Главная · Зубные протезы · Дробь под корнем как решать. Как правильно выполнять разделение куста (корня) растений

Дробь под корнем как решать. Как правильно выполнять разделение куста (корня) растений

Деление квадратных корней приводит к упрощению дроби. Наличие квадратных корней немного усложняет процесс решения, но некоторые правила позволяют работать с дробями относительно легко. Главное помнить, что множители делятся на множители, а подкоренные выражения на подкоренные выражения. Также квадратный корень может стоять в знаменателе.

Шаги

Деление подкоренных выражений

  1. Запишите дробь. Если выражение представлено не в виде дроби, перепишите его в таком виде. Так легче следовать процессу деления квадратных корней. Помните, что горизонтальная черта представляет собой знак деления.

    • 144 ÷ 36 {\displaystyle {\sqrt {144}}\div {\sqrt {36}}} , перепишите его так: .
  2. Используйте один знак корня. Если и в числителе, и в знаменателе дроби находятся квадратные корни, запишите их подкоренные выражения под одним знаком корня, чтобы упростить процесс решения. Подкоренное выражение – это выражение (или просто число), которое находится под знаком корня.

    • Например, дробь 144 36 {\displaystyle {\frac {\sqrt {144}}{\sqrt {36}}}} можно записать так: 144 36 {\displaystyle {\sqrt {\frac {144}{36}}}} .
  3. Разделите подкоренные выражение. Разделите одно число на другое (как обычно), а результат запишите под знаком корня.

    • Например, 144 36 = 4 {\displaystyle {\frac {144}{36}}=4} , поэтому: 144 36 = 4 {\displaystyle {\sqrt {\frac {144}{36}}}={\sqrt {4}}} .
  4. Упростите подкоренное выражение (если нужно). Если подкоренное выражение или один из его множителей является полным квадратом, упростите такое выражение. Полный квадрат – это число, которое является квадратом некоторого целого числа. Например, 25 – это полный квадрат, потому что 5 × 5 = 25 {\displaystyle 5\times 5=25} .

    • Например, 4 – это полный квадрат, потому что 2 × 2 = 4 {\displaystyle 2\times 2=4} . Таким образом:
      4 {\displaystyle {\sqrt {4}}}
      = 2 × 2 {\displaystyle ={\sqrt {2\times 2}}}
      = 2 {\displaystyle =2}
      Итак: 144 36 = 4 = 2 {\displaystyle {\frac {\sqrt {144}}{\sqrt {36}}}={\sqrt {4}}=2} .

    Разложение подкоренного выражения на множители

    1. Запишите дробь. Если выражение представлено не в виде дроби, перепишите его в таком виде. Так легче следовать процессу деления квадратных корней, особенно при разложении подкоренного выражения на множители. Помните, что горизонтальная черта представляет собой знак деления.

      • Например, если дано выражение 8 ÷ 36 {\displaystyle {\sqrt {8}}\div {\sqrt {36}}} , перепишите его так: 8 36 {\displaystyle {\frac {\sqrt {8}}{\sqrt {36}}}} .
    2. Разложите на множители каждое подкоренное выражение. Число, стоящее под знаком корня, раскладывается на множители как любое целое число. Множители запишите под знаком корня.

      • Например:
        8 36 = 2 × 2 × 2 6 × 6 {\displaystyle {\frac {\sqrt {8}}{\sqrt {36}}}={\frac {\sqrt {2\times 2\times 2}}{\sqrt {6\times 6}}}}
    3. Упростите числитель и знаменатель дроби. Для этого из под знака корня вынесите множители, которые представляют собой полные квадраты. Полный квадрат – это число, которое является квадратом некоторого целого числа. Множитель подкоренного выражения превратится в множитель перед знаком корня.

