Главная · Уход · Межзвёздное пространство. Какое оно, межзвездное вещество? Атомарный, молекулярный и горячий газ

Межзвёздное пространство. Какое оно, межзвездное вещество? Атомарный, молекулярный и горячий газ

Пространство между звездами заполняют разреженный газ, пыль, магнитные поля и космические лучи.

Межзвездный газ. Его полная масса довольно велика - несколько процентов суммарной массы всех звезд нашей Галактики. Плотность газа в среднем составляет около 10 -21 кг/м 3 . При такой плотности в 1-2 см 3 межзвездного пространства содержится всего один атом газа.

Химический состав межзвездного газа примерно такой же, как и у звезд: больше всего водорода, затем идет гелий и очень немного всех остальных химических элементов.

Межзвездный газ прозрачен. Поэтому сам он не виден ни в какие телескопы, за исключением тех случаев, когда находится вблизи горячих звезд. Ультрафиолетовые лучи, в отличие от лучей видимого света, поглощаются газом и отдают ему свою энергию. Благодаря этому горячие звезды своим ультрафиолетовым излучением нагревают окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность (см. Туманности).

Более холодный, «невидимый» газ наблюдают радиоастрономическими методами (см. Радиоастрономия). Атомы водорода в разреженной среде излучают радиоволны на длине волны около 21 см. Поэтому из областей межзвездного газа непрерывно распространяются потоки радиоволн. Принимая и анализируя это излучение, ученые узнают о плотности, температуре и движении межзвездного газа в космическом пространстве.

Оказалось, что он распределен в пространстве неравномерно. Существуют газовые облака размером от одного до нескольких сотен световых лет и с низкой температурой - от десятков до сотен градусов Кельвина. Пространство между облаками заполнено более горячим и разреженным межоблачным газом.

Вдали от горячих звезд газ нагревается главным образом рентгеновскими и космическими лучами, непрерывно пронизывающими во всех направлениях межзвездное пространство. До больших температур его могут разогреть и сверхзвуковые волны сжатия - ударные волны, распространяющиеся с огромной скоростью в газе. Они образуются при взрывах сверхновых звезд и при столкновениях быстро движущихся масс газа.

Чем выше плотность газа или чем массивнее газовое облако, тем больше энергии требуется, чтобы его нагреть. Поэтому в плотных облаках температура межзвездного газа очень мала: встречаются облака с температурой от нескольких единиц до нескольких десятков градусов Кельвина. В таких областях водород и другие химические элементы объединяются в молекулы. При этом слабеет радиоизлучение на волне 21 см, потому что водород из атомарного (Н) становится молекулярным (Н 2). Но зато появляются линии радиоизлучения различных молекул на длинах волн от нескольких миллиметров до нескольких десятков сантиметров. Эти линии наблюдаются, и по ним можно судить о физическом состоянии газа в холодных облаках, которые часто так и называют: молекулярные облака или молекулярные газовые комплексы.

Путем радионаблюдений в линиях излучения молекул в нашей Галактике было обнаружено большое число гигантских молекулярных облаков с массой не менее 100 тыс. масс Солнца. Полное количество газа, содержащегося в них, сопоставимо с количеством атомарного водорода в Галактике. Области с наиболее высокой плотностью молекулярного газа образуют в Галактике широкое кольцо вокруг центра с радиусом 5-7 кпс.

По линиям радиоизлучения в межзвездной среде астрономам удалось обнаружить несколько десятков типов молекул: от простых двухатомных молекул СН, СО, CN до таких, как молекула муравьиной кислоты, этилового или метилового спирта, и более сложных многоатомных молекул. Но самыми распространенными молекулами все же являются молекулы водорода Н 2 .

Плотность и температура молекулярных облаков таковы, что газ в них стремится сжаться и уплотниться под действием собственной гравитации. Этот процесс, по-видимому, приводит к образованию звезд. Действительно, холодные молекулярные облака очень часто соседствуют с молодыми звездами.

Из-за превращения межзвездного газа в звезды его запасы в Галактике постепенно истощаются. Но газ частично возвращается из звезд в межзвездную среду. Это происходит при вспышках новых и сверхновых звезд, при истечении вещества с поверхности звезд и при образовании звездами планетарных туманностей.

