Главная · Зубные протезы · Системы рациональных неравенств. Решение целых рациональных неравенств

Системы рациональных неравенств. Решение целых рациональных неравенств

С помощью данного урока вы узнаете о рациональных неравенствах и их системах. Решается система рациональных неравенств с помощью эквивалентных преобразований. Рассматривается определение эквивалентности, способ замены дробно-рационального неравенства - квадратным, а также разбирается в чем отличие неравенства от уравнения и как осуществляются равносильные преобразования.

Введение

Алгебра 9 класс

Итоговое повторение курса алгебры 9-го класса

Рациональные неравенства и их системы. Системы рациональных неравенств.

1.1 Конспект.

Эквивалентные преобразования рациональных неравенств

1. Эквивалентные преобразования рациональных неравенств.

Решить рациональное неравенство означает – найти все его решения. В отличии от уравнения, при решении неравенства, как правило, возникает бесчисленное множество решений. Бесчисленное множество решений нельзя проверить методом подстановки. Поэтому, нужно так преобразовывать исходное неравенство, чтобы в каждой следующей строчке получалось неравенство с тем же множеством решений.

Рациональные неравенства решаются только с помощью эквивалентных или равносильных преобразований. Такие преобразования не искажают множество решений.

Определение . Рациональные неравенства называют эквивалентными , если множества их решений совпадают.

Для обозначения эквивалентности используют знак

Решение системы неравенств. Эквивалентные преобразования системы

2. Решение системы неравенств

Первое и второе неравенство – это дробно-рациональные неравенства. Методы их решения являются естественным продолжением методов решения линейных и квадратных неравенств.

Перенесем числа, стоящие в правой части, в левую с противоположным знаком.

В итоге в правой части останется 0. Это преобразование является эквивалентным. На это указывает знак

Выполним действия, которые предписывает алгебра. Вычтем «1» в первом неравенстве и «2» во втором.

Решение первого неравенства методом интервалов

3. Решение неравенства методом интервалов

1) Введем функцию. Нам нужно узнать, когда эта функция меньше 0.

2) Найдем область определения функции: в знаменателе не должен стоять 0. «2» - точка разрыва. При х=2 функция неопределенна.

3) Найдем корни функции. Функция равна 0,если в числителе стоит 0.

Поставленные точки разбивают числовую ось на три интервала – это интервалы знакопостоянства. На каждом интервале функция сохраняет знак. Определим знак на первом интервале. Подставим какое-нибудь значение. Например, 100. Ясно, что и числитель, и знаменатель больше 0. Значит и вся дробь положительна.

Определим знаки на остальных промежутках. При переходе через точку х=2 только знаменатель меняет знак. Значит, и вся дробь поменяет знак, и будет отрицательной. Проведем аналогичное рассуждение. При переходе через точку х=-3 только числитель меняет знак. Значит, дробь поменяет знак и будет положительной.

Выберем интервал соответствующий условию неравенства. Заштрихуем его и запишем в виде неравенства

Прием сведения дробно-рационального неравенства к квадратному.

Решение первого неравенства путем сведения к квадратному

4. Решение неравенства с помощью квадратичного неравенства

Важный факт.

При сравнении с 0 (в случае строгого неравенства) дробь можно заменить на произведение числителя на знаменатель или поменять числитель или знаменатель местами.

Это так, потому, что все три неравенства выполняются при условии, что u и v разного знака. Эти три неравенства эквивалентны.

Используем это факт и заменим дробно-рациональное неравенство квадратным.

Решим квадратное неравенство.

Введем квадратичную функцию. Найдем ее корни и построим эскиз ее графика.

Значит, ветви параболы вверх. Внутри интервала корней функция сохраняет знак. Она отрицательна.

Вне интервала корней функция положительна.

Решение первого неравенства:

Решение второго неравенства

5. Решение неравенства

Введем функцию:

Найдем ее интервалы знакопостоянства:

Для этого найдем корни и точки разрыва области определения функции. Точки разрыва выкалываем всегда. (х=3/2) Корни выкалываем в зависимости от знака неравенства. Наше неравенство строгое. Поэтому корень выкалываем.

