эритроцитов при­водит к увеличению вязкости крови и резкому нарушению гемодинами­ки.Естественно эритроцитоз в этом случае не имеет никакого прис­пособительного значения и целикои и полностью является явлением патологическим.

Клетка является структурно-функциональной единицей организма. Пато­логические и физиологические процессы, происходящие в организме, связа­ны с изменениями структуры и функции клеток. Поэтому, прежде чем присту­пить к разбору патологических процессов, необходимо рассмотреть типовые изменения со стороны клетки.

Со стороны ядра возможны: 1) полиплоидия ядра, она отмечается при репаративной регенерации, компенсаторной гипертрофии, при токсических воз­действиях (например, в печени из-за нарушения деления клеток при отравле­нии барбитуратами, под воздействием цитостатиков), под действием ионизи­рующего излучения, а также при опухолевом росте, размеры ядра чаще пропорциональны размерам всей клетки (нормальный ядерно-цитоплазмати-ческий индекс); 2) функциональное набухание ядра с увеличением объема хро­матина из-за превращения неактивного гетеропикнотического конденсирован­ного хроматина (гетерохроматина) в активный эухроматин; 3) "дегенератив­ное" набухание ядра в результате коллоидно-осмотического набухания после нарушения активного транспорта; 4) увеличение размеров ядра в связи с реп­ликацией в нём вируса; 5) уменьшение объёма ядра при снижении обмена ве­ществ.

Среди изменений хроматина выделяют:

1) гипергетерохромазию с мелко­очаговой конденсацией хроматина и инактивацией отдельных участков хромосом.
2) дискариозы - равномерно распространенную, обычно мелкоочагвую гетерохромазию ядра, что характерно для низкодифференцированных клеток 3) маргинацию хроматина оболочек ядра - конденсацию хроматина в области ядерной мембраны, что является признаком начинающейся гибели клетки
Ядрышко в условиях патологии может: 1) приобретать форму кольца, черепицы или губки, что может сопровождаться снижением синтетической активности клеток; 2) быть сегрегированным, уменьшенным в разме­рах, что наблюдается при блокаде транскрипции антибиотиками или цитостатиками
Под воздействием разнообразных факторов возможно повреждение клеточной мембраны с последующим набуханием и, нередко, гибелью клетки.
Под воздействием различных факторов возможна дезагрегация полирибосом клетки с их распадом на отдельные рибосомы.
Изменения формы шероховатого ретикулума: 1) фрагментирование, 2) оьразование пузырьков или вакуолей из-за нарушения работы натриевого насоса 3) коллапс цистерн в результате нарушения синтеза из-за повреждения мембран

Со стороны гладкого эндоплазматического ретикулума (ГЭР) отмечаются.

I) увеличение ГЭР при алкоголизме, длительном введении антигистаминных и ряда других препаратов; 2) редукция ГЭР мембран в старческом возрасте и при хронических отравлениях.
Кроме того, возможно увеличение или уменьшение объёма ЭР.
Со стороны митохондрий возможны: 1) набухание митохондрий и дест­рукция крист; 2) увеличение их количества в результате пролиферации, чаще вего при хроническом поражении или при усиленной функции, например, миокарда; 3) обеднение митохондриями при остром повреждении клетки, а ыкже при атрофии; 4) образование гигантских митохондрий при нарушении питания, в частности при гиповитаминозах и интоксикациях.
Со стороны лизосом может наблюдаться повышение проницаемости их мембраны, что может привести к выходу в цитоплазму лизосомальных фер­ментов и гибели клетки.
В процессе жизнедеятельности клетка подвергается воздействию внешних стимулов, обычно обозначаемых как повреждающие факторы. Результат такого воздействия зависит от природы повреждающего фактора, его силы и про­должительности действия, а также от вида и состояния самой клетки. При слабых внешних воздействиях в клетке может не происходить никаких изме­нений. При более сильном и продолжительном воздействии возможны:
1) адаптивные изменения клетки, лежащие в основе компенсаторных и приспособительных процессов, 2) обратимое повреждение клетки, 3) необратимое повреждение клетки с последующей её гибелью. Эти процессы могут приводить к изменениям структуры и функции различных тканей и органов.

Повреждение (альтерация)