В нашей Галактике, как и в большинстве других, газ концентрируется к плоскости звездного диска, образуя слой толщиной примерно в 100 пс. К краю Галактики толщина этого слоя постепенно увеличивается. Наибольшей плотности газ достигает в ядре Галактики и на расстоянии 5÷7 кпс от него.

На большом расстоянии от диска Галактики пространство заполнено очень горячим (более миллиона градусов) и крайне разреженным газом, но его полная масса невелика по сравнению с массой межзвездного газа вблизи плоскости Галактики.

Межзвездная пыль. В межзвездном газе в качестве небольшой примеси к нему (около 1% по массе) содержится пыль. Присутствие пыли заметно, прежде всего, по поглощению и отражению света звезд. Из-за поглощения света пылью мы почти не видим в направлении на Млечный Путь тех звезд, которые расположены дальше, чем 3-4 тыс. световых лет от нас. Ослабление света особенно сильно в синей (коротковолновой) области спектра. Поэтому далекие звезды выглядят покрасневшими. Особенно непрозрачны из-за большой плотности пыли плотные газопылевые облака - глобулы.

Отдельные пылинки имеют очень маленький размер - несколько десятитысячных долей миллиметра. Они могут состоять из углерода, кремния и различных смерзшихся газов. Зародыши или ядра пылинок, скорее всего, образуются в атмосферах холодных звезд-гигантов. Оттуда они давлением света звезды «выдуваются» в межзвездное пространство, где на них «намерзают» молекулы водорода, воды, метана, аммиака и других газов.

Межзвездное магнитное поле. Межзвездная среда пронизана слабым магнитным полем. Оно примерно в 100 000 раз слабее магнитного поля Земли. Но межзвездное поле охватывает гигантские объемы космического пространства, и поэтому его полная энергия очень велика.

Межзвездное магнитное поле практически не оказывает никакого влияния на звезды или планеты, но оно активно взаимодействует с движущимися в межзвездном пространстве заряженными частицами - космическими лучами. Действуя на быстрые электроны, магнитное поле «заставляет» их излучать радиоволны. Магнитное поле ориентирует определенным образом межзвездные пылинки, имеющие вытянутую форму, и свет далеких звезд, проходящий сквозь межзвездную пыль, приобретает новое свойство - становится поляризованным.

Очень большое влияние оказывает магнитное поле на движение межзвездного газа. Оно способно, например, затормозить вращение газовых облаков, воспрепятствовать сильному сжатию газа или таким образом направить движение газовых облаков, чтобы заставить их собраться в огромные газопылевые комплексы.

О космических лучах подробно рассказано в соответствующей статье.

Все четыре составляющие межзвездной среды тесно связаны друг с другом. Их взаимодействие сложно и еще не совсем ясно. При изучении межзвездной среды астрофизики опираются как на непосредственные наблюдения, так и на такие теоретические разделы физики, как физика плазмы, атомная физика и магнитная газодинамика.