      • Например:
        2 × 2 × 2 6 × 6 {\displaystyle {\frac {\sqrt {{\cancel {2\times 2\times }}2}}{\sqrt {\cancel {6\times 6}}}}}

        Таким образом, 8 36 = 2 2 6 {\displaystyle {\frac {\sqrt {8}}{\sqrt {36}}}={\frac {2{\sqrt {2}}}{6}}}
    4. Избавьтесь от корня в знаменателе (рационализируйте знаменатель). В математике не принято оставлять корень в знаменателе. Если в знаменателе дроби есть квадратный корень, избавьтесь от него. Для этого умножьте и числитель, и знаменатель на квадратный корень, от которого нужно избавиться.

      • Например, если дана дробь 6 2 3 {\displaystyle {\frac {6{\sqrt {2}}}{\sqrt {3}}}} 3 {\displaystyle {\sqrt {3}}}
        6 2 3 × 3 3 {\displaystyle {\frac {6{\sqrt {2}}}{\sqrt {3}}}\times {\frac {\sqrt {3}}{\sqrt {3}}}}
        = 6 2 × 3 3 × 3 {\displaystyle ={\frac {6{\sqrt {2}}\times {\sqrt {3}}}{{\sqrt {3}}\times {\sqrt {3}}}}}
        = 6 6 9 {\displaystyle ={\frac {6{\sqrt {6}}}{\sqrt {9}}}}
        = 6 6 3 {\displaystyle ={\frac {6{\sqrt {6}}}{3}}} .
    5. Упростите полученное выражение (если нужно). Иногда в числителе и знаменателе дроби находятся числа, которые можно упростить (сократить). Упростите целые числа, стоящие в числителе и знаменателе, как упрощаете любую дробь.

      • Например, 2 6 {\displaystyle {\frac {2}{6}}} упрощается до 1 3 {\displaystyle {\frac {1}{3}}} ; таким образом 2 2 6 {\displaystyle {\frac {2{\sqrt {2}}}{6}}} упрощается до 1 2 3 {\displaystyle {\frac {1{\sqrt {2}}}{3}}} = 2 3 {\displaystyle {\frac {\sqrt {2}}{3}}} .

    Деление квадратных корней с множителями

    1. Упростите множители. Множитель – это число, которое стоит перед знаком корня. Чтобы упростить множители, разделите или сократите их (подкоренные выражения не трогайте).

      • Например, если дано выражение 4 32 6 16 {\displaystyle {\frac {4{\sqrt {32}}}{6{\sqrt {16}}}}} , сначала упростите 4 6 {\displaystyle {\frac {4}{6}}} . Числитель и знаменатель можно разделить на 2. Таким образом, множители можно сократить: 4 6 = 2 3 {\displaystyle {\frac {4}{6}}={\frac {2}{3}}} .
    2. Упростите квадратные корни. Если числитель делится на знаменатель нацело, сделайте это; в противном случае упростите подкоренное выражение как любое другое выражение.

      • Например, 32 нацело делится на 16, поэтому: 32 16 = 2 {\displaystyle {\sqrt {\frac {32}{16}}}={\sqrt {2}}}
    3. Умножьте упрощенные множители на упрощенные корни. Помните, что лучше не оставлять корень в знаменателе, поэтому умножьте на этот корень и числитель, и знаменатель дроби.

      • Например, 2 3 × 2 = 2 2 3 {\displaystyle {\frac {2}{3}}\times {\sqrt {2}}={\frac {2{\sqrt {2}}}{3}}} .
    4. Если нужно, избавьтесь от корня в знаменателе (рационализируйте знаменатель). В математике не принято оставлять корень в знаменателе. Поэтому умножьте и числитель, и знаменатель на квадратный корень, от которого нужно избавиться.