В основе всех патологических и многих физиологических процессов в организме лежит повреждение его структур. Повреждение классифицируют по различным принципам: 1) по причинным факторам - экзогенное (биоло-гическое, в том числе вызванное бактериями, вирусами, микоплазмами, простейшими; физическое; химическое) и эндогенное (гипоксия, интоксикация, иммунное повреждение); 2) по характеру воздействия повреждающего фактора- прямое и непрямое; 3) по тяжести процесса - обратимое и необратимое; 4) по значению для организма - патологическое и физиологическое; 5) по распространенности - числу и объему поврежденных структур.
Любое повреждение проявляется на различных уровнях: молекулярном, субклеточном (ультраструктурном), клеточном, тканевом и организменном. Иногда дополнительно выделяют и уровень тканевых комплексов или гистионов, включающих в свой состав сосуды микроциркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки, паренхимы, соединительную ткань и терминальные нервные окончания.
Повреждения на молекулярном уровне известны еще мало и их изучение проводится в рамках молекулярной биохимии, генетики и биофизики. В эту группу повреждений могут быть отнесены изменения клеточных рецепторов под влиянием различных повреждающих факторов, выявляемые при иммунной электронной микроскопии.
Большинство наблюдаемых при электронно-микроскопическом изучении повреждений на субклеточном (ультраструктурном) уровне имеет неспецифический характер и не зависит от вида повреждающих факторов. Так, например, в миокарде при острой ишемии, токсических воздействиях катехоламинов, отравлении морфином, разлитом гнойном перитоните, облучении наблюдаются аналогичные изменения поврежденных клеток: 1) набухание митохондрий и разрушение их мембран; 2) вакуолизация эндоплазматического ретикулума; 3) очаговая деструкция миофибрилл; 4) появление избыточного количества липидных включений.

Свойство ультраструктур подвергаться идентичным изменениям под влиянием различных факторов носит название стереотипизм.
Известно, что функциональные возможности любого органа превышают потребности, предъявляемые к нему в оптимальных условиях жизнедеятельности. Следствием того, что клетки в момент воздействия повреждающего фактора находятся на разных фазах жизненного цикла и обладают различной функциональной активностью, является неодинаковая чувствительность (ранимость) клеток и неравномерность их вовлечения в патологический процесс. Мри одинаковом воздействии на весь орган какого-либо повреждающего фактора обычно наблюдается весь спектр возможных состояний клетки от прак-шчески нормального и даже усиленно функционирующего до гибели. Это явление называется мозаичностъю или дискретностью функций. Примером, иллюстрирующим это положение, может служить неравномерность поражения гепатоцитов при хроническом венозном застое или отравлении этанолом.
Тесная функциональная взаимосвязь всех клеточных ультраструктур прииодит в случае достаточно длительного и сильного воздействия повреждающего фактора к существенным поражениям всех компонентов клетки, вне зависимости от локализации начальных изменений. Эта закономерность носит название комплексности.
На основании результатов гистохимического изучения установлена стадийность развития повреждения клетки. Так, при гипоксии на начальном этапе происходит снижение выработки АТФ в митохондриях. На втором этапе наблюдается компенсаторное усиление анаэробного гликолиза, проявляющееся в повышении активности лактатдегидрогеназы (ЛДГ), одновременно с уменьшением содержания гликогена. Результатом этого этапа является увеличение содержания в клетках молочной кислоты, обусловливающей увеличение кислотности клеточной среды. Третий этап характеризуется клеточным ацидозом, в условиях которого повышается активность гидролитических ли-зосомальных ферментов, в первую очередь кислой фосфатазы, усиливающих внутриклеточные аутолитические процессы.
Повреждения на клеточном уровне иногда могут носить специфический характер. Специфические изменения обусловливаются внутриклеточной репликацией вируса (с появлением в ядре или цитоплазме включений, представляющих собой или скопления вирусных частиц, или реактивные изменения клеточного вещества в ответ на их репликацию), опухолевым метаморфозом и врожденными или приобретенными ферментопатиями, приводящими к накоплению в клетке нормальных метаболитов в избыточном количестве или аномальных - в виде включений Правда, специфичность клеточных изменений в ряде случаев весьма относительна; так, например, опухолевые клетки могут быть практически неотличимы от регенерирующих.
Клетки и их составные части могут претерпевать различные структурные изменения. На начальных этапах воздействия они носят обратимый характер и свидетельствуют лишь о функциональном напряжении клеток.

Биология и генетика

Общая патология клетки. Повреждение клетки: Нарушение функционирования клетки, которое сохраняется после удаления повреждающего агента Генетически детерминированные или приобретенные изменения метаболизма, физико-химических параметров, к...

Общая патология клетки. Повреждение клетки:

  • Нарушение функционирования клетки, которое сохраняется после удаления повреждающего агента
  • Генетически детерминированные или приобретенные изменения метаболизма, физико-химических параметров, конформации макромолекул, структуры клетки, ведущие к нарушению ее жизнедеятельности

Повреждение клетки:

  1. Частичное
  2. Полное
  3. Обратимое
  4. Необратимое

Этиологические факторы повреждения клетки

  1. Физические факторы:
  • Механические
  • Температурные (высокая температура приводит к деформации белков; охлаждение вызывает повышение вязкости мембраны)
  • Лучевые
  • Электрические
  • Осмотические
  1. Химические факторы:
  • Производственные вещества (ксенобиотики активируют ПОЛ)
  • Кислоты, щелочи
  • Лекарственные препараты
  1. Биологические факторы:
  • Микроорганизмы
  • Прионы (белки, обладающие свойствами микроба. Вызывают изменение конформации нормальных белков)
  • Инфекционные токсины
  • БАВ организма человека