  • Часть вторая ЖИЗНЬ ВО ВСЕЛЕННОЙ
  • 11. Условия, необходимые для возникновения и развития жизни на планетах
  • Часть третья РАЗУМНАЯ ЖИЗНЬ ВО ВСЕЛЕННОЙ
  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    3. Межзвездная среда Согласно современным представлениям, звезды образуются путем конденсации весьма разреженной межзвездной газопылевой среды. Поэтому, прежде чем рассказать о путях эволюции звезд, нам придется остановиться на свойствах межзвездной среды. Этот вопрос имеет также самостоятельное значение для интересующей нас проблемы. В частности, решение вопроса об установлении различных типов связи между цивилизациями, находящимися на различных планетных системах, зависит от свойств среды, заполняющей межзвездное пространство, разделяющее эти цивилизации. Межзвездный газ был обнаружен в самом начале текущего столетия благодаря поглощению в линиях ионизованного кальция, которое он производит в спектрах удаленных горячих звезд * . С тех пор методы изучения межзвездного газа непрерывно улучшались и достигли высокой степени совершенства. В итоге большой многолетней работы, проделанной астрономами, сейчас свойства межзвездного газа можно считать достаточно хорошо известными: Плотность межзвездной газовой среды ничтожна. В среднем в областях межзвездного пространства, расположенных недалеко от галактической плоскости, в 1 см 3 находится примерно 1 атом. Напомним, что в таком же объеме воздуха находится 2,7x10 19 молекул. Даже в самых совершенных вакуумных камерах концентрация атомов не меньше чем 10 3 см 3 . И все же межзвездную среду нельзя рассматривать как вакуум! Дело в том, что вакуумом, как известно, называется такая система, в которой длина свободного пробега атомов или молекул превышает характерные размеры этой системы. Однако в межзвездном пространстве средняя длина свободного пробега атомов в сотни раз меньше, чем расстояния между звездами. Поэтому мы вправе рассматривать межзвездный газ как сплошную, сжимаемую среду и применять к этой среде законы газовой динамики. Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев звезд главной последовательности. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, СО, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Развитие внеатмосферной астрономии открыло возможность наблюдения линий молекулярного водорода в далекой ультрафиолетовой части спектра. Физические свойства межзвездного газа существенно зависят от того, находится ли он в сравнительной близости от горячих звезд или, напротив, достаточно удален от них. Дело в том, что ультрафиолетовое излучение горячих звезд, полностью ионизует водород на огромных расстояниях. Так, звезда класса 05 ионизует вокруг себя водород в гигантской области радиусом около 100 пк. Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях межзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название "зоны HII". Однако большая часть межзвёздной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода. Кроме газа, в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10 -4 - 10 -5 см. Они являются причиной поглощения света в межзвездном пространстве, из-за которого мы не можем наблюдать объекты, находящиеся в галактической плоскости на расстояниях, больших 2-3 тыс. пк. К счастью, космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газопылевого слоя составляет всего лишь около 250 пк. Поэтому излучение от космических объектов, направления на которые составляют значительные углы с галактической плоскостью, поглощается незначительно. Межзвездные газ и пыль перемешаны. Отношение средних плотностей газа и пыли в межзвездном пространстве равно приблизительно 100:1. Наблюдения показывают, что пространственная плотность газопылевой межзвездной среды меняется весьма нерегулярно. Для этой среды характерно резко выраженное "клочковатое" распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газопылевые облака сосредоточены преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Отдельные облака имеют скорости в 6-8 км/с, о чем уже говорилось. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности. Значительное количество сведений о природе межзвездного газа было получено за последние три десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными были исследования межзвездного газа на волне 21 см. Что это за волна? Еще в сороковых годах теоретически было предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое "глубокое" квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно - другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см. Расчеты показывают, что такие переходы между уровнями атома водорода происходят чрезвычайно редко: в среднем для одного атома имеет место один переход в 11 млн лет! Чтобы почувствовать ничтожную величину вероятности таких процессов, достаточно сказать, что при излучении спектральных линий в оптическом диапазоне переходы происходят каждую стомиллионную долю секунды. И все же оказывается, что эта линия, излучаемая межзвездными атомами, имеет вполне наблюдаемую интенсивность. Так как межзвездные атомы имеют различные скорости по лучу зрения, то из-за эффекта Доплера излучение в линии 21 см будет "размазано" в некоторой полосе частот около 1420 МГц (эта частота соответствует длине волны 21 см). По распределению интенсивности в этой полосе (так называемому "профилю линии") можно изучить все движения, в которых участвуют межзвездные атомы водорода. Таким путем удалось исследовать особенности галактического вращения межзвездного газа, беспорядочные движения отдельных его облаков, а также его температуру. Кроме того, из этих наблюдений определяется количество атомов водорода в межзвездном пространстве. Мы видим, таким образом, что радиоастрономические исследования на волне 21 см являются мощнейшим методом изучения межзвездной среды и динамики Галактики. В последние годы этим методом изучаются другие галактики, например туманность Андромеды. По мере увеличения размеров радиотелескопов будут открываться все новые возможности изучения более удаленных галактик при помощи радиолинии водорода. В конце 1963 г. была обнаружена еще одна межзвездная радиолиния, принадлежащая молекулам гидроксила ОН, с длиной волны 18 см. Существование этой линии было теоретически предсказано автором этой книги еще в 1949 г. В направлении на галактический центр интенсивность этой линии (которая наблюдается в поглощении) оказалась очень высокой ** . Это подтверждает сделанный выше вывод, что в отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии. В 1967 г. была открыта радиолиния воды Н 2 О с длиной волны 1,35 см. Исследования газовых туманностей в линиях ОН и Н 2 О привели к открытию космических мазеров ( см. следующую главу). За последние 20 лет, протекшие после открытия