      • Например, если дана дробь 4 3 2 7 {\displaystyle {\frac {4{\sqrt {3}}}{2{\sqrt {7}}}}} , умножьте числитель и знаменатель на 7 {\displaystyle {\sqrt {7}}} , чтобы избавиться от корня в знаменателе:
        4 3 7 × 7 7 {\displaystyle {\frac {4{\sqrt {3}}}{\sqrt {7}}}\times {\frac {\sqrt {7}}{\sqrt {7}}}}
        = 4 3 × 7 7 × 7 {\displaystyle ={\frac {4{\sqrt {3}}\times {\sqrt {7}}}{{\sqrt {7}}\times {\sqrt {7}}}}}
        = 4 21 49 {\displaystyle ={\frac {4{\sqrt {21}}}{\sqrt {49}}}}
        = 4 21 7 {\displaystyle ={\frac {4{\sqrt {21}}}{7}}}

Например, пусть нам надо извлечь квадратный корень из дроби 25/144. 6. Приближенное извлечение квадратных корней. Если D

Чтобы извлечь квадратный корень из целого числа с точностью до 1, нужно извлекать, как обыкновенно, и отбросить получаемый в конце действия остаток. Для приближеннаго извлечения корня из дроби, нужно предварительно сделать знаменателя полным квадратом.

В предыдущих уроках мы осознали, что такое квадратный корень. И разобрались как умножать корни. Формулу умножения корней мы разобрали по винтикам.

Формула столь же проста, как и умножение. У формулы деления корней возможности не так обширны, как у умножения. В этом примере деление корней помогло нам получить хороший ответ. Бывают более хитрые преобразования.

  • Каталог заданий
  • Вопросы и ответы

Исключительно для того, чтобы формулу деления корней в дело употребить. Рассмотрим формулу деления корней в обратном направлении. В нашем случае такая формулировка деления корней здорово помогает извлекать корни из дробей!

Не вопрос! Если сразу корень не можете извлечь — переводите десятичную дробь в обыкновенную, и — вперёд! Правильно! Переводим смешанное число в неправильную дробь — и по знакомой формуле деления корней!

Надеюсь, что деление корней проблем не составляет. Займёмся последним свойством квадратных корней. Здесь уже будут некоторые тонкости и подводные камни. Это свойство кратко называют корень из квадрата. А почему нет? Умножить корень сам на себя — да все дела! И не только в квадрат можно. В любую степень.

Это число, которое при возведении в квадрат должно дать двойку. По правилам этих действий сами приведём исходное выражение к корням в квадрате и всё посчитаем. Так поступаем с любой степенью корня из любого выражения, и всё у нас посчитается, упростится и получится.

Во всех учебниках, справочниках и пособиях рядом с такой формулой всегда пишут: «где а — больше, либо равно нулю». В этих словах, которые многие просто пропускают, и кроются главные сложности корней. Итак, откуда в корнях могут появиться отрицательные числа и выражения?

Извлекаем корень из четырёх и получаем 2. Так как арифметический квадратный корень (а в школе мы работаем только с такими!) — всегда число неотрицательное! Это и есть последнее, третье свойство корней.

  • Алгебра
  • 14 баллов

Здесь он означает лишь то, что при любом знаке а, результат извлечения корня из квадрата будет всегда неотрицательный. Если х Собственно, это и есть главная трудность в работе с корнями. В отличие от более простых разделов математики, здесь правильный ответ частенько не вытекает автоматически из формул.

Главный практический совет по работе с квадратными корнями. Если под знаком корня — минус, дальше можно не решать. Если под корнем всё нормально, плюс, а в результате извлечения получается заведомый минус — сделайте из него плюс! Этого требуют правила действий с квадратными корнями.

24 разделить на корней из 7+1

Все свойства корней связаны с умножением-делением. На сложение-вычитание корней — не существует специальных формул! Хотя одинаковые корни можно, конечно, складывать-вычитать. Но эти действия к специфическим свойствам корней не имеют никакого отношения.

Отлично. Корни — не ваша проблема. Нет проблем! Идём в Особый раздел 555. Квадратные корни. Там даны все разъяснения. В этом разделе вы познакомитесь с практической работой с корнями. Дискриминант — это выражение, от которого зависит число корней данного уравнения.