Основные механизмы повреждения клетки

  1. Нарушения энергетического обеспечения клетки
  2. Повреждение мембран и ферментов
  3. Активация перекисного окисления липидов
  4. Дисбаланс ионов и воды
  5. Нарушение экспрессии генов
  6. Нарушение регуляции функций клеток

Разрушение митохондрий → Нарушение протекания реакции цикла Кребса и дыхательной цепи → Снижение уровня АТФ → Нарушение активности АТФ-аз → Нарушение утилизации АТФ → Нарушение поступления АТФ в эффекторные структуры (миофибриллы, ионные насосы)

Нарушение энергетического обеспечения клетки

  • Главная причина расстройств – гипоксия
  • (недостаточное снабжение клеток кислородом и нарушение биологического окисления)

Элементы биологических мембран, подверженные повреждению

  • Гликолипиды
  • Липидный бислой
  • Гликопротеиды
  • Цитоскелет
  • Ионный канал
  • Ионный насос
  1. Активация гидролаз
  2. Расстройства репарации мембран
  3. Нарушение конформации макромолекул
  4. Разрыв мембран
  5. Свободно-радикальные и перекисные реакции

Роль фосфолипаз в повреждении клетки

Повреждающий фактор → Са++ в клетке → Активация ФЛА2 → Гидролиз сложных связей в молекуле ФЛ → ЛизоФЛ

Формирование «порочного круга» в клеточной патологии

Механизмы прямого повреждения мембран

  1. Нарушение конформации макромолекул (белки, липопротеиды, ФЛ)
  2. Торможение процессов ресинтеза поврежденных компонентов мембран
  3. Растяжение, разрывы мембран гипергидратированной клетки

→ Модификация физико-химических свойств и биохимического состава

мембран клетки, нарушение их структуры

→Нарушение жизнедеятельности клетки

Значение перекисного окисления липидов в повреждении клетки

  • ПОЛ – это разветвленная цепная реакция, идущая с участием активных форм кислорода (свободных радикалов)
  • Свободные радикалы - это молекулярные частицы, имеющие непарный электрон на внешней орбитали и обладающие высокой реакционной способностью.

ПОЛ

Факторы-активаторы:

  • Гипоксия (ишемия)
  • Ионизирующая радиация
  • Стресс
  • Авитаминоз Е
  • Гипервитаминоз Д
  • Гипербарическая оксигенация

Компоненты антиоксидантной системы:

  • Акцепторы электронов - витамин К, токоферол
  • Акцепторы О2 – метионин
  • Ингибитор О2 - супероксиддисмутаза
  • Инактиваторы Н2О2 – каталаза, пероксидаза
  • Эндогенные ловушки ▪ОН – токоферол, стероидные гормоны, витамин С

Дисбаланс ионов и воды в клетке при ее повреждении

Повреждение рецепторов клеточных мембран

Клеточный рецептор — молекула на поверхности клетки, клеточных органелл или в цитоплазме клетки,

  • специфически реагирующая изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества,
  • и передающая этот сигнал внутрь клетки или клеточной органеллы,
  • обычно при помощи механизма так называемых вторичных посредников или с помощью трансмембранных ионных токов

Нарушение внутриклеточной регуляции клеток при повреждении

Повреждение клеточного ядра

Белки теплового шока

  • БТШ – это специфические белки, которые вырабатываются в ответ на тепловой шок
  • БТШ осуществляют поддержание нативной конформации белков и сопровождают белковые молекулы после трансляции в различные отсеки клетки

Генетические нарушения

  • Мутации - стойкое, скачкообразное изменение в наследственном аппарате клетки, не связанное с обычной рекомбинацией генетического материала
  • Дерепрессия патогенного гена – повышение активности патогенного гена
  • Репрессия жизненно важного гена – снижение активности гена
  • Трансфекция - внедрение в геном чужеродной ДНК
  • Нарушения митоза – изменение пролиферативной активности клеток

Последствия повреждения генома

  • Энзимопатии (нарушения структуры и функции энзимов и ферментативного катализа)
  • Нарушения клеточного цикла (расстройство пролиферации клеток, бесконтрольное размножение повреждённой клетки и формирование малигнизированных клонов)
  • Активация онкогенов (ключевое звено канцерогенеза)
  • Неконтролируемая активация апоптоза (развитие иммунодефицитных состояний)

Проявления повреждения клеток

  1. Специфические изменения
  • Развиваются при действии определенного патогенного фактора на различные клетки или
  • Развиваются в определенных типах клеток при действии различных повреждающих факторов
  1. Неспецифические изменения
  • Развиваются при повреждении различных видов клеток и действии на них широкого спектра патогенных агентов

Морфофункциональные признаки повреждения:

  • Уменьшение дисперсности коллоидов цитоплазмы и ядра
  • Изменение вязкости цитоплазмы
  • Увеличение адгезивных свойств цитоплазмы и ядра
  • Изменение биохимических процессов в клетке
  • Повышение проницаемости мембран
  • Изменение баланса ионов
  • Отек и набухание клетки
  • Снижение мембранного потенциала
  • Появление флюоресценции

Кальций – маркер тяжести повреждения клетки

Некроз

Некроз - гибель части живого организма, необратимое прекращение жизнедеятельности его клеток и тканей .