межзвездной радиолинии ОН, было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Полное число обнаруженных таким образом молекул уже превышает 50. Среди них особенно большое значение имеет молекула СО, радиолиния которой с длиной волны 2,64 мм наблюдается почти во всех областях межзвездной среды. Есть молекулы, радиолинии от которых наблюдаются исключительно в плотных, холодных облаках межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например, СН 3 НСО, CH 3 CN и др. Это открытие, возможно, имеет отношение к волнующей нас проблеме происхождения жизни во Вселенной. Если открытия будут и дальше делаться в таком темпе, кто знает, не будут ли обнаружены нашими приборами межзвездные молекулы ДНК и РНК? ( см. гл. 12). Весьма полезным является то обстоятельство, что соответствующие радиолинии, принадлежащие различным изотопам одной и той же молекулы, имеют довольно заметно различающиеся длины волн. Это позволяет исследовать изотопный состав межзвездной среды, что имеет большое значение для изучения проблемы эволюции вещества во Вселенной. В частности, раздельно наблюдаются такие изотопные комбинации окиси углерода: 12 С 16 О, 13 C 16 O, и 12 С 18 О. Области межзвездной среды, окружающей горячие звезды, где водород полностью ионизован ("зоны HII"), весьма успешно исследуются при помощи так называемых "рекомбинационных" радиолиний, существование которых было теоретически предсказано еще до их открытия советским астрономом Н.С.Кардашевым, много занимавшимся также проблемой связи с внеземными цивилизациями ( см. гл. 26). "Рекомбинационные" линии возникают при переходах между весьма высоко возбужденными атомами (например, между 108 и 107 уровнями атома водорода). Столь "высокие" уровни могут существовать в межзвездной среде только по причине ее чрезвычайно низкой плотности. Заметим, например, что в солнечной атмосфере могут существовать только первые 28 уровней атома водорода; более высокие уровни разрушаются благодаря взаимодействию с частицами окружающей плазмы. Уже сравнительно давно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей. Эти магнитные поля связаны с облаками межзвездного газа и движутся вместе с ними. Напряженность таких полей около 10 -5 Э, т. е. в 100 тыс. раз меньше напряженности земного магнитного поля на поверхности нашей планеты. Общее направление магнитных силовых линий совпадает с направлением ветвей спиральной структуры Галактики. Можно сказать, что сами спиральные ветви представляют собой гигантских размеров магнитные силовые трубки. В конце 1962 г. факт существования межзвездных магнитных полей был установлен английскими, радиоастрономами путем прямых наблюдений. С этой целью исследовались весьма тонкие поляризационные эффекты в радиолинии 21 см, наблюдаемой в поглощении в спектре мощного источника радиоизлучения - Крабовидной туманности (об этом источнике см. гл. 5) *** . Если межзвездный газ находится в магнитном поле, можно ожидать расщепления линии 21 см на несколько компонент, отличающихся поляризацией. Так как величина магнитного поля очень мала, это расщепление будет совершенно ничтожным. Кроме того, ширина линии поглощения 21 см довольно значительна. Единственное, что можно ожидать в такой ситуации, - это небольшие систематические различия поляризации в пределах профиля линий поглощения. Поэтому уверенное обнаружение этого тонкого эффекта - замечательное достижение современной науки. Измеренное значение межзвездного магнитного поля оказалось в полном соответствии с теоретически ожидаемым согласно косвенным данным. Для исследований межзвездных магнитных полей применяется и радиоастрономический метод, основанный на изучении вращения плоскости поляризации радиоизлучения внегалактических источников **** при его прохождении через "намагниченную" межзвездную среду ("явление Фарадея"). Этим методом уже сейчас удалось получить ряд важных данных о структуре межзвездных магнитных полей. В последние годы в качестве источников поляризованного излучения для измерения межзвездного магнитного поля таким методом используются пульсары ( см. гл. 5). Межзвездные магнитные поля играют решающую роль при образовании плотных холодных газопылевых облаков межзвездной среды, из которых конденсируются звезды ( см. гл. 4). С межзвездными магнитными полями тесно связаны первичные космические лучи, заполняющие межзвездное пространство. Это частицы (протоны, ядра более тяжелых элементов, а также электроны), энергии которых превышают сотни миллионов электронвольт, доходя до 10 20 -10 21 эВ. Они движутся вдоль силовых линий магнитных полей по винтовым траекториям. Электроны первичных космических лучей, двигаясь в межзвездных магнитных полях, излучают радиоволны. Это излучение наблюдается нами как радиоизлучение Галактики (так называемое "синхротронное излучением). Таким образом, радиоастрономия открыла возможность изучать космические лучи в глубинах Галактики и даже далеко за ее пределами. Она впервые поставила проблему происхождения космических лучей на прочный научный фундамент. Исследователи, работавшие над проблемой происхождения жизни, до недавнего времени оставляли без внимания вопрос о первичных космических лучах. Между тем уровень жесткой радиации, вызывающей мутации, является, на наш взгляд, весьма существенным эволюционным фактором. Имеются все основания полагать, что ход эволюции жизни был бы совсем другим, если бы уровень жесткой радиации (который сейчас в значительной степени обусловлен первичными космическими лучами) был бы в десятки раз выше современного значения. Отсюда возникает важный вопрос: остается ли постоянным уровень космической радиации на какой-нибудь планете, на которой развивается жизнь? Речь идет о сроках, исчисляемых многими сотнями миллионов дет. Мы увидим в следующих главах этой книги, как современная астрофизика и радиоастрономия отвечают на этот вопрос. Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1% от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10 -4 и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем, о чем речь будет идти в гл. 6 .
    • * Собственные линии поглощения ионизованного кальция у таких звезд отсутствуют, ак как температуры их поверхностных слоев слишком высоки.
    • ** Линия ОН состоит из четырех близких по частотам компонент (1612, 1665, 1667 и 1720 МГц).
    • *** Линия поглощения 21 см, обусловленная межзвездным водородом, образуется в радиоспектре какого-либо источника совершенно таким же образом, как линии межзвездного кальция в спектрах удаленных горячих звезд.
    • **** Радиоизлучение от мегагалактических источников линейно поляризовано, причем степень поляризации рбычно порядка нескольких процентов. Поляризация этого радиоизлучения объясняется его синхротроннои природой (см. ниже).