Понизим степень косинуса по формуле: 1+cos2α=2cos2α. Следовательно, корней нет. При этом трехчлен 4y2-2y+5 при любом значении у будет принимать только положительные значения.

OFF: Число ПИ разделить на корень из 3, или математика для 1С-ника

Ведь если разность двух радикалов умножить на их сумму, то получится разность квадратов корней, т.е. получится выражение без знаков радикалов. 1) Представим подкоренное выражение второго множителя в виде квадрата суммы двух выражений, т.е. в виде(a + b)2. Это позволит нам извлечь арифметический квадратный корень.

ВОЗВЕДЕНИЕ В СТЕПЕНЬ. Напоминаю: здесь а — неотрицательное число (больше или равно нулю), b — положительное (больше нуля)! Иначе формула смысла не имеет… Теперь в нашем арсенале уже две формулы.

Но именно эти действия вызывают массу проблем… С этим надо разобраться основательно. Не вопрос! Если, конечно, знаете действия со степенями… Пусть у нас есть хорошее число 2. Возведём его в квадрат. Приведём нашу степень к квадрату.

А если степень нечётная? Всё просто. Но до сего момента мы работали только с неотрицательными числами и выражениями. Здесь всё понятно и просто. Не работает эта формула для отрицательных значений.

Мы же умеем корень из произведения извлекать. Корень в квадрате — штука бесхитростная. Бывает ещё круче, когда корень из смешанного числа надо извлечь! А теперь попрактикуемся в корнях. Очень просто. Прямо по смыслу корня. Что такое корень квадратный из двух, например?

А извлечь корень из квадрата? Множитель – число, стоящее непосредственно перед знаком корня. Так, например, в выражении 2(квадратный корень)5, число 5 является подкоренным выражением, а число 2 — множителем. Собственно, это и есть главная трудность в работе с корнями.

Пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, или на современном языке, что квадратный корень из двух является иррациональным. Перемножьте все члены между собой, включая множители перед корнями и подкоренные выражения. Всегда ищите делитель, из которого можно взять целый корень; это облегчит процесс. Если вы хотите узнать, как умножить корни с или без множителей, прочитайте эту статью.

Метод 1 из 3: Умножение корней без множителей

Перемножьте числа под корнем. Запишите каждый корень с НОК в качестве нового показателя. Знак корня является еще одним способом записи дробных показателей. Когда множитель и корень записаны рядом, то это означает их умножение: 2*(квадратный корень)5. В предыдущих уроках мы осознали, что такое квадратный корень. И разобрались как умножать корни. Формулу умножения корней мы разобрали по винтикам.

Метод 3 из 3: Перемножение двучленов с квадратными корнями

Формула столь же проста, как и умножение. У формулы деления корней возможности не так обширны, как у умножения. В этом примере деление корней помогло нам получить хороший ответ. Бывают более хитрые преобразования.

Исключительно для того, чтобы формулу деления корней в дело употребить. В нашем случае такая формулировка деления корней здорово помогает извлекать корни из дробей! Не вопрос! Если сразу корень не можете извлечь — переводите десятичную дробь в обыкновенную, и — вперёд! Бывает ещё круче, когда корень из смешанного числа надо извлечь! Правильно! Переводим смешанное число в неправильную дробь — и по знакомой формуле деления корней!

Как делить корни?

Надеюсь, что деление корней проблем не составляет. Займёмся последним свойством квадратных корней. Здесь уже будут некоторые тонкости и подводные камни. Это свойство кратко называют корень из квадрата. Мы же умеем корень из произведения извлекать. Это число, которое при возведении в квадрат должно дать двойку. Возведение в квадрат корня квадратного из любого выражения даст нам это самое выражение.