Причины некроза:

  • Гипоксия/Ишемия
  • Токсические вещества
  • Инфекция

Морфофункциональные признаки некроза

  • Набухание клетки и клеточных органелл
  • Отек цитоплазмы
  • Нарушение целостности мембраны, увеличение ее проницаемости

Изменения клеточных ядер при некрозе

  • Пикноз
  • Лизис
  • Рексис

Апоптоз

Апоптоз – запрограммированная гибель клетки

Индукторы апоптоза:

  • Кортикостероиды
  • Вирусы
  • Ретиноиды
  • Рентгеновское и ультрафиолетовое излучения

Морфофункциональные признаки апоптоза

  • Сморщивание клетки, приобретение округлой формы
  • Расширение эндоплазматического ретикулума
  • Дегидратация клетки
  • Повышение уровня внутриклеточного Са++
  • Деградация и маргинация хроматина

Проявления повреждения клетки

Дистрофия

Клеточные дистрофии – нарушения обмена веществ, сопровождающиеся расстройством функций клеток

Основная характеристика дистрофий – нарушения метаболизма отдельных классов веществ:

  • Диспротеинозы
  • Липидозы
  • Диспигментозы
  • Углеводные дистрофии
  • Минеральные дистрофии

Гипотрофия – уменьшение размеров и массы клетки

Атрофия – выраженное уменьшение размеров и массы клетки, сопровождающееся нарушением функционирования клетки

Гипертрофия – увеличение размеров и массы клетки

Дисплазия

  • Нарушение дифференцировки клеток, сопровождающееся стойкими изменениями структуры, метаболизма и функционирования клеток.
  • Дисплазии предшествуют опухолевому процессу

Метаплазия – замещение клеток, свойственных данному органу, нормальными клетками другого типа

Механизмы адаптации клеток к повреждению

  1. Внутриклеточные адаптивные механизмы
  • Компенсация энергетических нарушений
  • Устранение дисбаланса ионов и воды
  • Ликвидация генетических дефектов
  • Компенсация расстройств регуляции внутриклеточных процессов
  • Снижение функциональной активности клеток
  • Действие белков теплового шока
  1. Межклеточные адаптивные механизмы
  • Обмен метаболитами, цитокинами, ионами
  • Изменения лимфо- и кровотока
  • Эндокринные влияния
  • Нервные воздействия

Методы выявления повреждения клеток

  • Клинический осмотр
  • Биохимические методы – определение уровня ферментов-маркеров цитолиза:
    • Сердце – Миоглобин, КФК-МБ, Тропонин, ЛДГ
    • Печень – АСТ, АЛТ, ЛДГ, ЩФ
    • Поджелудочная железа – амилаза, липаза
  • Диагностическая биопсия – легкие, печень, почки, половые органы, кожа