    Пространство между звёздами, за исключением отдельных туманностей, выглядит пустым. На самом же деле всё межзвёздное пространство заполнено веществом. К такому заключению учёные пришли после того, как в начале XX в. швейцарский астроном Роберт Трюмплер открыл поглощение (ослабление) света звёзд на пути к земному наблюдателю. Причём степень его ослабления зависит от цвета звезды. Свет от голубых звёзд поглощается более интенсивно, чем от красных. Таким образом, если звезда излучает в голубых и красных лучах одинаковое количество энергии, то в результате поглощения света голубые лучи ослабляются сильнее красных и с Земли звезда кажется красноватой.

    Вещество, поглощающее свет, распределено в пространстве не равномерно, а имеет клочковатую структуру и концентрируется к Млечному Пути. Тёмные туманности, такие, как Угольный Мешок и Конская Голова, являются местом повышенной плотности поглощающего межзвёздного вещества. А состоит оно из мельчайших частиц - пылинок. Физические свойства пылинок к настоящему времени изучены достаточно хорошо.

    Помимо пыли между звёздами имеется большое количество невидимого холодного газа. Масса его почти в сто раз превосходит массу пыли. Как же стало известно о существовании этого газа? Оказалось, что атомы водорода излучают радиоволны с длиной волны 21 см. Большую часть информации о межзвёздном веществе получают с помощью радиотелескопов. Так были открыты облака атомарного нейтрального водорода.

    Типичное облако атомарного нейтрального водорода имеет температуру около 70 К (-200 °С) и невысокую плотность (несколько десятков атомов в кубическом сантиметре пространства). Хотя такая среда и считается облаком, для землянина это глубокий вакуум, в миллиард раз разреженнее, чем вакуум, создаваемый, например, в кинескопе телевизора. Размеры облаков водорода – от 10 до 100 пк (для сравнения: звёзды в среднем находятся друг от друга на расстоянии 1 пк).

    Впоследствии были обнаружены ещё более холодные и плотные облака молекулярного водорода, совершенно непрозрачные для видимого света. Именно в них сосредоточена большая часть холодного межзвёздного газа и пыли. По размерам эти облака примерно такие же, как и области атомарного водорода, но плотность их в сотни и тысячи раз выше. Поэтому в больших молекулярных облаках может содержаться огромная масса вещества, достигающая сотен тысяч и даже миллионов масс Солнца. В молекулярных облаках, состоящих в основном из водорода, присутствуют и многие более сложные молекулы, в том числе простейшие органические соединения.