Расставим знаки:

Запишем решение:

Пересечение множеств решений первого и второго неравенств. Форма записи решения

Закончим решение системы. Найдем пересечение множества решений первого неравенства и множества решений второго неравенства.

Решить систему неравенств означает найти пересечение множества решений первого неравенства и множества решений второго неравенства. Поэтому, решив первое и второе неравенство по отдельности нужно записать полученные результаты в одну систему.

Изобразим решение первого неравенства над осью Ох.

Решение же второго неравенства изобразим под осью.

Решением системы будут те значения переменной, которые удовлетворяют как первому, так и второму неравенству. Итак, решение системы:

Заключение

    Алгебра, 9 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2010Алгебра, 9 класс. Часть 2 из 2. Задачник (А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.) 2010Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010Алгебра, 9 класс. Задачник (Л. И. Звавич, А. Р. Рязановский, П. В. Семенов) 2008Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010

1.3. Дополнительные веб-ресурсы

http://slovo. ws/urok/algebra -Учебные материалы (учебники, статьи) по алгебре для 9 класса. Все учебники, указанные в списке можно посмотреть в режиме онлайн, без скачивания.

http://math-portal. ru/matematika-shkolnaya/

1.4. Сделай дома

Алгебра, 9 класс. Часть 2 из 2. Задачник (А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.) 2010

Домашнее задание: 4.24; 4.28

Другие задания: 4.25; 4.26

Нужно скачать поурочный план по теме » Рациональные неравенства и их системы. Системы рациональных неравенств ?

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Предварительные сведения

Определение 1

Неравенство вида $f(x) >(≥)g(x)$, в котором $f(x)$ и $g(x)$ будут являться целыми рациональными выражениями, называется целым рациональным неравенством.

Примерами целых рациональных неравенств являются линейные, квадратные, кубические неравенства с двумя переменными.

Определение 2

Значение $x$, при котором выполняется неравенство из определения $1$, называется корнем уравнения.

Пример решения таких неравенств:

Пример 1

Решить целое неравенство $4x+3 >38-x$.

Решение.

Упростим данное неравенство:

Получили линейное неравенство. Найдем его решение:

Ответ: $(7,∞)$.

В данной статье мы рассмотрим следующие способы решения целых рациональных неравенств.

Способ разложения на множители

Данный способ будет заключаться в следующем: Записывается уравнение вида $f(x)=g(x)$. Данное уравнение приводится к виду $φ(x)=0$ (где $φ(x)=f(x)-g(x)$). Затем функция $φ(x)$ раскладывается на множители с минимально возможными степенями. Применяется правило: Произведение многочленов равняется нулю, когда один из них равняется нулю. Далее найденные корни отмечаются на числовой прямой и строится кривая знаков. В зависимости от знака начального неравенства записывается ответ.

Приведем примеры решения этим способом:

Пример 2

Решить разложением на множители. $y^2-9

Решение.

Решим уравнение $y^2-9

Используя формулу разности квадратов, имеем

Используя правило равенства нулю произведения множителей, получим следующие корни: $3$ и $-3$.

Изобразим кривую знаков:

Так как в начальном неравенстве знак «меньше», то получаем

Ответ: $(-3,3)$.

Пример 3

Решить разложением на множители.

$x^3+3x+2x^2+6 ≥0$

Решение.

Решим следующее уравнение:

$x^3+3x+2x^2+6=0$

Вынесем за скобки общие множители из первых двух слагаемым и из последних двух

$x(x^2+3)+2(x^2+3)=0$

Вынесем общий множитель $(x^2+3)$

$(x^2+3)(x+2)=0$

Используя правило равенства нулю произведения множителей, получим:

$x+2=0 \ и \ x^2+3=0$

$x=-2$ и "корней нет"

Изобразим кривую знаков:

Так как в начальном неравенстве знак «больше или равно», то получаем

Ответ: $(-∞,-2]$.