СПОЛ

Увеличение

уровня Са ++

в цитоплазме

Увеличение

уровня Са ++

в цитоплазме

Активация

мембранных

фосфолипаз

Повреждение

мембранных

структур клетки

Тканевая гипоксия

Токсические

вещества

ОБРАТИМЫЕ ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТКИ

Дистрофия

Гипотрофия

Гипертрофия

Атрофия

исплазия и метаплазия


А также другие работы, которые могут Вас заинтересовать

10328. Общие методы воспитания, основания их классификации. Приемы воспитания. Психолого-педагогические основы оптимального выбора и эффективного применения методов и приемов воспитания 37 KB
Общие методы воспитания основания их классификации. Приемы воспитания. Психологопедагогические основы оптимального выбора и эффективного применения методов и приемов воспитания. Реализация воспитания в процессе обучения. Метод В. система взаимосвязанных способо
10329. Общая характеристика сознания и бессознательного. Структура сознания. Самосознание, самооценка 40.5 KB
Общая характеристика сознания и бессознательного. Структура сознания. Самосознание самооценка. Методы развития сознания и духовного мира школьников в процессе воспитания. Высший уровень психики свойственный человеку образует сознание. Сознание результат обществе...
10330. Общая психологическая характеристика деятельности. Методы формирования, обогащения и коррекции опыта поведения и деятельности личности 47 KB
Общая психологическая характеристика деятельности. Методы формирования обогащения и коррекции опыта поведения и деятельности личности. Психология игры структура функции. Технология организации различных видов практической деятельности учеников игровая деятельнос...
10331. Психология общения. Педагогическое общение: структура, виды, функции, средства общения. Стили общения. Технология управления педагогическим общением 46 KB
Психология общения. Педагогическое общение: структура виды функции средства общения. Стили общения. Технология управления педагогическим общением. Методы стимулирования общения поведения и деятельности школьников. Общение О. сложный многоплановый процесс устано...
10332. Взаимоотношения личности и группы как психолого-педагогическая проблема в отечественной и зарубежной теории и практике 51 KB
Взаимоотношения личности и группы как психологопедагогическая проблема в отечественной и зарубежной теории и практике. Детский коллектив д.к. как объект и субъект воспитательного процесса психологическая структура коллектива педагогические условия его становления....
10333. Философские, психологические и педагогические проблемы духовного развития личности, ее мировоззрения, формирование личностного смысла научных и этических знаний 36.5 KB
Философские психологические и педагогические проблемы духовного развития личности ее мировоззрения формирование личностного смысла научных и этических знаний. Ступени духовного роста человека. Духовное развитие личности ребенка в учебновоспитательном процессе в
10334. Нравственное воспитание как фундамент системы воспитательной работы. Задачи, содержание, методы нравственного воспитания в современных условиях 37 KB
Нравственное воспитание как фундамент системы воспитательной работы. Задачи содержание методы нравственного воспитания в современных условиях. Моральные чувства их характеристика. Нравственное воспитание формирование системы моральнонравственных норм установ
10335. Трудовое воспитание, задачи, содержание и методы. Ушинский, Макаренко о роли труда в развитии личности. Профессиональное самоопределение 64.5 KB
Трудовое воспитание задачи содержание и методы. Ушинский Макаренко о роли труда в развитии личности. Профессиональное самоопределение. Отечественные и зарубежные теории профессионального самоопределения Д. Сьюпер Э. Гинзберг Е.А. Климов И.С. Кон. Проф. ориентация и эк...
10336. Физическое воспитание. Понятие о здоровом образе жизни. Задачи, содержание, методы и формы ФВ в современной школе 36.5 KB
Физическое воспитание. Понятие о здоровом образе жизни. Задачи содержание методы и формы ФВ в современной школе. Учет индивидуальнотипологических особенностей субъектов образовательного процесса в экологически неблагополучных регионах. Здоровьесберегающие технолог...

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Волгоградский государственный медицинский университет

кафедра патологической анатомии

Патология клетки

Работу выполнил:

студент 5 группы 3 курса

Смирнова А.П.

Проверил: старший преподаватель

Белик Т.А.

Волгоград 2015

Введение

2. Функции клетки

6. Адаптация клеток

Заключение

Введение

Клетка является высокоорганизованной, саморегулирующейся структурно-функциональной единицей живого организма, способной к активному обмену с окружающей ее средой. Любой патологический процесс, какой бы степенью функциональных нарушений он не проявлялся, начинается на уровне ультраструктур, то есть субклеточном уровне. Не существует ни одного повреждающего фактора, который не приводил бы к структурным изменениям. Ряд заболеваний может быть и был впервые диагностирован только на ультраструктурном уровне. Важно отметить, что самые ранние, начальные стадии патологического процесса, проявляющиеся только на уровне ультраструктур клеток, как правило, обратимы или могут быть компенсированы.

Поэтому, прежде чем приступить к изучению патологических процессов, необходимо рассмотреть типовые изменения со стороны клетки.

1. Строение эукариотической клетки

эукариотический клетка патология

В клетке человека и животных выделяют следующие основные структуры:

ядро (оболочка с ядерными порами, кариоплазма, ядрышки и перинуклеарное пространство), цитоплазма (гиалоплазма с различными органеллами и включениями) и клеточная мембрана.

Все органеллы клетки можно разделить на органеллы мембранного происхождения и немембранного.

Органеллы мембранного происхождения :

цитоплазматическая мембрана (включая десмосомы);

митохондрии: (наружная оболочка, кристы, матрикс);

аппарат Гольджи;

гладкий и гранулярный (шероховатый) эндоплазматический ретикулум;

лизосомы: первичные и вторичные: цитолизосомы и фаголизосомы, остаточные тельца (телолизосомы).

Органеллы немембранного происхождения :

свободные рибосомы и полисомы;

центросома (центриоль);

микротрубочки или макрофиламенты;

специализированные структуры или микрофиламенты (нейрофибриллы, миофибриллы - гладкие и поперечные, тонофибриллы, фибриллы промежуточных типов, микроворсинки, реснички, жгутики).

Включения: трофические, секреторные вакуоли, пиноцитозные пузырьки.

Рисунок 1

2. Функции клетки

В клетках постоянно осуществляется обмен веществ - метаболизм (от греческого metabole - изменение, преобразование), сочетающий в себе два совокупных процесса ассимиляции (биосинтеза сложных биологических молекул из простых) и диссимиляции (расщепление).

Необходимые для жизнедеятельности клетки вещества поступают из внешней среды путем эндоцитоза (от греческого endo - внутри, kytos - клетка). Выведение веществ из клетки называется экзоцитоз (от греческого эхо - снаружи, kytos - клетка).