    Некоторая часть межзвёздного вещества нагрета до очень высоких температур и «светится» в ультрафиолетовых и рентгеновских лучах. В рентгеновском диапазоне излучает самый горячий газ, имеющий температуру _около миллиона градусов. Это - корональный газ , названный так по аналогии с разогретым газом в солнечной короне. Корональный газ отличается очень низкой плотностью: примерно один атом на кубический дециметр пространства.

    Горячий разреженный газ образуется в результате мощных взрывов - вспышек сверхновых звёзд. От места взрыва в межзвёздном газе распространяется ударная волна и нагревает газ до высокой температуры, при которой он становится источником рентгеновского излучения. Корональный газ обнаружен также в пространстве между галактиками.

    Итак, основным компонентом межзвёздной среды является газ, состоящий из атомов и молекул. Он перемешан с пылью, содержащей около 1% массы межзвёздного вещества, и пронизывается быстрыми потоками элементарных частиц - космическими лучами - и электромагнитным излучением, которые также можно считать составляющими межзвёздной среды.

    Кроме того, межзвёздная среда оказалась слегка намагниченной. Магнитные поля связаны с облаками межзвёздного газа и движутся вместе с ними. Эти поля примерно в 100 тыс. раз слабее магнитного поля Земли. Межзвёздные магнитные поля способствуют образованию наиболее плотных и холодных облаков газа, из которых конденсируются звёзды. Частицы космических лучей также реагируют на межзвёздное магнитное поле: они перемещаются вдоль его силовых линий по спиральным траекториям, как бы навиваясь на них. При этом электроны, входящие в состав космических лучей, излучают радиоволны. Это так называемое синхротронное излучение рождается в межзвёздном пространстве и уверенно наблюдается в радиодиапазоне.


    Пространство между звездами не пусто. Гигантские скопления и вращающиеся массы газа и пыли образуют красивые ярко светящиеся облака вещества. Такие облака называются туманностями, и многие из них являются теми самыми местами, где зарождаются новые звезды. В туманности Ориона новые звезды образуются прямо сейчас.

    Чтобы увидеть облака ныли Млечного Пути невооруженным глазом, тебе придется дождаться такой мочи, когда на небе не будет Луны, и выбрать для наблюдения место, удаленное от ярких огней больших и малых городов. Тогда ты сможешь различить слабо светящуюся полосу, проходящую через все небо, шириной примерно с твою ладонь па расстоянии вытянутой руки.

    Лучше всего наблюдать Млечный Путь в южном полушарии, но летними ночами его нетрудно видеть и в северном. Световую дымку пересекают «щели» и «дырки», хорошо видные на фотографиях.

    В течение долгого времени астрономы считали, что эти темные пятна на Млечном Пути представляют собой как бы туннели среди звезд. Теперь мы знаем, что это абсолютно неверно. В действительности области с небольшим количеством звезд являются облаками газа и пыли. Мелко раздробленная пыль и газ рассеяны там, в глубинах космоса, и загораживают от нас звезды Млечного Пути.

    Действие пыли в космосе

    У пас па Земле заходящее Солнце кажется красным, поскольку пыль, содержащаяся в воздухе, рассеивает синий свет сильнее, чем красный. Так что через такой мглистый воздух большая часть красных лучей проходит, а синих — нет. Аналогичным образом обстоит дело и в космосе. Туман в космическом пространстве не только делает звезды более тусклыми — из-за него они выглядят и более красными. Вблизи центра пашей Галактики, в созвездии Стрельца, пыли так много, что сквозь нее свет вообще не проходит, поэтому центр Галактики нам абсолютно не виден. Чтобы проникнуть через эти плотные облака пыли и узнать все-таки, что же происходит в самом сердце Млечного Пути, астрономам приходится прибегать к помощи радиотелескопов и инфракрасных телескопов.

    Под действием звездного спета крупинки пыли в космическом пространстве немного разогреваются, особенно в окрестности очень горячих звезд. В специальные инфракрасные телескопы можно видеть, как частицы пыли излучают тепло, и это даст нам возможность заглянуть внутрь пыльных облаков. Когда под действием гравитационных сил часть газового или пыльно-

    го облака начинает сжиматься, облако вынуждено отдать часть своей энергии. Таким образом, коллапс (сжатие) облака высвобождает энергию. Эта энергия видна как инфракрасное излучение.