Способ введения новой переменной

Такой способ состоит в следующем: Записывается уравнение вида $f(x)=g(x)$. Решаем его следующим образом: введем такую новую переменную, чтобы получить уравнение, способ решения которого уже известен. Его, впоследствии, решаем и возвращаемся к замене. Из нее и найдем решение первого уравнения. Далее найденные корни отмечаются на числовой прямой и строится кривая знаков. В зависимости от знака начального неравенства записывается ответ.

Приведем пример применения этого способа на примере неравенства четвертой степени:

Пример 4

Решим неравенство.

$x^4+4x^2-21 >0$

Решение.

Решим уравнение:

Сделаем следующую замену:

Пусть $x^2=u (где \ u >0)$, получаем:

Будем решать эту систему с помощью дискриминанта:

$D=16+84=100=10^2$

Уравнение имеет два корня:

$x=\frac{-4-10}{2}=-7$ и $x=\frac{-4+10}{2}=3$

Вернемся к замене:

$x^2=-7$ и $x^2=3$

Первое уравнение не имеет решений, а из второго $x=\sqrt{3}$ и $x=-\sqrt{3}$

Изобразим кривую знаков:

Так как в начальном неравенстве знак «больше», то получаем

Ответ: $(-∞,-\sqrt{3})∪(\sqrt{3},∞)$


Продолжаем углубляться в тему «решение неравенств с одной переменной». Нам уже знакомы линейные неравенства и квадратные неравенства . Они являются частными случаями рациональных неравенств , изучением которых мы сейчас и займемся. Начнем с того, что выясним, неравенства какого вида называются рациональными. Дальше разберемся с их подразделением на целые рациональные и дробные рациональные неравенства. А уже после этого будем изучать, как проводится решение рациональных неравенств с одной переменной, запишем соответствующие алгоритмы и рассмотрим решения характерных примеров с детальными пояснениями.

Навигация по странице.

Что такое рациональные неравенства?

В школе на уроках алгебры, как только заходит разговор про решение неравенств, так сразу же и происходит встреча с рациональными неравенствами. Однако сначала их не называют своим именем, так как на этом этапе виды неравенств представляют мало интереса, а основная цель состоит в получении начальных навыков работы с неравенствами. Сам термин «рациональное неравенство» вводится позже в 9 классе, когда начинается детальное изучение неравенств именно этого вида.

Давайте узнаем, что такое рациональные неравенства. Вот определение:

В озвученном определении ничего не сказано о числе переменных, значит, допускается любое их количество. В зависимости от этого различают рациональные неравенства с одной, двумя и т.д. переменными. Кстати, в учебнике дается подобное определение, но для рациональных неравенств с одной переменной. Это и понятно, так как в школе основное внимание уделяется решению неравенств с одной переменной (ниже мы тоже будем говорить лишь о решении рациональных неравенств с одной переменной). Неравенства с двумя переменными рассматривают мало, а неравенствам с тремя и большим числом переменных практически вообще не уделяют внимания.

Итак, рациональное неравенство можно распознать по его записи, для этого достаточно взглянуть на выражения в его левой и правой части и убедиться, что они являются рациональными выражениями. Эти соображения позволяют привести примеры рациональных неравенств. Например, x>4 , x 3 +2·y≤5·(y−1)·(x 2 +1) , - это рациональные неравенства. А неравенство не является рациональным, так как его левая часть содержит переменную под знаком корня, а, значит, не является рациональным выражением. Неравенство тоже не рациональное, так как обе его части не являются рациональными выражениями.

Для удобства дальнейшего описания введем подразделение рациональных неравенств на целые и дробные.

Определение.

Рациональное неравенство будем называть целым , если обе его части – целые рациональные выражения.

Определение.

Дробно рациональное неравенство – это рациональное неравенство, хотя бы одна часть которого – дробное выражение.