Эти процессы, а также внутриклеточный транспорт веществ, происходят с участием биологических мембран.

Для выполнения своих функций клетки поддерживают собственный гомеостаз, осуществляют обмен веществ и энергии, реализуют генетическую информацию, передают её потомству и прямо или опосредованно (через межклеточный матрикс и жидкости) обеспечивают функции организма. Любая клетка либо функционирует в границах нормы (гомеостаз), либо приспосабливается к жизни в изменившихся условиях (адаптация), либо гибнет при превышении её адаптивных возможностей (некроз) или действии соответствующего сигнала (апоптоз). (рис.2.)

Рисунок 2

На рисунке: слева в овале - границы нормы; существенное свойство типовых патологических процессов - их обратимость, если степень повреждения выходит за пределы адаптивных возможностей, процесс становится необратимым.

* Гомеостаз (гомеокинез) - динамическое равновесие в данной клетке, с другими клетками, межклеточным матриксом и гуморальными факторами, обеспечивающее оптимальную метаболическую и информационную поддержку. Жизнь клетки в условиях гомеостаза - постоянное взаимодействие с различными сигналами и факторами.

* Адаптация - приспособление в ответ на изменения условий существования клеток (в том числе на воздействие повреждающего фактора).

* Гибель клетки - необратимое прекращение жизнедеятельности. Происходит либо вследствие генетически программированного процесса (апоптоз), либо в результате летального повреждения (некроз).

3. Основные разделы патологии клетки

Патология клетки представлена тремя основными разделами:

1) Патология клетки в целом (нарушение метаболизма, дистрофия, некроз, гипертрофия, атрофия).

2) Патология субклеточных структур и компонентов (лизосомные, хромосомные болезни, болезни «рецепторов», пероксисомные болезни).

3) Нарушение межклеточных взаимодействий и кооперации клеток.

4. Повреждение (альтерация) клетки

В основе всех патологических и многих физиологических процессов в организме лежит повреждение его структур, которое является пусковым звеном в длинной цепочке изменений, ведущих к болезни.

Виды повреждения

Первичное - обусловлено непосредственным воздействием на организм повреждающего фактора.

Вторичное - является следствием влияния первичных повреждающих воздействий на ткани и организм.

Характер повреждения зависит от: природы патогенного фактора, индивидуальных видов свойств живого организма.

Патогенный агент может вызвать повреждение на различных уровнях: молекулярном, клеточном, органном, тканевом, организменном. Одновременно с повреждением включаются защитно-компенсаторные процессы на тех же уровнях.

Повреждение клетки - это морфофункциональные, метаболические, физико-химические изменения, ведущие к нарушению жизнедеятельности клетки. Альтерация клетки выражается дистрофией, атрофией, некрозом.

Типовые формы патологии клеток: дистрофии, дисплазии, метаплазия, гипотрофия (атрофия), гипертрофия, а также некроз и патологические формы апоптоза.

Классификация повреждений:

1. По природе:

Физические (механические, температурные, лучевые)

Химические (ядовитые вещества, кислоты, щелочи, лекарства)

Биологические (вирусы, бактерии)

Психогенные (повреждения нейронов мозга и их ансамблей у человека)

2. По происхождению:

Эндогенные

Экзогенные

Эндогенные агенты (образуются и действуют внутри клетки):

Физической природы (например, избыток свободных радикалов; колебания осмотического давления);

Химические факторы (например, накопление или дефицит ионов H+, K+, Ca2+, кислорода, углекислого газа, перекисных соединений, метаболитов и др.);

Биологические агенты (например, белки, лизосомальные ферменты, метаболиты, Ig, цитотоксические факторы; дефицит или избыток гормонов, ферментов, простагландинов - Пг).

Экзогенные факторы (действуют на клетку извне):

Физические воздействия (механические, термические, лучевые, электрический ток);

Химические агенты (кислоты, щёлочи, этанол, сильные окислители);

Инфекционные факторы (вирусы, риккетсии, бактерии, эндо- и экзотоксины микроорганизмов, гельминты и др.).

5. Механизмы повреждения клеток

К наиболее важным механизмам клеточной альтерации относятся:

1.расстройства энергетического обеспечения клетки;

2.повреждение мембран и ферментов;

3.активация свободнорадикальных и перекисных процессов;

4.дисбаланс ионов и воды;

5.нарушения в геноме или экспрессии генов;

6.расстройства регуляции функций клеток.

Расстройства энергетического обеспечения клетки

Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ. Главная причина расстройств - гипоксия (недостаточное снабжение клеток кислородом и нарушение биологического окисления).

* Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и сопряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

* Транспорт энергии. Заключённая в макроэргических связях энергия АТФ поступает к эффекторным структурам (миофибриллы, ионные насосы и др.) с помощью АДФ-АТФ-транслоказы и КФК. При повреждении этих ферментов или мембран клеток нарушается функция эффекторных структур.