    Звездная пыль

    Пыль, находящаяся и Млечном Пути, — это звездная пыль. Наружные слои гигантских звезд уносятся в космическое пространство. Старые звезды взрываются и рассеивают в пространстве атомы кислорода, углерода и железа. Кремний и железо способны образовывать крошечные кристаллики, которые затем перемещаются в пространстве, обретая там покрытие из кислорода, углерода и азота. Эти маленькие крупинки представляют собой миниатюрные химические заводы. На поверхности пылевых частиц атомы, па-пример, углерода и кислорода, прикрепляются друг к другу, образуя молекулы — скажем, окиси углерода.

    Алло! Водород вызывает Землю!

    Наиболее распространенным веществом в межзвездном пространстве, да и вообще во Вселенной, является водород. Радиоастрономы слышат шум, производимый этим газом во всех частях нашей Галактики. Атом водорода имеет только один электрон. Иногда электрон срывается со своей орбиты, и тогда в пространство посылается радиосигнал. Каждый отдельный сигнал весьма слаб, по в космическом пространстве так много водорода, что астрономам удается получить общий, суммарный эффект от псе-го водорода it виде излучения с длиной полны 21 см. Водородные карты Млечного Пути обнаруживают красивую спиральную форму пашей Галактики с большим количеством водорода, находящегося в ее спиральных рукавах.

    Водородные облака вращаются в Галактике точно так же, как планеты обращаются вокруг Солнца. Скорость перемещения водородного облака зависит от того, как далеко находится оно от центра нашей Галактики. Исходя из скоростей водородных облаков мы можем вычислить общий объем и форму Галактики.

    Туманности, излучающие свет

    Межзвездные облака в основном состоят из водорода. В глубинах космоса они слишком холодны, чтобы светиться. Но иногда водородное облако окружает горячую звезду. И тогда туманность предстает перед нами в виде облака раскаленного газа. Звезда разогревает водород до тех пор, пока он не начинает светиться розоватом светом. В Большом Магеллановом облаке находится огромная самосветящаяся туманность, излучающая розовый свет.

    Туманности, поглощающие свет

    Межзвездное облако может оказаться чересчур холодным для того, чтобы излучать свет. И лаже наоборот, холод-нос облако может поглощать свет ярких объектов (например, звезд), находящихся за ним. В этом случае мы видим его как темный силуэт на светлом фоне. «Угольный мешок», темное пятно в южной части Млечного Пути — это видимая невооруженным глазом туманность, поглощающая свет.

    Туманности, отражающие свет

    Иногда холодное облако п космическом пространстве может оказаться видимым из-за тог», что пыль, из которой оно состоит, отражает свет ближайших звезд. Пыль образует ажурную отражающую туманность вокруг самых ярких звезд скопления под названием Плеяды. Туманности, отражающие свет, на фотографиях выглядят голубыми.

    Межзвездная среда

    Вещество, находящееся в пространстве между звездами, называется межзвездной средой. Большая его часть сконцентрирована в спиральных рукавах Млечного Пути. Температура межзвездного вещества колеблется от нескольких градусов выше абсолютного нуля в самых холодных облаках пыли до миллиона градусов в самых горячих газовых облаках.

    Если бы ты отправился в космос к спиральному рукаву Галактики, ты обнаружил бы там всего около одного атома газа в кубическом сантиметре. В кубическом километре пространства оказалось бы несколько сотен пылинок. Таким обратим, межзвездная среда очень сильно разрежена. Однако и плотных облаках концентрация вещества может быть в 1000 раз выше средней. Но и в плотном облаке па кубический сантиметр приходится всего несколько сотен атомов. Причина, по которой нам все же удается наблюдать межзвездное вещество, несмотря па столь сильную его разреженность, состоит в том, что мы видим его в большой толще пространства. В обычной спиральной галактике межзвездное вещество составляет от 5 до 10 процентов всей видимой материи.

    Наша Солнечная система находится в той области Галактики, где плотность межзвездного вещества необычайно низка. Эта область называется Местным «пузырем»; она простирается во все стороны примерно на 300 световых лет. Возможно, что большая часть всего вещества, какое могло бы находиться вблизи Солнца, была унесена прочь под действием каких-то процессов. Одна из предложенных идей состоит в том, что когда-то давно в окрестностях Солнечной системы произошел колоссальный взрыв нескольких больших звезд. И межзвездный газ был отброшен взрывной полной в отдаленные области космического пространства.