Так 0,5·x≤3·(2−5·y) , - целые неравенства, а 1:x+3>0 и - дробно рациональные.

Теперь мы имеем четкое понимание, что представляют собой рациональные неравенства, и можно смело начинать разбираться с принципами решения целых и дробно рациональных неравенств с одной переменной.

Решение целых неравенств

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x), ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства .

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражение r(x)−s(x) , образовавшееся в левой части, тоже целое, а известно, что можно любое . Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) и h(x) имеют одинаковую переменной x ), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.

Пример.

Найдите решение целого рационального неравенства x·(x+3)+2·x≤(x+1) 2 +1 .

Решение.

Сначала переносим выражение из правой части в левую: x·(x+3)+2·x−(x+1) 2 −1≤0 . Выполнив все в левой части, приходим к линейному неравенству 3·x−2≤0 , которое равносильно исходному целому неравенству. Его решение не представляет сложности:
3·x≤2 ,
x≤2/3 .

Ответ:

x≤2/3 .

Пример.

Решите неравенство (x 2 +1) 2 −3·x 2 >(x 2 −x)·(x 2 +x) .

Решение.

Начинаем как обычно с переноса выражения из правой части, а дальше выполняем преобразования в левой части, используя :
(x 2 +1) 2 −3·x 2 −(x 2 −x)·(x 2 +x)>0 ,
x 4 +2·x 2 +1−3·x 2 −x 4 +x 2 >0 ,
1>0 .

Так, выполняя равносильные преобразования, мы пришли к неравенству 1>0 , которое верно при любых значениях переменной x . А это означает, что решением исходного целого неравенства является любое действительное число.

Ответ:

x - любое.

Пример.

Выполните решение неравенства x+6+2·x 3 −2·x·(x 2 +x−5)>0 .

Решение.

В правой части нуль, так что из нее ничего переносить не нужно. Преобразуем целое выражение, находящееся в левой части, в многочлен:
x+6+2·x 3 −2·x 3 −2·x 2 +10·x>0 ,
−2·x 2 +11·x+6>0 .

Получили квадратное неравенство, которое равносильно исходному неравенству. Решаем его любым известным нам методом. Проведем решение квадратного неравенства графическим способом .

Находим корни квадратного трехчлена −2·x 2 +11·x+6 :

Делаем схематический чертеж, на котором отмечаем найденные нули, и учитываем, что ветви параболы направлены вниз, так как старший коэффициент отрицательный:

Так как мы решаем неравенство со знаком >, то нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это имеет место на интервале (−0,5, 6) , он и является искомым решением.

Ответ:

(−0,5, 6) .

В более сложных случаях в левой части полученного неравенства h(x)<0 (≤, >, ≥) будет многочлен третьей или более высокой степени. Для решения таких неравенств подходит метод интервалов , на первом шаге которого нужно будет найти все корни многочлена h(x) , что частенько делается через .

Пример.

Найдите решение целого рационального неравенства (x 2 +2)·(x+4)<14−9·x .

Решение.

Перенесем все в левую часть, после чего там и :
(x 2 +2)·(x+4)−14+9·x<0 ,
x 3 +4·x 2 +2·x+8−14+9·x<0 ,
x 3 +4·x 2 +11·x−6<0 .

Проделанные манипуляции приводят нас к неравенству, которое равносильно исходному. В его левой части многочлен третьей степени. Решить его можно методом интервалов. Для этого в первую очередь надо найти корни многочлена, что упирается в x 3 +4·x 2 +11·x−6=0 . Выясним, имеет ли оно рациональные корни, которые могут быть лишь среди делителей свободного члена, то есть, среди чисел ±1 , ±2 , ±3 , ±6 . Подставляя по очереди эти числа вместо переменной x в уравнение x 3 +4·x 2 +11·x−6=0 , выясняем, что корнями уравнения являются числа 1 , 2 и 3 . Это позволяет представить многочлен x 3 +4·x 2 +11·x−6 в виде произведения (x−1)·(x−2)·(x−3) , а неравенство x 3 +4·x 2 +11·x−6<0 переписать как (x−1)·(x−2)·(x−3)<0 . Такой вид неравенства в дальнейшем позволит с меньшими усилиями определить знаки на промежутках.