* Утилизация энергии может быть нарушена преимущественно за счёт уменьшения активности АТФаз (АТФаза миозина, Na+K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са2+-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Повреждение мембран

Повреждение клеточных мембран происходит за счёт следующих процессов:

* Активация гидролаз. Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз и протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу, что сопровождается значительным повышением проницаемости мембран.

* Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез альтерированных или утраченных мембранных макромолекул (а также их синтез de novo) подавляется, что приводит к недостаточному восстановлению мембран.

* Нарушения конформации макромолекул (их пространственной структуры) приводит к изменениям физико-химического состояния клеточных мембран и их рецепторов, что приводит к искажениям или потере их функций.

* Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления) - важный механизм повреждения мембран и гибели клетки.

Свободнорадикальные и перекисные реакции

В норме это необходимое звено транспорта электронов, синтеза простогландинов и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды, учитывая наличие большого их числа в мембранах клеток (свободнорадикальное перекисное окисление липидов - СПОЛ). При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Этапы СПОЛ: образование активных форм кислорода - генерация свободных радикалов органических и неорганических веществ - продукция перекисей и гидроперекисей липидов.

Активные формы кислорода - ? синглетный (ј2) ? супероксидный радикал (O2-)? пероксид водорода (H2O2) ? гидроксильный радикал (OH-).

¦ Прооксиданты и антиоксиданты. Интенсивность СПОЛ регулируется соотношением активирующих (прооксидантов) его и подавляющих (антиоксидантов) факторов.

Прооксиданты - легко окисляющиеся соединения, нейтрализующие свободные радикалы (нафтохиноны, витамины A и D, восстановители - НАДФH2, НАДH2, липоевая кислота, продукты метаболизма простогландинов и катехоламинов).

Антиоксиданты - вещества, ограничивающие или даже прекращающие свободнорадикальные и перекисные реакции (ретинол, каротиноиды, рибофлавин, токоферолы, маннитол, супероксиддисмутаза, каталаза).

¦ Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды - амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

Дисбаланс ионов и воды

Внутриклеточная жидкость содержит примерно 65% всей воды организма и характеризуется низкими концентрациями Na+ (10 ммоль/л), Cl- (5 ммоль/л), HCO3- (10 ммоль/л), но высокой концентрацией K+ (150 ммоль/л) и PO43- (150 ммоль/л). Низкая концентрация Na+ и высокая концентрация K+ обусловлены работой Na+,K+-АТФазы, выкачивающей Na+ из клеток в обмен на K+. Клеточный дисбаланс ионов и воды развивается вслед за расстройствами энергетического обеспечения и повреждением мембран.

К проявлениям ионного и водного дисбаланса относятся:

Изменение соотношения отдельных ионов в цитозоле;

Нарушение трансмембранного соотношения ионов;

Гипергидратация клеток;

Гипогидратация клеток;

Нарушения электрогенеза.

Изменения ионного состава обусловлены повреждениями мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-АТФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой K+.

Осмотическое набухание и осмотическое сморщивание клеток. Происходит по закону осмоса, жидкость стремится разбавить область с большей концентрацией, которая может находиться внутри клетки - что приведет к набуханию, или снаружи клетки - тогда вода будет стремиться из клетки в межмембранное пространство, что приведет к сморщиванию.

*Гипергидратация. Основная причина гипергидратации повреждённых клеток - повышение содержания Na+, а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и микроразрывами мембран. Такая картина наблюдается, например, при осмотическом гемолизе эритроцитов. *Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекционных заболеваниях (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Нарушения электрогенеза (изменения характеристик мембранного потенциала - МП и потенциалов действия - ПД) имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Генетические нарушения

Изменения в геноме и экспрессии генов - существенный фактор повреждения клетки. К таким нарушениям относятся мутации, дерепрессии и репрессии генов, трансфекции, нарушения митоза.

* Мутации (так, мутация гена инсулина приводит к развитию сахарного диабета).

* Дерепрессия патогенного гена (дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую).

* Репрессия жизненно важного гена (подавление экспрессии гена фенилаланин 4-монооксигеназы обусловливает гиперфенилаланинемию и развитие олигофрении).

* Трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа.

* Нарушения митоза (так, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведёт к формированию хромосомных болезней).

Нарушение регуляции функций клеток.

К механизмам расстройства жизнедеятельности клеток относят: искажение регуляторного сигнала, изменение метаболических процессов в клетке, расстройства на уровне «мессенжеров».

6. Адаптация клеток

Механизмы адаптации клеток к повреждению.

Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы

Внутриклеточные механизмы адаптации реализуются в самих повреждённых клетках. К этим механизмам относят:

1.компенсацию нарушений энергетического обеспечения клетки;

2.защиту мембран и ферментов клетки;

3.уменьшение или устранение дисбаланса ионов и воды в клетке;

4устранение дефектов реализации генетической программы клетки;

5.компенсацию расстройств регуляции внутриклеточных процессов;

6.снижение функциональной активности клеток;

7.действие белков теплового шока;

8.регенерацию;

9.гипертрофию;

10.гиперплазию.