    Гигантские молекулярные облака

    Самые массивные объекты Млечного Пути — это гигантские молекулярные облака. Их масса может превосходить массу Солнца в миллион раз. Туманность Ориона — это всего лишь часть гигантского молекулярного облака, которое примерно в 500 раз массивнее нашего Солнца. В таинственных глубинах черных облаков астрономы обнаружили совершенно поразительный набор молекул. В тот космический материал входит вода, аммиак и спирт. Имеется также муравьиная кислота — та самая, что бывает у кусачих муравьев, — а также синильная кислота. Кислота из этих молекул относятся к разряду органических, поскольку они содержат углерод.

    Химия этих удивительных облаков па самом деле очень проста. Разные атомы можно представить себе как части некоего конструкторского набора. Углерод, водород, кислород, азот и другие атомы можно соединить вместе самыми разнообразными способами — так и получаются всевозможные молекулы, которые не разрушаются в облаке из-за его очень низкой температуры. Простые элементы могут соединиться и гак, что получаются молекулы аминокислот и белков. На Земле эти же вещества, имеющиеся в природе, соединяются и образуют гигантские молекулы растительных и животных организмов.

    «Вояджер-2» прошел невероятную веху в своем исследовании Cолнечной системы, войдя в межзвездное пространство, но ни его путешествие, ни научные исследования на этом не заканчиваются.
    Во время пресс-конференции на ежегодном собрании Американского геофизического союза 10 декабря ученые и инженеры заявили, что, хотя они взволнованы пересечением границы, «Вояджер-2» и его собрат «Вояджер-1» еще достаточно работоспособны. Собранные ими данные помогут пролить свет на то, как частицы, исходящие от Солнца, сталкиваются с частицами в межзвездном ветре за его пределами.
    «Вояджеры» - это первые на сегодняшний день космические корабли, которые люди отправили на границу Солнечной системы, называемую гелиопаузой. Если все пойдет хорошо, оба корабля будут продолжать путешествовать долгие годы.

    Ключевой проблемой для «Вояджера-2» является преодоление постепенной потери тепла и энергии. В настоящее время корабль работает при температуре около 3,6 °C, и за каждый год производительность электроэнергии падает на 4 Вт. Это означает, что в конечном счете команде придется отключить инструменты.
    По оценкам, аппараты проработают еще как минимум 5–10 лет, но количество научных данных будут постепенно сокращаться. Хотя «Вояджер-1» первым преодолел гелиопаузу, «Вояджер-2» предлагает несколько новых возможностей. Он имеет работающий детектор плазмы, в то время как у его предшественника этот инструмент прекратил работу десятилетия назад. И из-за текущей стадии солнечного цикла «Вояджер-2» может снова оказаться в гелиопаузе, когда солнечный пузырь расширится.
    Даже когда гелиосфера окажется позади «Вояджера-2», он сможет рассказать ученым о потоке межзвездного ветра, влияющего на гелиопаузу, и о местном пузыре, окружающем гелиосферу. С его помощью ученые смогут зафиксировать галактические космические лучи, высоконергетические атомы и целый ряд элементов, которые движутся по всей Вселенной почти со скоростью света.
    «Галактическое космическое излучение действует как посланник наших местных галактических окрестностей. И теперь мы можем взглянуть на галактику сквозь затуманенную линзу нашей гелиосферы», - заявил астрофизик из НАСА Джордж Денольфо.
    «Вояджер-2» может не только рассказать нам о наших собственных окрестностях, но и сформировать понимание экзопланет. Каждая солнечная система расположена в своем эквиваленте гелиосферы, соприкасаясь со своим локальным межзвездным пространством. Этот пограничный баланс определяет, насколько эти планеты пригодны для жизни.
    Хотя инструменты «Вояджеров» не вечны, оба космических корабля будут продолжать свой путь. В течение примерно 300 лет они достигнут внутреннего края Облака Оорта - сферы комет, окружающей Солнечную систему. Переход через это поле займет около 30 000 лет. Как только зонды полностью покинут нашу систему, они выйдут на длинную орбиту вокруг сердца Млечного Пути, на которой будут кружить миллионы, если не миллиарды лет, став первыми посланниками человечества на таком расстоянии.