А дальше остается выполнить стандартные шаги метода интервалов: отметить на числовой прямой точки с координатами 1 , 2 и 3 , которые разбивают эту прямую на четыре промежутка, определить и расставить знаки, изобразить штриховку над промежутками со знаком минус (так как мы решаем неравенство со знаком <) и записать ответ.

Откуда имеем (−∞, 1)∪(2, 3) .

Ответ:

(−∞, 1)∪(2, 3) .

Следует отметить, что иногда нецелесообразно от неравенства r(x)−s(x)<0 (≤, >, ≥) переходить к неравенству h(x)<0 (≤, >, ≥), где h(x) – многочлен степени выше второй. Это касается тех случаев, когда сложнее разложить многочлен h(x) на множители, чем представить выражение r(x)−s(x) в виде произведения линейных двучленов и квадратных трехчленов, например, путем вынесения за скобки общего множителя. Поясним это на примере.

Пример.

Решите неравенство (x 2 −2·x−1)·(x 2 −19)≥2·x·(x 2 −2·x−1) .

Решение.

Это целое неравенство. Если перенести выражение из его правой части в левую, после чего раскрыть скобки и привести подобные слагаемые, то получится неравенство x 4 −4·x 3 −16·x 2 +40·x+19≥0 . Решить его очень непросто, так как это предполагает поиск корней многочлена четвертой степени. Несложно проверить, что рациональных корней он не имеет (ими могли бы быть числа 1 , −1 , 19 или −19 ), а другие его корни искать проблематично. Поэтому этот путь тупиковый.

Давайте поищем другие возможности решения. Несложно заметить, что после переноса выражения из правой части исходного целого неравенства в левую, можно вынести за скобки общий множитель x 2 −2·x−1 :
(x 2 −2·x−1)·(x 2 −19)−2·x·(x 2 −2·x−1)≥0 ,
(x 2 −2·x−1)·(x 2 −2·x−19)≥0 .

Проделанное преобразование является равносильным, поэтому решение полученного неравенства будет решением и исходного неравенства.

А теперь мы можем найти нули выражения, находящегося в левой части полученного неравенства, для этого надо x 2 −2·x−1=0 и x 2 −2·x−19=0 . Их корнями являются числа . Это позволяет перейти к равносильному неравенству , а его мы можем решить методом интервалов:

По чертежу записываем ответ .

Ответ:

В заключение этого пункта хочется лишь добавить, что далеко не всегда есть возможность найти все корни многочлена h(x) , и как следствие разложить его в произведение линейных двучленов и квадратных трехчленов. В этих случаях нет возможности решить неравенство h(x)<0 (≤, >, ≥), а значит, нет возможности найти решение исходного целого рационального уравнения.

Решение дробно рациональных неравенств

Теперь займемся решением такой задачи: пусть требуется решить дробно рациональное неравенство с одной переменной x вида r(x), ≥), где r(x) и s(x) – некоторые рациональные выражения, причем хотя бы одно из них – дробное. Давайте сразу приведем алгоритм ее решения, после чего внесем необходимые пояснения.

Алгоритм решения дробно рационального неравенства с одной переменной r(x), ≥):

  • Сначала надо найти область допустимых значений (ОДЗ) переменной x для исходного неравенства.
  • Дальше нужно перенести выражение из правой части неравенства в левую, и образовавшееся там выражение r(x)−s(x) преобразовать к виду дроби p(x)/q(x) , где p(x) и q(x) – целые выражения, представляющие собой произведения линейных двучленов, неразложимых квадратных трехчленов и их степеней с натуральным показателем.
  • Дальше надо решить полученное неравенство методом интервалов.
  • Наконец, из полученного на предыдущем шаге решения нужно исключить точки, не входящие в ОДЗ переменной x для исходного неравенства, которая была найдена на первом шаге.