* Компенсация энергетических нарушений обеспечивается активацией процессов ресинтеза и транспорта АТФ, снижением интенсивности функционирования клеток и пластических процессов в них.

* Устранение дисбаланса ионов и воды в клетке осуществляется путём активации буферных и транспортных клеточных систем.

* Ликвидация генетических дефектов достигается путём репарации ДНК, устранения изменённых фрагментов ДНК, нормализации транскрипции и трансляции.

* Компенсация расстройств регуляции внутриклеточных процессов заключается в изменении числа рецепторов, их чувствительности к лигандам, нормализации систем посредников.

* Снижение функциональной активности клеток позволяет сэкономить и перераспределить ресурсы и, тем самым, увеличить возможности компенсации изменений, вызванных повреждающим фактором. В результате степень и масштаб повреждения клеток при действии патогенного фактора снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций.

* Белки теплового шока (HSP, от Heat Shock Proteins; белки стресса) интенсивно синтезируются при воздействии на клетки повреждающих факторов. Эти белки способны защитить клетку от повреждений и предотвратить её гибель. Наиболее распространены HSP с молекулярной массой 70 000 (hsp70) и 90 000 (hsp90). Механизм действия этих белков многообразен и заключается в регуляции процессов сборки и конформации других белков.

Межклеточные адаптивные механизмы

Межклеточные (системные) механизмы адаптации реализуются неповреждёнными клетками в процессе их взаимодействия с повреждёнными:

1.обмен метаболитами, местными цитокинами и ионами;

2. реализация реакций системы ИБН (иммунобиологического надзора);

3.изменения лимфо- и кровообращения;

4.эндокринные влияния;

5.нервные воздействия.

7. Повышение устойчивости клеток к повреждению

Мероприятия и средства, повышающие устойчивость интактных клеток к действию патогенных факторов и стимулирующие адаптивные механизмы при повреждении клеток, подразделяют:

по целевому назначению на лечебные и профилактические;

по природе на медикаментозные, немедикаментозные и комбинированные;

по направленности на этиотропные, патогенетические и саногенетические.

Заключение

Патология клетки - очень сложный процесс преобразования клеточный ультраструктур. Она представлена не только достаточно стереотипными изменениями той или иной ультраструктуры в ответ на различные воздействия, но и настолько специфичными изменениями, что можно говорить о хромосомных болезнях и «болезнях» рецепторов, лизосомных, митохондриальных, пероксисомных и других «болезнях» клетки. К тому же, патология клетки - это изменения ее компонентов и ультраструктур в причинно-следственных связях, изменение влечет за собой другое изменение, не бывает абсолютно изолированных повреждений, которые можно было бы также изолированно исправить.

Именно изучение типовых и специфических изменений на уровне клетки является основой для последующего подробного и широкого знания предмета патологической анатомии.

Список используемой литературы

1. Патофизиология. Учебник. Литвицкий П.Ф. 4-е издание, 2009 г.

2. Патологическая анатомия. Учебник. Струков А.И., Серов В.В.

5-е издание, 2010г.

3. Общая патологическая анатомия. Учебное пособие. Зайратьянц О.В., 2007 г.

4. Патологическая анатомия. Учебник. Пальцев М.А., Аничков М.Н., 2001 г.

Размещено на Allbest.ru

...

Подобные документы

    Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.

    контрольная работа , добавлен 22.12.2014

    История и основные этапы исследования клетки, ее структуры и компонентов. Содержание и значение клеточной теории, выдающиеся ученые, внесшие свой вклад в ее разработку. Симбиотическая теория (хлоропласты и митохондрии). Зарождения эукариотической клетки.

    презентация , добавлен 20.04.2016

    Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат , добавлен 28.01.2011

    Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.

    презентация , добавлен 03.11.2013

    История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.

    презентация , добавлен 10.09.2015

    Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.

    реферат , добавлен 14.05.2011

    Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.

    презентация , добавлен 28.11.2013

    Место цитологии среди других дисциплин. Исследование положений современной клеточной теории. Реакция клетки на повреждающее действие. Характеристика основных механизмов повреждения клетки. Анализ традиционных точек зрения на причины развития старения.

    презентация , добавлен 28.02.2014

    Авторы создания клеточной теории. Особенности архей и цианобактерий. Филогения живых организмов. Строение эукариотической клетки. Подвижность и текучесть мембран. Функции аппарата Гольджи. Симбиотическая теория происхождения полуавтономных органелл.

    презентация , добавлен 14.04.2014

    Клетка как элементарная живая система, обладающая способностью к обмену с окружающей средой, закономерности ее жизнедеятельности, внутренняя структура и элементы. Существующие патологии в процессе развития клетки на различных его этапах данного.