По правилам этих действий сами приведём исходное выражение к корням в квадрате и всё посчитаем. Так поступаем с любой степенью корня из любого выражения, и всё у нас посчитается, упростится и получится. Пусть у нас есть хорошее число 2. Возведём его в квадрат. Во всех учебниках, справочниках и пособиях рядом с такой формулой всегда пишут: «где а — больше, либо равно нулю». В этих словах, которые многие просто пропускают, и кроются главные сложности корней.

Продолжаем. Корень из квадрата извлекается просто. А если у нас подкоренное выражение не в квадрате, а в другой степени? Извлекаем корень из четырёх и получаем 2. Так как арифметический квадратный корень (а в школе мы работаем только с такими!) — всегда число неотрицательное! Это и есть последнее, третье свойство корней.

Здесь он означает лишь то, что при любом знаке а, результат извлечения корня из квадрата будет всегда неотрицательный. Если х

Главный практический совет по работе с квадратными корнями. Если под знаком корня — минус, дальше можно не решать. Если под корнем всё нормально, плюс, а в результате извлечения получается заведомый минус — сделайте из него плюс! Этого требуют правила действий с квадратными корнями.

Разберёмся теперь с корнем из квадрата. Или корень из степени. Здесь мы превратили двойку в корень квадратный из четырёх. А теперь попрактикуемся в корнях.

Деление корней цветов просто необходимо, если вы решили сразу за одно «мероприятие» получить пару сильных и взрослых растений, которые в будущем будут готовы к цветению. Но если рассматривать этот вопрос с иной стороны, то можно сказать, что деление корней может негативно сказаться на состоянии растений, особенно при неправильной работе с корнями.

Прежде чем разбирать вопрос – как делить корни, необходимо определиться с растениями, которые можно так размножать. Прежде всего, это травянистые экземпляры с хорошей корневой системой. Делить таким образом можно цветы и кустарники.

Алгоритм деления корней:

1. Цветок извлеките из грунта и стряхните большой ком земли.

2. Остатки почвы смойте водой, но не нужно полностью очищать корни, главное, чтобы почва не мешала вам при делении.

4. Осуществите обрезку побегов на высоту 10 см. Это мероприятие поможет использовать силы цветов для восстановления корней, а не роста побегов.

5. Если корневые отростки начали твердеть, и видно, что ничего хорошего с них не получиться, то эти корни срезают.

6. Желтые и сухие побеги, листья сразу уничтожают.

7. Обратите внимание на то, что центральная часть цветка делиться не должна. Вы отделяете лишь боковые корни.

8. Срезы обрабатывают древесным углем, а новые растения высаживают в специальные горшки.

Что вы еще должны знать о делении корней

Не выполняйте этот процесс во время цветения растения. Лучше проводить его после этого периода. Если соблюсти эту рекомендацию сложно, то за пару дней перед процессом бутоны и цветы уничтожают, иначе цветок прижиться не сможет.

Кустарник в открытой почве разделяют осенью, а комнатные цветы – весной. Перед извлечением растения из земли, грунт хорошо поливают, чтобы корневая система не повредилась. Ни в коем случае не тяните растение за наземную часть. Корневую систему вынимают вместе с грунтом, стуча по горшку. Если цветок растет на клумбе, то его осторожно подкапывают и достают при помощи садовых инструментов. Для минимального повреждения корневой системы используют острый нож. Корневую систему не ломайте руками! Это негативно скажется на состоянии будущего цветка.

Обратите внимание! Не делите куст на маленькие части, так как это может негативно сказаться на их росте и развитии. Приживаемость будет минимальной. Не забывайте, что на каждой части должны быть один взрослый побег.

В открытую почву сразу высаживать растения нельзя, так как им нужен период восстановления, да и лучи солнца на растения повлияют негативно.

Польза размножения делением куста

Кроме того, что растений становится больше, они еще и омолаживаются. Ведь спорить бессмысленно с тем, что биологический возраст всех живых существ не вечен, и растение не стало исключением. Так что вы можете при помощи деления корней обновить ваши многолетники без дополнительного выращивания рассады.

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.