Так будет получено искомое решение дробно рационального неравенства.

Пояснений требует второй шаг алгоритма. Перенос выражения из правой части неравенства в левую дает неравенство r(x)−s(x)<0 (≤, >, ≥), которое равносильно исходному. Здесь все понятно. А вот вопросы вызывает дальнейшее его преобразование к виду p(x)/q(x)<0 (≤, >, ≥).

Первый вопрос: «Всегда ли его возможно провести»? Теоретически, да. Мы знаем, что можно любое . В числителе и знаменателе рациональной дроби находятся многочлены. А из основной теоремы алгебры и теоремы Безу следует, что любой многочлен степени n с одной переменной можно представить в виде произведения линейных двучленов. Это и объясняет возможность проведения указанного преобразования.

На практике же довольно сложно раскладывать многочлены на множители, а если их степень выше четвертой, то и не всегда возможно. Если разложение на множители невозможно, то не будет и возможности найти решение исходного неравенства, но в школе такие случаи обычно не встречаются.

Второй вопрос: «Будет ли неравенство p(x)/q(x)<0 (≤, >, ≥) равносильно неравенству r(x)−s(x)<0 (≤, >, ≥), а значит, и исходному»? Оно может быть как равносильно, так и неравносильно. Оно равносильно тогда, когда ОДЗ для выражения p(x)/q(x) совпадает с ОДЗ для выражения r(x)−s(x) . В этом случае последний шаг алгоритма будет излишним. Но ОДЗ для выражения p(x)/q(x) может оказаться шире, чем ОДЗ для выражения r(x)−s(x) . Расширение ОДЗ может происходить при сокращении дробей, как, например, при переходе от к . Также расширению ОДЗ может способствовать приведение подобных слагаемых, как, например, при переходе от к . Для этого случая и предназначен последний шаг алгоритма, на котором исключаются посторонние решения, возникающие из-за расширения ОДЗ. Давайте последим за этим, когда будем разбирать ниже решения примеров.

>>Математика:Рациональные неравенства

Рациональное неравенство с одной переменной х - это неравенство вида - рациональные выражения, т.е. алгебраические выражения, составленные из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в натуральную степень . Разумеется, переменная может быть обозначена любой другой буквой, но в математике чаще всего предпочтение отдается букве х.

При решении рациональных неравенств используются те три правила, которые были сформулированы выше в § 1. С помощью этих правил обычно преобразуют заданное рациональное неравенство к виду / (ж) > 0, где / (х) - алгебраическая дробь (или многочлен). Далее разлагают числитель и знаменатель дроби f (х) на множители вида х - а (если, конечно, это возможно) и применяют метод интервалов, который мы уже упоминали выше (см. в предыдущем параграфе пример 3).

Пример 1. Решить неравенство (х - 1) (х + 1) (х - 2) > 0.

Решение. Рассмотрим выражение f(х) = (х-1)(х + 1)(х-2).

Оно обращается в 0 в точках 1,-1,2; отметим эти точки на числовой прямой. Числовая прямая разбивается указанными точками на четыре промежутка (рис. 6), на каждом из которых выражение f (x) сохраняет постоянный знак. Чтобы в этом убедиться, проведем четыре рассуждения (для каждого из указанных промежутков в отдельности).

Возьмем любую точку х из промежутка (2, Эта точка расположена на числовой прямой правее точки -1, правее точки 1 и правее точки 2. Это значит, что х > -1, х >1, х > 2 (рис. 7). Но тогда x-1>0, х+1>0, х - 2 > 0, а значит, и f (х) > 0 (как произведение рациональное неравенство трех положительных чисел). Итак, на всем промежутке выполняется неравенство f (x) > 0.


Возьмем любую точку х из интервала (1,2). Эта точка расположена на числовой прямой правее точки-1, правее точки 1, но левее точки 2. Значит, х > -1, х > 1, но х < 2 (рис. 8), а потому x + 1>0,x-1>0,x-2<0. Но тогда f(x) <0 (как произведение двух положительных и одного отрицательного числа). Итак, на промежутке (1,2) выполняется неравенство f (x) < 0.


Возьмем любую точку х из интервала (-1,1). Эта точка расположена на числовой прямой правее точки -1, левее точки 1 и левее точки 2. Значит, х >-1, но х< 1, х <2 (рис. 9), а потому х + 1 > 0, х -1 <0, х - 2 < 0. Но тогда f (x) > 0 (как произведение двух отрицательных и одного положительного числа). Итак, на промежутке (-1,1) выполняется неравенство f (x)> 0.


Возьмем, наконец, любую точку х из открытого луча (-оо, -1). Эта точка расположена на числовой прямой левее точки -1, левее точки 1 и левее точки 2. Это значит, что x<-1, х< 1, х<2 (рис. 10). Но тогда x - 1 < 0, x + 1 < 0, х - 2 < 0, а значит, и f (x) < 0 (как произведение трех отрицательных чисел). Итак, на всем промежутке (-оо, -1) выполняется неравенство f (x) < 0.


Подведем итоги. Знаки выражения f (x) в выделенных промежутках таковы, как показано на рис. 11. Нас интересуют те из них, на которых выполняется неравенство f (x) > 0. С помощью геометрической модели , представленной на рис. 11, устанавливаем, что неравенство f (x) > 0 выполняется на интервале (-1, 1) или на открытом луче
О т в е т: -1 < х < 1; х > 2.


Пример 2. Решить неравенство
Решение. Как и в предыдущем примере, почерпнем необходимую информацию из рис. 11, но с двумя изменениями по сравнению с примером 1. Во-первых, поскольку нас интересует, при каких значениях х выполняется неравенство f (x) < 0, нам придется выбрать промежутки Во-вторых, нас устраивают и те точки, в которых выполняется равенство f (x) = 0. Это точки -1, 1, 2, отметим их на рисунке темными кружочками и включим в ответ. На рис. 12 представлена геометрическая модель ответа, от которой нетрудно перейти к аналитической записи.
Ответ:
П р и м е р 3. Решить неравенство
Решение . Разложим на множители числитель и знаменатель алгебраической дроби fх, содержащейся в левой части неравенства. В числителе имеем х 2 - х = х(х - 1).

Чтобы разложить на множители квадратный трехчлен х 2 - bх ~ 6, содержащийся в знаменателе дроби, найдем его корни. Из уравнения х 2 - 5х - 6 = 0 находим х 1 = -1, х 2 = 6. Значит, (мы воспользовались формулой разложения на множители квадратного трехчлена: ах 2 + bх + с = а(х - х 1 - х 2)).
Тем самым мы преобразовали заданное неравенство к виду


Рассмотрим выражение:


Числитель этой дроби обращается в 0 в точках 0 и 1, а обращается в 0 в точках -1 и 6. Отметим эти точки на числовой прямой (рис. 13). Числовая прямая разбивается указанными точками на пять промежутков, причем на каждом промежутке выражение fх) сохраняет постоянный знак. Рассуждая так же, как в примере 1, приходим к выводу, что знаки выражения fх) в выделенных промежутках таковы, как показано на рис. 13. Нас интересует, где выполняется неравенство f (x) < 0. С помощью геометрической модели, представленной на рис. 13, устанавливаем, что f (х) < 0 на интервале (-1, 0) или на интервале (1, 6).

0твет: -1


Пример 4. Решить неравенство


Решение. При решении рациональных неравенств, как правило, предпочитают оставлять в правой части неравенства только число 0. Поэтому преобразуем неравенство к виду


Далее:


Как показывает опыт, если в правой части не(ра-венства содержится лишь число 0, удобнее проводить рассуждения, когда в левой его части и числитель и знаменатель имеют положительный старший коэффициент . А что у нас? У нас в знаменателе дроби в этом смысле все в порядке (старший коэффициент, т.е. коэффициент при х 2 , равен 6 - положительное число), но в числителе не все в порядке - старший коэффициент (коэффициент при х) равен -4 (отрицательное число). Умножив обе части неравенства на -1 и изменив при этом знак неравенства на противоположный, получим равносильное ему неравенство


Разложим числитель и знаменатель алгебраической дроби на множители. В числителе все просто:
Чтобы разложить на множители содержащийся в знаменателе дроби квадратный трехчлен

(мы снова воспользовались формулой разложения на множители квадратного трехчлена).
Тем самым заданное неравенство мы привели к виду


Рассмотрим выражение


Числитель этой дроби обращается в 0 в точке а знаменатель - в точках Отметим эти точки на числовой прямой (рис. 14), которая разбивается указанными точками на четыре промежутка, причем на каждом промежутке выражение f (х) сохраняет постоянный знак (эти знаки указаны на рис. 14). Нас интересуют те промежутки, на которых выполняется неравенство fх < 0; эти промежутки выделены штриховкой на рис. 15. По условию, нас интересуют и те точки х, в которых выполняется равенство f (х) = 0. Такая точка только одна - это точка поскольку лишь при этом значении числитель дроби f (х) обращается в нуль. Точка отмечена на рис. 15 темным кружочком. Таким образом, на рис. 15 представлена геометрическая модель решения заданного неравенства, от которой нетрудно перейти к аналитической записи.


Во всех рассмотренных примерах мы преобразовывали заданное неравенство в равносильное ему неравенство вида f {х) > 0 или f (x) <0,где
При этом количество множителей в числителе и знаменателе дроби может быть любым. Затем отмечали на числовой прямой точки а,Ь,с,д. и определяли знаки выражения f (х) на выделенных промежутках. Заметили, что на самом правом из выделенных промежутков выполняется неравенство f (х) > 0, а далее по промежуткам знаки выражения f (х) чередуются (см. рис. 16а). Это чередование удобно иллюстрировать с помощью волнообразной кривой, которая чертится справа налево и сверху вниз (рис. 166). На тех промежутках, где эта кривая (ее иногда называют кривой знаков) расположена выше оси х, выполняется неравенство f (х) > 0; где эта кривая расположена ниже оси х, выполняется неравенство f (х) < 0.


Пример 5. Решить неравенство


Решение. Имеем


(обе части предыдущего неравенства умножили на 6).
Чтобы воспользоваться методом интервалов, отметим на числовой прямой точки (в этих точках числитель дроби, содержащейся в левой части неравенства, обращается в нуль) и точки (в этих точках знаменатель указанной дроби обращается в нуль). Обычно точки отмечают схематически, учитывая порядок их следования (какое - правее, какое - левее) и не особенно обращая внимания на соблюдение масштаба. Ясно, что Сложнее обстоит дело с числами Первая прикидка показывает, что и то и другое число чуть больше, чем 2,6, откуда нельзя сделать вывод о том, какое из указанных чисел больше, а какое - меньше. Предположим (наугад), что Тогда
Получилось верное неравенство, значит, наша догадка подтвердилась: на самом деле
Итак,

Отметим указанные 5 точек в указанном порядке на числовой прямой (рис. 17а). Расставим знаки выражения
на полученных промежутках: на самом правом - знак +, а далее знаки чередуются (рис. 176). Начертим кривую знаков и выделим (штриховкой) те промежутки, на которых выполняется интересующее нас неравенство f (x) > 0 (рис. 17в). Учтем, наконец, что речь идет о нестрогом неравенстве f (x) > 0, значит, нас интересуют и те точки, в которых выражение f (x) обращается в нуль. Это - корни числителя дроби f (x), т.е. точки отметим их на рис. 17в темными кружочками (и, естественно, включим в ответ). Вот теперь рис. 17в дает полную геометрическую модель решений заданного неравенства.